首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Neurotransmitter release from rat brain synaptosomes was measured following pretreatment with various phorbol esters. Ca2+-dependent, evoked neurotransmitter release was increased by phorbol esters that were active in stimulating protein kinase C. Protein kinase C activation was demonstrated by increased incorporation of 32P into 87-kilodalton phosphoprotein, a specific substrate for that kinase. Inactive phorbol esters had no effect on neurotransmitter release or on the phosphorylation of 87-kilodalton phosphoprotein. The increased release was observed in either crude cortical synaptosomal fractions (P2) or purified cortical synaptosomal fractions. The enhancement was found for all neurotransmitters (norepinephrine, acetylcholine, gamma-aminobutyric acid, serotonin, dopamine, and aspartate), all brain regions (cerebral cortex, hippocampus, and corpus striatum), and all secretagogues (elevated extracellular K+ level, veratridine, or A23187) examined. It was also observed at all calcium concentrations present during stimulation of release. The phorbol ester enhancement of Ca2+-dependent release occurred whether or not calcium was present during pretreatment. These results indicate that stimulation of protein kinase C leads to an enhanced sensitivity of the stimulus-secretion coupling processes to calcium within the nerve terminal. The results support the possibility that presynaptic activation of protein kinase C modulates nerve terminal neurotransmitter release in the CNS.  相似文献   

2.
Polyvalent cations and hypertonic shrinking of presynaptic endings lead to calcium-independent exocytosis in various synapses. In the present study we have investigated the contribution of integrins to this phenomenon. It was found that hypertonic shrinking, polyvalent cations ruthenium red and gadolinium results in dose-dependent calcium-independent neurotransmitter release in rat brain synaptosomes. The exocytotic mechanism of neurotransmitter release induced by 300 microM gadolinium was additionally verified by the fluorescent dye FM2-10. We found that 200 microM of RGDS peptide, an inhibitor of integrins, decreased polyvalent gadolinium-induced [3H]D: -aspartate release by 26%. This compound had no effect upon hypertonicity-induced release. The peptide RGES, a negative control for RGDS; genistein, an inhibitor of tyrosine kinases; and citrate, an inhibitor of lanthanides-induced aggregation were ineffective in both cases. Therefore, we have shown that integrins did not influence hypertonicity-evoked [3H]D: -aspartate release, but partially mediated that evoked by gadolinium ions.  相似文献   

3.
Synaptosomes isolated from the rat cerebral cortex by means of a discontinuous Ficoll gradient carry out net, sodium-dependent, veratridine-sensitive accumulation of gamma-aminobutyric acid (GABA), serotonin, norepinephrine, and dopamine. The intrasynaptosomal contents of the four neurotransmitters are: 30.4 nmol/mg protein, 17.4 pmol/mg protein, 13.5 pmol/mg protein, and 21.2 pmol/mg protein, respectively. Anaerobic preincubation of synaptosomes causes an irreversible decrease in the rates of neurotransmitter accumulation but does not affect the rates of their release. The inhibitory effect of anaerobiosis is enhanced by increased concentration of [H+] (decreased pH) in the medium. The most sensitive is the uptake of dopamine, the least that of serotonin. The rates of neurotransmitter efflux are unaffected by anaerobiosis. Synaptosomes leak catecholamines, GABA, and serotonin into the medium when subjected to anaerobiosis, and reintroduction of oxygen is accompanied by a rapid reaccumulation of all four neurotransmitters. It is concluded that: (1) Responses of synaptosomes to anaerobiosis are remarkably similar to the behavior of intact brain in hypoxia and ischemia. (2) Neurotransmitter uptake systems are more sensitive to short periods of anaerobiosis than either the energy metabolism or ion transport. (3) Some neurotransmitter uptake systems are more easily damaged by anaerobiosis than others.  相似文献   

4.
These studies were undertaken to test the hypothesis that alterations in phosphatidylinositol metabolism can modulate neurotransmitter release in the central nervous system. The effects of 1,2-diacylglycerols (DAGs) on dopamine release in the rat central nervous system were determined by measuring dopamine release from rat striatal synaptosomes in response to two DAGs (sn-1,2-dioctanoylglycerol and 1-oleoyl-2-acetylglycerol) that can activate protein kinase C and one DAG (deoxydioctanoylglycerol) that does not activate this kinase. Dioctanoylglycerol and 1-oleoyl-2-acetylglycerol, at a concentration of 50 micrograms/ml, stimulated the release of labeled dopamine from striatal synaptosomes by 35-50 and 17%, respectively. Dioctanoylglycerol-induced release was also demonstrated for endogenous dopamine. In contrast, deoxydioctanoylglycerol (50 micrograms/ml) did not stimulate dopamine release. Dioctanoylglycerol-induced dopamine release was independent of external calcium concentration, indicating a utilization of internal calcium stores. Dioctanoylglycerol (50 micrograms/ml) also produced a 38% increase in labeled serotonin release from striatal synaptosomes. The addition of dioctanoylglycerol to the striatal supernatant fraction increased protein kinase C activity. These results are consistent with the concept that an increase in phosphatidylinositol metabolism can stimulate neurotransmitter release in the central nervous system via an increase in DAG concentration. The data suggest an involvement of protein kinase C in the DAG-induced release, but other sites for DAG action are also possible.  相似文献   

5.
Abstract: The release of preloaded [14C]neuroactive amino acids (glutamic acid, proline, γ-aminobutyric acid) from rat brain synaptosomes can occur via a time-dependent, Ca2+ -independent process. This Ca2+-independent efflux is increased by compounds that activate Na+ channels (veratridine, scorpion venoms), by the ionophore gramicidin D, and by low concentrations of unsaturated fatty acids (oleic acid and arachidonic acid). Saturated fatty acids have no effect on the efflux process. Neither saturated nor unsaturated fatty acids have an effect on the release of [14C]leucine, an amino acid not known to possess neurotransmitter properties. The increase in the efflux of neuroactive amino acids by oleic and arachidonic acids can also be demonstrated using synaptosomal membrane vesicles. Under conditions in which unsaturated free fatty acids enhance amino acid efflux, no effect on 22Na+ permeability is observed. Since Na+ permeability is not altered by fatty acids, the synaptosomes are not depolarized in their presence and, thus, the Na+ gradient can be assumed to be undisturbed. We conclude that unsaturated fatty acids represent a potentially important class of endogenous modulators of neuroactive amino acid transport in nerve endings and further postulate that their action is the result of an uncoupling of amino acid transport from the synaptosomal Na+ gradient.  相似文献   

6.
The effect of glucose on the release of immunoreactive insulin (IRI) in synaptosomes isolated from rat brain was studied. In the absence of glucose synaptosomes release about 4% (0.77 IU/mg protein) of total content. Glucose increases significantly the IRI released by synaptosomes. Addition of the glycolytic inhibitor iodoacetic acid (IAA), decreased the glucose-induced release of IRI by about 50%, suggesting that glucose metabolism is involved. The observation that glucose provides a concentration related signal for IRI release indicates that this synaptosomal preparation may be useful as a model for research on the mechanism of insulin release in brain.  相似文献   

7.
The effects of fatty acids, oleate and palmitate, on gamma-aminobutyric acid (GABA), aspartate, and 3,4- dihydroxyphenylethylamine (dopamine) transport and a variety of other membrane functions were studied in rat brain synaptosomes at a constant lipid-to-protein ratio. Under the conditions utilized oleate, but not palmitate, caused statistically significant changes in synaptosomal functions. Oleic acid inhibited the uptake of the amino acid neurotransmitters and dopamine in a tetrodotoxin-insensitive manner; it also induced the release of neurotransmitters from synaptosomes. The synaptosomal membrane potential decreased and the maximum GABA accumulation ratio [( GABA]i/[GABA]o) declined in parallel. The same depolarizing effect was seen in the presence of 50 microM verapamil or when chloride was replaced by propionate. The rate of respiration was stimulated by the unsaturated fatty acid; neither verapamil (50 microM) nor ouabain (100 microM) was effective in preventing the increase in oxygen consumption. By contrast, ruthenium red substantially decreased the stimulatory effect of oleate. The intrasynaptosomal [Ca2+] was increased by 40%, whereas [Na+]i remained unaltered. It is postulated that under the conditions used the inhibition of neurotransmitter uptake and the decrease in their accumulation caused by oleate result from the depolarization of synaptosomes that arises, at least in part, from increased permeability of the plasma membrane to calcium ions.  相似文献   

8.
Introduction of the dephosphorylated from of synapsin I into rat brain synaptosomes using freeze-thaw (transient) permeabilization significantly decreased the K(+)-induced release of glutamate. In contrast, introduction of synapsin I that had been phosphorylated by Ca2+/calmodulin-dependent protein kinase II was without effect on glutamate release. Addition of dephosphosynapsin I after freeze-thaw treatment also had no effect. Thus, the action of synapsin I was dependent on the phosphorylation state of synapsin I and on its entry into the synaptosomes. Our results implicate synapsin I as an important component in the regulation of neurotransmitter release in the mammalian nervous system.  相似文献   

9.
Abstract: The influence of putrescine, spermidine, spermine, and some aliphatic α,ω-diamines on the uptake of neurotransmitters by rat forebrain synaptosomes was investigated. Choline uptake was most effectively inhibited by spermine (IC50= 0.22 m M ), less so by spermidine (IC50= 4.0 m M ), but not by putrescine (IC50 > 100 m M ). At 10 m M, 1,3-diaminopropane, cadaverine, and 1,8-diaminooctane all inhibited choline uptake by 50% or more. Spermine and spermidine inhibited the uptake of dopamine with IC50 values of 2.7 and 2.2 m M , respectively. Putrescine was only slightly inhibitory (IC50= 17.3 m M ) and the other diamines were inactive. The uptake of γ-aminobutyrate (GABA) was only slightly inhibited (15–40%) by the polyamines at 10 m M . With the exception of inhibition of glycine uptake by 1,8-diaminooctane (60%) and of glutamate uptake by cadaverine (35%) none of the polyamines, tested at 10 m M , affected the uptake of adenosine, glutamate, and glycine significantly. A possible modulatory role for polyamines in synaptic transmission through interaction by negatively charged groups of the synaptic membrane with the polycationic compounds is discussed.  相似文献   

10.
Abstract: Leptinotarsin is a neurotoxic protein found in the hemolymph of potato beetles of the genus Leptinotarsa. In order to study the action of leptinotarsin from two species, L. haldemani and L. decemlineata , synaptosomes were prelabeled with [3H]choline in order to synthesize [3H] acetylcholine (ACh). These synaptosomes were then immobilized on Millipore filters and used for assay. Toxins from both species induce the release of radioactivity in this system. Fractionation of the released radioactivity indicated that ACh was released in preference to choline. The toxin that caused release was heat-labile and was partially dependent on Ca2+ in the perfusing medium. Release followed apparent first order kinetics when stimulation was effected with leptinotarsin from L. haldemani (leptinotarsin-h), but was more complex when using leptinotarsin from L. decemlineata (leptinotarsin-d). Increasing the concentration of toxin increased the rate of release, but the shapes of the dose-release curves elicited by the leptinotarsins from the two species were different. While leptinotarsin-h exhibited a simple, saturating dose-release curve, leptinotarsin-d was characterized by a sigmoid function, which was well described, with a Hill coefficient of 1.8. Antibodies directed toward black widow spider venom glands had no effect upon the releasing activity of leptinotarsin-h but could partially neutralize that of leptinotarsin-d. Toxins from both species have been partially purified and do not appear to be identical. The purified toxins should be useful tools with which to study the release of acetylcholine.  相似文献   

11.
Synaptosome preparations were utilized to characterize the release and compartmentalization of immunoreactive insulin (IRI) in the adult rat brain. Depolarization of synaptosomes by elevation of the external potassium ion concentration elicited release of IRI from the synaptosomes into the incubation medium. This release was reduced or eliminated under three conditions known to prevent depolarization-induced Ca2+ flux: elevating the external MgCl2, adding CoCl2, and eliminating external Ca2+ with EGTA. Depolarization of synaptosomes by veratridine also elicited release of synaptosomal IRI. This release was inhibited by tetrodotoxin. The amount of IRI released under depolarizing conditions represented 3-7% of that contained in the synaptosomes. High levels of IRI release also were observed upon removal of external Na+ to allow depolarization-independent influx of external Ca2+ into the synaptosomal compartment. The Ca2+ dependency of synaptosomal IRI release suggests IRI is stored in the adult rat brain in synaptic vesicles within nerve endings from which it can be mobilized by exocytosis in association with neural activity.  相似文献   

12.
Guinea pig brain cortex synaptosomes and neurosecretory PC12 cells were loaded with [3H]3,4-dihydroxyphenylethylamine ([3H]DA, [3H]dopamine) and then exposed to leptinotoxin-h (LPTx) (purified and partially purified preparations, obtained from the hemolymph of Leptinotarsa haldemani). In a Ca2+-containing Ringer medium the toxin induced prompt and massive release of the neurotransmitter. Half-maximal effects were obtained at concentrations estimated of approximately 3 X 10(-11) M for synaptosomes, and 1.5 X 10(-10) M for PC12 cells. Release responses in the two experimental systems investigated were dependent to different extents on the Ca2+ concentration in the medium. In synaptosomes clear, although slow, release of [3H]DA was elicited by the toxin even in Ca2+-free, EGTA-containing medium, provided that high (in the 10(-10) M range) concentrations were used; near-maximal responses were observed at 10(-5)M Ca2+. In contrast, the toxin-induced release from PC12 cells was appreciable only at 3 X 10(-5) M Ca2+, and was maximal at 2 X 10(-4) M and above. In both synaptosomes and PC12 cells Sr2+ and Ba2+ could substitute for Ca2+; Co2+ was inhibitory, whereas Mn2+ failed to modify the release induced by the toxin in Ca2+-containing medium. Organic blockers of the voltage-dependent Ca2+ channel (verapamil and nitrendipine) and calmodulin blocking drugs (trifluoperazine and calmidazolium) failed to inhibit the toxin-induced release of [3H]DA. LPTx induced profound morphological effects. Synaptosomes treated in the Ca2+-containing medium exhibited fusion of synaptic vesicles, formation of numerous infoldings and large cisternae, and alterations of mitochondria. In the Ca2+-free medium the effects were similar, except that their appearance was delayed, and mitochondria were well preserved. Swelling was observed in PC12 cells, accompanied by enlargement of the Golgi area, accumulation of multivesicular bodies, mitochondrial alterations, and decreased number of secretion granules (Ca2+-containing medium). Morphometric analyses revealed a good correlation between the decrease of both synaptic vesicles (synaptosomes) and neurosecretory granules (PC12 cells), and the release of [3H]DA measured biochemically. This is a good indication that the release effect of the toxin is due to stimulation of exocytosis. Taken as a whole, these results confirm the similarity of the effects of LPTx with alpha-latrotoxin of the black widow spider venom, mentioned in the companion article. However, differences in effect and target specificity suggest that the two toxins are specific to separate binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Abstract: α-Latrotoxin (α-LT), the major component of black widow spider venom, is a high-molecular-weight protein that acts presynaptically by stimulating the release of stored neurotransmitters. The purified toxin was iodinated to high specific radioactivity by the Bolton-Hunter procedure, without appreciable loss of biological activity. By the use of the 125I-toxin, specific receptors were revealed in synaptosome fractions isolated from various regions of the rat brain, but not in nonneural tissues. The density of α-LT receptors [which are probably composed of, or include, membrane protein(s)] varies between 0.6 and 0.88 pmol/mg of synaptosome protein, their affinity is very high ( K A of the order of 1010 M −1), their association rate is fast, and their dissociation rate slow. They might belong to a single, homogeneous class. This last conclusion, however, is still uncertain, because results suggesting a possible heterogeneity were obtained by studying the dissociation of the toxin from synaptosomes incubated in high-salt buffer. Experiments in which the binding of α-LT and its dopamine release activity in striatal synaptosomes were investigated in parallel in a variety of experimental conditions support the hypothesis that occupation of the high-affinity receptors is the initial step in the α-LT activation of the presynaptic response.  相似文献   

14.
Acetylcholine Turnover and Compartmentation in Rat Brain Synaptosomes   总被引:2,自引:1,他引:1  
Abstract: The turnover of acetylcholine (ACh) in rat brain synaptosomes and its compartmentation in the labile bound and stable bound pools were investigated. The P2 fraction from rat brain was subjected to three sequential incubations, each terminated by centrifugation followed by determination of ACh concentrations by gas chromatography-mass spectrometry (GCMS): (1) Depletion phase: Incubation of synaptosomes at 37°C for 10 min in Na+-free buffer containing 35 mM-KCl reduced the content of both labile bound and stable bound ACh by 40%. (2) Synthesis phase: Incubation at 37°C with 2 μ M -[2H4]choline resulted in accumulation of labeled and unlabeled ACh in both compartments. Addition of an anticholinesterase had little effect on stable bound ACh but greatly increased the content of labile bound ACh. This excess accumulated ACh was probably due to inhibition of intracellular acetylcholinesterase (AChE), because negligible uptake of ACh from the medium was observed. The effects on ACh synthesis of altered cation concentrations and metabolic inhibitors were examined. (3) Release phase: The tissue was incubated in the presence of 35 mM-KCl, 40 μM-paraoxon, and 20 μM-hemicholinium-3 (HC-3) (to inhibit further synthesis of ACh). Measurements of the compartmental localization of ACh at several time points indicated that ACh was being released from the labile bound fraction. In support of this conclusion, 20 mM-Mg2+ reduced ACh release and increased the labile bound ACh concentration.  相似文献   

15.
A technique for studying the binding of La3+ to synaptosomes in a double-beam spectrophotometer, using murexide as indicator, is described. The binding of La3+ was very rapid and Scatchard plots revealed two components, with KD values of 0.6 and 27 microM in a Na+-free medium (sucrose medium) and 2.3 and 63 microM in an ionic medium containing 135 mM Na+. The binding of the cationic dye ruthenium red (RuR) showed only one site, with a KD of 3.7 microM. La3+ binding was partially inhibited by RuR and vice versa, and La3+ was also capable of partially displacing RuR previously bound to the synaptosomes, particularly in the sucrose medium. The release of labeled gamma-aminobutyric acid (GABA) stimulated by K+ depolarization was inhibited by La3+ concentrations at or above 1 microM, in the ionic medium, whereas in the sucrose medium 2.5 microM or higher La3+ concentrations notably stimulated the spontaneous release of both GABA and glutamic acid. It is concluded that La3+ and RuR share at least one type of binding site, which is probably the high-affinity La3+ site. Since both La3+ and RuR at low concentrations have been shown to block the depolarization-induced Ca2+ entry in synaptosomes, this site might be related to the voltage-dependent Ca2+ entry involved in neurotransmitter release.  相似文献   

16.
Under optimised conditions for intoxication, botulinum neurotoxin type A was shown to inhibit approximately 90% of Ca2+-dependent K+-evoked release of [3H]acetylcholine, [3H]noradrenaline, and [3H]dopamine from rat cerebrocortical synaptosomes; cholinergic terminals were most susceptible. In each case, the dose-response curve for the neurotoxin was extended, with about 50% of evoked release being inhibited at approximately 10 nM whereas 200 nM was required for the maximal blockade. This may suggest some heterogeneity in the release process. The action of the toxin was time and temperature dependent and appeared to involve binding and sequestration steps prior to blockade of release. The neurotoxin failed to exert any effect on synaptosomal integrity or on Ca2+-independent release of the transmitters tested; it produced only minimal changes in neurotransmitter uptake although small secondary effects were detected with cholinergic terminals. Blockade by the neurotoxin of Ca2+-dependent resting release of transmitter was apparent; Sr2+, Ba2+, or high concentrations of Ca2+ restored the resting release of 3H-catecholamine but not [3H]acetylcholine. Interestingly, none of the latter conditions or 4-aminopyridine could reverse the toxin-induced blockade of evoked release. This lack of specificity in its action on synaptosomes, and other published findings, lead to the conclusion that toxin-sensitive component(s) exist in all nerve terminals that are concerned with transmitter release.  相似文献   

17.
Rat Brain Synaptosomes Prepared by Phase Partition   总被引:1,自引:1,他引:1  
Synaptosomes from rat forebrain can easily be isolated by combining centrifugation with partition in an aqueous two-phase system composed of dextran T500 and polyethylene glycol 4000 in which synaptosomes have an extreme affinity for the upper phase. The fraction thus obtained has been characterized by electron microscopy and biochemical markers for synaptosomes and some other cell components. The contamination by microsomes, free mitochondria, and myelin was 4.4, 3.2, and 0.1%, respectively. The morphometric analysis of the electron micrographs shows that greater than 60% of the structures are synaptosomes. This preparation of the isolation procedure is remarkably short (less than 1 h), formance as assayed by their respiratory activities and ATP level in the absence and presence of depolarizing agents. Synaptosomes prepared by phase partition release the neurotransmitter glutamate in a Ca2(+)-dependent manner. The duration of the isolation procedure is remarkably short (less than 1 h), no ultracentrifuge is required, and the method can be applied for small- or large-scale preparations.  相似文献   

18.
Voltage-dependent 45Ca2+ uptake and endogenous norepinephrine (NE) release were measured simultaneously in synaptosomes isolated from rat hypothalamus, brainstem, and cerebellum at 1, 3, 5, 15, and 30 s. In synaptosomes depolarized by 125 mM KCl, 45Ca2+ uptake and NE release exhibited fast and slow components. Rates of NE release and 45Ca2+ uptake were fastest from 0 to 1 s. NE release and 45Ca2+ uptake rates from 1 to 5 s were less than 15% of 0-1 s rates. Both resting (5 mM KCl) and depolarization-induced (125 mM KCl) NE release paralleled 45Ca2+ uptake from 1 to 30 s. Voltage-dependent NE release was approximately 1% and 2% of total synaptosomal NE content at 1- and 30-s measurement intervals, respectively, and did not differ between the three brain regions studied. Calcium and potassium dependence studies showed that NE release was stimulated by increased potassium and that depolarization-induced NE release was dependent on the presence of external calcium. These results show that calcium-dependent NE release from synaptosomes is correlated with calcium entry. Both processes exhibit fast and slow temporal components.  相似文献   

19.
Synaptosomes prepared from rat cerebral cortex and labeled with [3H]noradrenaline (NA) were superfused with calcium-free Krebs-Ringer-bicarbonate medium and exposed to 10 mM K+ plus 0.1 mM Ca2+ so that [3H]NA release was induced. 6,7-Dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99) strongly inhibited synaptosomal K+-induced [3H]NA release (EC50 = 5-10 nM) by activating alpha 2-adrenoceptors. Release was also inhibited (maximally by 40-50%) by morphine (EC50 = 5-10 nM), [Leu5]enkephalin (EC50 = approximately 300 nM), [D-Ala2,D-Leu5]enkephalin (DADLE), and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) (EC50 values = approximately 30 nM). In contrast to the mu-selective opioid receptor agonists morphine and DAGO, the highly delta-selective agonist [D-Pen2,D-Pen5]enkephalin (1 microM) did not affect [3H]-NA release. Furthermore, the inhibitory effect of DADLE, an agonist with affinity for both delta- and mu-opioid receptors, was antagonized by low concentrations of naloxone. The findings strongly support the view that, like alpha 2-adrenoceptors, mu-opioid receptors mediating inhibition of NA release in the rat cerebral cortex are localized on noradrenergic nerve terminals.  相似文献   

20.
Abstract: Histidine transport and metabolism in rat brain synptosomes were investigated to study the possible role of histidine uptake in the synthesis of the putative neurotransmitter histamine (HA). Histidine uptake was found to be regionally distributed and temperature sensitive and was not totally independent of sodium or possium ions. Transport was inhibited by metabolic inhibitors, as well as by promethazine and quinacrine. A number of other HA-related agents and several histidine metabolites had no effect. Kinetic analyses of histidine transport revealed the presence of both high- and lowaffinity systems in cerebral cortex. Histidine uptake increased following preexposure of synaptosomes to depolarizing concentrations of potassium. This effect was dependent on the presence of calcium ions during the preincubation. No newly formed [3H]HA was detectable in rat brain synaptosomes following [3H]histidine transport. Lesions of the medial forebrain bundle did not alter histidine uptake in the hippocampus or cerebral cortex. Ontogenic studies indicated that the histidine uptake system developed rapidly and reached a peak during postnatal days 12–17. Overall, the present findings do not support a role for histidine transport in the regulation or maintenance of neurotransmitter pools of HA in rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号