首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Homeodomains are a class of helix-turn-helix DNA-binding protein motifs that play an important role in the control of cellular development in eukaryotes. They fold in a three alpha-helix structural module, where the third helix is the recognition helix that fits into the major groove of DNA. Structural analysis of the members of the homeodomain family led to the identification of interactions likely to stabilize the protein domains. Linking the helices pairwise, three salt bridges were found to be well preserved within the family. Also well conserved were two cation-pi interactions between aromatic and positively charged side chains. To analyze the structural role of the salt bridges, molecular dynamics simulations (MD) were carried out on the wild-type homeodomain from the Drosophila paired protein (1fjl) and on three mutants, which lack one or two salt bridges and mimic natural mutations in other homeodomains. Analysis of the trajectories revealed only small structural rearrangements of the three helices in all MD simulations, thereby suggesting that the salt bridges have no essential stabilizing role at room temperature, but rather might be important for improving thermostability. The latter hypothesis is supported by a good correlation between the melting midpoint temperatures of several homeodomains and the number of salt bridges and cation-pi interactions that connect secondary structures.  相似文献   

2.
Design, synthesis and DNA binding activity of a nonlinear 102 residue peptide are reported. The peptide contains four sequence-specific DNA binding domains of 434 Cro protein. These four domains were linked covalently to a symmetrical carboxyterminal crosslinker that contains four arms each ending with an aliphatic aminogroup. From CD studies we have found that in aqueous buffer in the presence of 20% trifluoroethanol the peptide residues assume alpha helical, beta-sheet and random coiled conformations with an alpha helical content of about 16% at room temperature. The alpha helicity is increased up to 40% in the presence of 40% trifluoroethanol. Upon complex formation between the peptide and DNA a change in the peptide conformation takes place which is consistent with an alpha-beta transition in the DNA binding, helix-turn-helix motif of 434 Cro repressor. Evidently residues present in helices alpha(2) and alpha(3) form a beta hairpin which is inserted in the minor DNA groove. The latter inference is supported by our observations that the peptide can displace minor groove binding antibiotic distamycin A from a complex with poly(dA).poly(dT). As revealed from DNase protection studies the peptide exhibits preferences for binding to operator and pseudooperator sites recognized by 434 Cro repressor. It binds strongly to operator sites OR1, OR2 and OR3 and exhibits a greater affinity for pseudooperator site Op1. From analysis of nucleotide sequences in the strong affinity binding sites for the peptide on DNA a conclusion is drawn that it binds to pseudosymmetrical nucleotide sequences 5'-ACAA(W)nCTGT-3', where W is an arbitrary nucleotide. n is equal to six or seven. In the strongest affinity binding site for the peptide on DNA (Op1) motif 5'-ACAA-3' is replaced by sequence 5'-ACCA-3'. A difference in binding specificity shown by the peptide and 434 Cro protein could be attributed to a flexibility of the connecting chains between DNA-binding domains in the peptide molecule as well as to a replacement of Thr - Ala in the alpha 2 helix. Removal of two residues from the N-terminal end of helix alpha 2 in each of the four DNA binding domains of 434 Cro present in the peptide leads to a loss of binding specificity, although the modified peptide binds to DNA unspecifically.  相似文献   

3.
Myb-related proteins from plants to humans are characterized by a DNA-binding domain which contains two to three imperfect repeats of approximately 50 amino acids each. Based on the evolutionary conservation of specific residues, secondary structural predictions suggest an arrangement of alpha helices homologous to that seen in the homeodomains, members of the helix-turn-helix family of DNA-binding proteins. We have used molecular modelling in conjunction with site-directed mutagenesis to test the feasibility of this structure. We propose that each Myb repeat consists of three alpha helices packed over a hydrophobic core which is built around the three highly conserved tryptophan residues. The C-terminal helix forms part of the helix-turn-helix motif and can be positioned into the major groove of B-form DNA, allowing prediction of residues critical for specificity of interaction. Modelling also allowed positioning of adjacent repeats around the major groove over an 8 bp binding site.  相似文献   

4.
5.
Using the tertiary structure of the globular domain of H5 (GH5) and based on an alternative sequence homology between GH5 and DNA-binding proteins containing the helix-turn-helix motif, a model for H5-DNA interaction is proposed. From molecular graphics it follows that helix II recognizes the major groove of the DNA, as does the second helix of the helix-turn-helix motif, while helix III makes minor groove contacts, in agreement with the hypothesis of Turnell et al. (FEBS letters 232, 263-268). In the resulting model GH5 makes contact with a full turn of DNA.  相似文献   

6.
The Brinker (Brk) nuclear repressor is a major element of the Drosophila Decapentaplegic morphogen signaling pathway. Its N-terminal part has weak homology to the Antennapedia homeodomain and binds to GC-rich DNA sequences. We have investigated the conformation and dynamics of the N-terminal 101 amino acid residues of Brk in the absence and in the presence of cognate DNA by solution NMR spectroscopy. In the absence of DNA, Brk is unfolded and highly flexible throughout the entire backbone. Addition of cognate DNA induces the formation of a well-folded structure for residues R46 to R95. This structure consists of four helices forming a helix-turn-helix motif that differs from homeodomains, but has similarities to the Tc3 transposase, the Pax-6 Paired domain, and the human centromere-binding protein. The GC-rich DNA recognition can be explained by specific major groove hydrogen bonds from the N-terminal end of helix alpha3. The transition from a highly flexible, completely unfolded conformation in the absence of DNA to a well-formed structure in the complex presents a very extreme case of the "coupling of binding and folding" phenomenon.  相似文献   

7.
SpoIIID is evolutionarily conserved in endospore-forming bacteria, and it activates or represses many genes during sporulation of Bacillus subtilis. An SpoIIID monomer binds DNA with high affinity and moderate sequence specificity. In addition to a predicted helix-turn-helix motif, SpoIIID has a C-terminal basic region that contributes to DNA binding. The nuclear magnetic resonance (NMR) solution structure of SpoIIID in complex with DNA revealed that SpoIIID does indeed have a helix-turn-helix domain and that it has a novel C-terminal helical extension. Residues in both of these regions interact with DNA, based on the NMR data and on the effects on DNA binding in vitro of SpoIIID with single-alanine substitutions. These data, as well as sequence conservation in SpoIIID binding sites, were used for information-driven docking to model the SpoIIID-DNA complex. The modeling resulted in a single cluster of models in which the recognition helix of the helix-turn-helix domain interacts with the major groove of DNA, as expected. Interestingly, the C-terminal extension, which includes two helices connected by a kink, interacts with the adjacent minor groove of DNA in the models. This predicted novel mode of binding is proposed to explain how a monomer of SpoIIID achieves high-affinity DNA binding. Since SpoIIID is conserved only in endospore-forming bacteria, which include important pathogenic Bacilli and Clostridia, whose ability to sporulate contributes to their environmental persistence, the interaction of the C-terminal extension of SpoIIID with DNA is a potential target for development of sporulation inhibitors.  相似文献   

8.
The Antennapedia homeodomain structure consists of four helices. The helices II and III are connected by a tripeptide that forms a turn, and constitute the well-known helix-turn-helix motif. The recognition helix penetrates the DNA major groove, gives specific protein-DNA contacts and forms direct, or water-mediated, intermolecular hydrogen bonds. It was suggested that helix III (and perhaps also helix IV) might represent the recognition helix of Antennapedia homeodomain, which makes contact with the surface of the major groove of the DNA. In an attempt to clarify the helix III capabilities of assuming an helical conformation when separated from the rest of the protein, we carried out the structural determination of the recognition helix III in different solvent media. The conformational study of fragments 42-53, where residues W48 and F49, not involved in the protein-DNA interaction, were substituted by two alanines, was conducted in sodium dodecyl sulfate (SDS), trifluoroethanol (TFE) and TFE/water, using circular dichroism, nuclear magnetic resonance (NMR) and distance geometry (DG) techniques. The fragment assumes a well-defined secondary structure in TFE and in TFE/water (90/10, v/v) with an alpha-helix encompassing residues 4-9, while in TFE/water (70/30, v/v) a less regular structure was found. The DG results in the micellar system evidence the presence of a distorted alpha-helical conformation involving residues 4-8. Our results reveal that the isolated Antennapedia recognition helix III tend to preserve in solution the alpha-helical conformation even if separated from the rest of the molecule.  相似文献   

9.
Grinthal A  Guidotti G 《Biochemistry》2004,43(43):13849-13858
The two transmembrane domains flanking the active site of CD39 regulate its activity, but little is known about the structural and dynamic features underlying their importance. Here we use a disulfide crosslinking strategy to examine transmembrane helix interactions and dynamics and to correlate these features with activity and substrate binding. We find strong intrasubunit TM1-TM2 interactions, as well as TM1-TM1' and TM2-TM2' interactions between dimer subunits, near the extracellular side of the membrane but only weak interactions near the cytoplasmic end. The specific helix faces that constitute each interface are highly flexible, indicating a significant degree of rotational mobility within the packed structure. Analysis of activity after locking the helices in various orientations via disulfide bonds suggests that not only the arrangement but also the ability of the helices to move relative to each other is crucial for enzyme function. Helix mobility is in turn modulated by substrate binding. These results suggest that rather than playing a static structural role to support an optimal active site conformation, the transmembrane domains undergo dynamic motions that underlie their functional relationship with the active site.  相似文献   

10.
The deformed (Dfd) and ultrabithorax (Ubx) homeoproteins regulate developmental gene expression in Drosophila melanogaster by binding to specific DNA sequences within its genome. DNA binding is largely accomplished via a highly conserved helix-turn-helix DNA-binding domain that is known as a homeodomain (HD). Despite nearly identical DNA recognition helices and similar target DNA sequence preferences, the in vivo functions of the two proteins are quite different. We have previously revealed differences between the two HDs in their interactions with DNA. In an effort to define the individual roles of the HD N-terminal arm and recognition helix in sequence-specific binding, we have characterized the structural details of two Dfd/Ubx chimeric HDs in complex with both the Dfd and Ubx-optimal-binding site sequences. We utilized hydroxyl radical cleavage of DNA to assess the positioning of the proteins on the binding sites. The effects of missing nucleosides and purine methylation on HD binding were also analyzed. Our results show that both the Dfd and Ubx HDs have similar DNA-binding modes when in complex with the Ubx-optimal site. There are subtle but reproducible differences in these modes that are completely interchanged when the Dfd N-terminal arm is replaced with the corresponding region of the Ubx HD. In contrast, we showed previously that the Dfd-optimal site sequence elicits a very different binding mode for the Ubx HD, while the Dfd HD maintains a mode similar to that elicited by the Ubx-optimal site. Our current methylation interference studies suggest that this alternate binding mode involves interaction of the Ubx N-terminal arm with the minor groove on the opposite face of DNA relative to the major groove that is occupied by the recognition helix. As judged by hydroxyl radical footprinting and the missing nucleoside experiment, it appears that interaction of the Ubx recognition helix with the DNA major groove is reduced. Replacing the Dfd N-terminal arm with that of Ubx does not elicit a complete interchange of the DNA-binding mode. Although the position of the chimera relative to DNA, as judged by hydroxyl radical footprinting, is similar to that of the Dfd HD, the missing nucleoside and methylation interference patterns resemble those of the Ubx HD. Repositioning of amino acid side-chains without wholesale structural alteration in the polypeptide appears to occur as a function of N-terminal arm identity and DNA-binding site sequence. Complete interchange of binding modes was achieved only by replacement of the Dfd N-terminal arm and the recognition helix plus 13 carboxyl-terminal residues with the corresponding residues of Ubx. The position of the N-terminal arm in the DNA minor groove appears to differ in a manner that depends on the two base-pair differences between the Dfd and Ubx-optimal-binding sites. Thus, N-terminal arm position dictates the binding mode and the interaction of the recognition helix with nucleosides in the major groove.  相似文献   

11.
12.
Wang S  Engohang-Ndong J  Smith I 《Biochemistry》2007,46(51):14751-14761
The PhoP-PhoR two-component signaling system from Mycobacterium tuberculosis is essential for the virulence of the tubercle bacillus. The response regulator, PhoP, regulates expression of over 110 genes. In order to elucidate the regulatory mechanism of PhoP, we determined the crystal structure of its DNA-binding domain (PhoPC). PhoPC exhibits a typical fold of the winged helix-turn-helix subfamily of response regulators. The structure starts with a four-stranded antiparallel beta-sheet, followed by a three-helical bundle of alpha-helices, and then a C-terminal beta-hairpin, which together with a short beta-strand between the first and second helices forms a three-stranded antiparallel beta-sheet. Structural elements are packed through a hydrophobic core, with the first helix providing a scaffold for the rest of the domain to pack. The second and third helices and the long, flexible loop between them form the helix-turn-helix motif, with the third helix being the recognition helix. The C-terminal beta-hairpin turn forms the wing motif. The molecular surfaces around the recognition helix and the wing residues show strong positive electrostatic potential, consistent with their roles in DNA binding and nucleotide sequence recognition. The crystal packing of PhoPC gives a hexamer ring, with neighboring molecules interacting in a head-to-tail fashion. This packing interface suggests that PhoPC could bind DNA in a tandem association. However, this mode of DNA binding is likely to be nonspecific because the recognition helix is partially blocked and would be prevented from inserting into the major groove of DNA. Detailed structural analysis and implications with respect to DNA binding are discussed.  相似文献   

13.
Many viruses encode scaffolding and coat proteins that co-assemble to form procapsids, which are transient precursor structures leading to progeny virions. In bacteriophage P22, the association of scaffolding and coat proteins is mediated mainly by ionic interactions. The coat protein-binding domain of scaffolding protein is a helix turn helix structure near the C terminus with a high number of charged surface residues. Residues Arg-293 and Lys-296 are particularly important for coat protein binding. The two helices contact each other through hydrophobic side chains. In this study, substitution of the residues of the interface between the helices, and the residues in the β-turn, by aspartic acid was used examine the importance of the conformation of the domain in coat binding. These replacements strongly affected the ability of the scaffolding protein to interact with coat protein. The severity of the defect in the association of scaffolding protein to coat protein was dependent on location, with substitutions at residues in the turn and helix 2 causing the most significant effects. Substituting aspartic acid for hydrophobic interface residues dramatically perturbs the stability of the structure, but similar substitutions in the turn had much less effect on the integrity of this domain, as determined by circular dichroism. We propose that the binding of scaffolding protein to coat protein is dependent on angle of the β-turn and the orientation of the charged surface on helix 2. Surprisingly, formation of the highly complex procapsid structure depends on a relatively simple interaction.  相似文献   

14.
The DNA binding domains of human p53 and Cep-1, its C. elegans ortholog, recognize essentially identical DNA sequences despite poor sequence similarity. We solved the three-dimensional structure of the Cep-1 DNA binding domain in the absence of DNA and compared it to that of human p53. The two domains have similar overall folds. However, three loops, involved in DNA and Zn binding in human p53, contain small alpha helices in Cep-1. The alpha helix in loop L3 of Cep-1 orients the side chains of two conserved arginines toward DNA; in human p53, both arginines are mutation hotspots, but only one contacts DNA. The alpha helix in loop L1 of Cep-1 repositions the entire loop, making it unlikely for residues of this loop to contact bases in the major groove of DNA, as occurs in human p53. Thus, during evolution there have been considerable changes in the structure of the p53 DNA binding domain.  相似文献   

15.
NAD+-dependent DNA ligase (LigA) is essential for bacterial growth and a potential target for antimicrobial drug discovery. Here we queried the role of 14 conserved amino acids of Escherichia coli LigA by alanine scanning and thereby identified five new residues within the nucleotidyltransferase domain as being essential for LigA function in vitro and in vivo. Structure activity relationships were determined by conservative mutagenesis for the Glu-173, Arg-200, Arg-208, and Arg-277 side chains, as well as four other essential side chains that had been identified previously (Lys-115, Asp-117, Asp-285, and Lys-314). In addition, we identified Lys-290 as important for LigA activity. Reference to the structure of Enterococcus faecalis LigA allowed us to discriminate three classes of essential/important side chains that: (i) contact NAD+ directly (Lys-115, Glu-173, Lys-290, and Lys-314); (ii) comprise the interface between the NMN-binding domain (domain Ia) and the nucleotidyltransferase domain or comprise part of a nick-binding site on the surface of the nucleotidyltransferase domain (Arg-200 and Arg-208); or (iii) stabilize the active site fold of the nucleotidyltransferase domain (Arg-277). Analysis of mutational effects on the isolated ligase adenylylation and phosphodiester formation reactions revealed different functions for essential side chains at different steps of the DNA ligase pathway, consistent with the proposal that the active site is serially remodeled as the reaction proceeds.  相似文献   

16.
Molecular dynamics simulations have been performed on the glucocorticoid receptor DNA binding domain (GR DBD) in aqueous solution as a dimer in complex with DNA and as a free monomer. In the simulated complex, we find a slightly increased bending of the DNA helix axis compared with the crystal structure in the spacer region of DNA between the two half-sites that are recognized by GR DBD. The bend is mainly caused by an increased number of interactions between DNA and the N-terminal extended region of the sequence specifically bound monomer. The recognition helices of GR DBD are pulled further into the DNA major groove leading to a weakening of the intrahelical hydrogen bonds in the middle of the helices. Many ordered water molecules with long residence times are found at the intermolecular interfaces of the complex. The hydrogen-bonding networks (including water bridges) on either side of the DNA major groove involve residues that are highly conserved within the family of nuclear receptors. Very similar hydrogen-bonding networks are found in the estrogen receptor (ER) DBD in complex with DNA, which suggests that this is a common feature for proper positioning of the recognition helix in ER DBD and GR DBD.  相似文献   

17.
18.
On the basis of sequence similarity with other known DNA-binding proteins, the DNA-binding domain of Hin recombinase, residues 139-190, is thought to bind DNA by a helix-turn-helix motif. Two models can be considered that differ in the orientation of the recognition helix in the major groove of DNA. One is based on the orientation of the recognition helix found in the 434 repressor (1-69) and lambda repressor-DNA cocrystals, and the other is based on the NMR studies of lac repressor headpiece. Cleavage by EDTA.Fe attached to a lysine side chain (Ser183----Lys183) near the COOH terminus of Hin(139-184) reveals that the putative recognition helix is oriented toward the center of the inverted repeats in a manner similar to that seen in the 434 and lambda repressor-DNA cocrystals.  相似文献   

19.
The dsDNA interactions of the novel microgonotropen L1 have been characterized via spectrofluorometric titrations and thermal melting studies. A microgonotropen consists of a DNA minor groove binding moiety attached to a basic side chain capable of reaching out of the minor groove and grasping the acidic DNA phosphodiester backbone. L1 was synthesized employing solid-phase chemistry. L1 is shown to distinguish nine base pair A/T rich binding sites from sites possessing fewer than nine contiguous A/T base pairs. Further, L1 binds its preferred dsDNA sequences at subpicomolar concentrations. The equilibrium constant for complexation (K(1)) of a nine base pair A/T rich dsDNA binding site by L1 is roughly 10(13) M(-1). Single base pair A/T --> G/C substitutions within the nine base pair A/T rich binding site of L1 decreases the equilibrium constant for DNA binding by 1-2 orders of magnitude. The three proplyamine side chains of L1 enhance the agents free energy of binding by more than 5 kcal. Molecular modeling suggests that L1 adopts a 'spiral-like' conformation which fits almost a full turn of the DNA helix.  相似文献   

20.
The human centromere protein B (CENP-B), one of the centromere components, specifically binds a 17 bp sequence (the CENP-B box), which appears in every other alpha-satellite repeat. In the present study, the crystal structure of the complex of the DNA-binding region (129 residues) of CENP-B and the CENP-B box DNA has been determined at 2.5 A resolution. The DNA-binding region forms two helix-turn-helix domains, which are bound to adjacent major grooves of the DNA. The DNA is kinked at the two recognition helix contact sites, and the DNA region between the kinks is straight. Among the major groove protein-bound DNAs, this 'kink-straight-kink' bend contrasts with ordinary 'round bends' (gradual bending between two protein contact sites). The larger kink (43 degrees ) is induced by a novel mechanism, 'phosphate bridging by an arginine-rich helix': the recognition helix with an arginine cluster is inserted perpendicularly into the major groove and bridges the groove through direct interactions with the phosphate groups. The overall bending angle is 59 degrees, which may be important for the centromere-specific chromatin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号