首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction of rat liver acetyl-CoA carboxylase with a 2',3'-dialdehyde derivative of ATP (oATP) has been studied. The degree of the enzyme inactivation has been found to depend on the oATP concentration and the incubation time. ATP was proved to be the only substrate which protected the inactivation. Acetyl-CoA did not effect inactivation, while HCO3- accelerated the process. Ki values for oATP in the absence and presence of HCO3- were 0.35 +/- 0.04 and 0.5 +/- 0.06 mM, and those of the modification constant (kmod) were 0.11 and 0.26 min-1 respectively. oATP completely inhibited the [14C]ADP in equilibrium ATP exchange and did not effect the [14C]acetyl-CoA in equilibrium malonyl-CoA exchange. Incorporation of approximately 1 equivalent of [3H]oATP per acetyl-CoA carboxylase subunit has been shown. No recovery of the modified enzyme activity has been observed in Tris or beta-mercaptoethanol containing buffers, and treatment with NaB3H4 has not led to 3H incorporation. The modification elimination of the ATP triphosphate chain. The results indicated the affinity modification of acetyl-CoA carboxylase by oATP. It was shown that the reagent apparently interacted selectively with the epsilon-amino group of lysine in the ATP-binding site to form a morpholine-like structure.  相似文献   

2.
The interaction of rat liver acetyl-CoA carboxylase with a 2',3'-dialdehyde derivative of ATP (oATP) has been studied. The degree of the enzyme inactivation has been found to depend on the oATP concentration and the incubation time. ATP was the only reaction substrate which provided protection from inactivation. Acetyl-CoA did not affect inactivation, while HCO3- accelerated the process. Ki values for oATP in the absence and the presence of HCO3- were 0.35 +/- 0.04 and 0.5 +/- 0.06 mM, and those of the modification constant (k) were 0.11 and 0.26 min-1, respectively. oATP completely inhibited the reaction of [14C]ADP in equilibrium ATP exchange, whereas produced actually no effect on [14C]acetyl-CoA equilibrium with malonyl-CoA exchange. Incorporation of about one equivalent of [3H]oATP per acetyl-CoA carboxylase subunit has been shown. No restoration of the modified enzyme activity has been observed in Tris or beta-mercaptoethanol containing buffers, and treatment with NaB[3H]4 has not led to 3H incorporation. The modification process involves elimination of the triphosphate chain of oATP. The results obtained indicate the affinity character of oATP-mediated modification of acetyl-CoA carboxylase. The reagent apparently interacts selectively with the epsilon-amino group of lysine in the ATP-binding site to form a morpholine-like structure.  相似文献   

3.
G S Rao  P F Cook  B G Harris 《Biochemistry》1991,30(41):9998-10004
Treatment of the Ascaris suum phosphofructokinase (PFK) with 2',3'-dialdehyde ATP (oATP) results in an enzyme form that is inactive. The conformational integrity of the active site, however, is preserved, suggesting that oATP modification locks the PFK into an inactive T state that cannot be activated. A rapid, irreversible first-order inactivation of the PFK is observed in the presence of oATP. The rate of inactivation is saturable and gives a KoATP of 1.07 +/- 0.27 mM. Complete protection against inactivation is afforded by high concentrations of ATP, and the dependence of the inactivation rate on the concentration of ATP gives a Ki of 326 +/- 26 microM for ATP which is 22-fold higher than the Km for ATP at the catalytic site but close to the binding constant for ATP to the inhibitory site. Fructose 6-phosphate, fructose 2,6-bisphosphate, and AMP provide only partial protection against modification. The pH dependence of the inactivation rate gives a pKa of 8.4 +/- 0.1. Approximately 2 mol of [3H]oATP is incorporated into a subunit of PFK concomitant with 90% loss of activity, and ATP prevents the derivatization of 1 mol/subunit. The oATP-modified enzyme is not activated by AMP or fructose 2,6-bisphosphate. oATP has no effect on the activity of a desensitized form of PFK in which the ATP inhibitory site is modified with diethyl pyrocarbonate but with the active site intact [Rao, G.S.J., Wariso, B.A., Cook, P.F., Hofer, H.W., & Harris, B.G. (1987) J. Biol. Chem. 262, 14068-14073].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase [ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49] is completely inactivated by the 2',3'-dialdehyde derivative of ATP (oATP) in the presence of Mn2+. The dependence of the pseudo-first-order rate constant on reagent concentration indicates the formation of a reversible complex with the enzyme (Kd = 60 +/- 17 microM) prior to covalent modification. The maximum inactivation rate constant at pH 7.5 and 30 degrees C is 0.200 +/- 0.045 min-1. ATP or ADP plus phosphoenolpyruvate effectively protect the enzyme against inactivation. oATP is a competitive inhibitor toward ADP, suggesting that oATP interacts with the enzyme at the substrate binding site. The partially inactivated enzyme shows an unaltered Km but a decreased V as compared with native phosphoenolpyruvate carboxykinase. Analysis of the inactivation rate at different H+ concentrations allowed estimation of a pKa of 8.1 for the reactive amino acid residue in the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of about one mole of [8-14C]oATP per mole of enzyme subunit. The results indicate that oATP can be used as an affinity label for yeast phosphoenolpyruvate carboxykinase.  相似文献   

5.
The periodate-oxidized analog of ATP, 2',3'-dialATP, competitively inhibited bovine brain and rat liver adenylate cyclase. The apparent Ki for inhibition of brain adenylate cyclase by 2',3'-dialATP was 196 microM in the presence of Mg2+ and 37 microM in the presence of Mn2+. The Ki values for inhibition of rat liver adenylate cyclase by 2',3'-dialATP were 48 and 30 microM in the presence of Mg2+; and Mn2+, respectively. Adenylate cyclase activity was irreversibly inactivated by 2'3'-dialATP in the presence of NaCNBH3 and the kinetics for loss in enzyme activity were pseudo-first order. Both ATP and Tris protected adenylate cyclase from irreversible inhibition by 2',3'-dialATP and NaCNBH3. It is proposed that 2',3'-dialATP forms a Schiff's base with an amino group at the active site of the enzyme and that Na-CNBH3 reduction of this Schiff's base causes irreversible modification of the catalytic subunit. The Km for 2',3'-dialATP inactivation, the maximal rate constant of inactivation, and protection of the enzyme by ATP were not affected by the presence or absence of free Mg2+. These data indicate that a divalent cation is not required for binding of 2',3'-dialATP to the active site of adenylate cyclase.  相似文献   

6.
The interaction of rat liver acetyl-CoA car☐ylase with a 2′,3′-dialdehyde derivative of ATP (oATP) has been studied. The degree of the enzyme inactivation has been found to depend on the oATP concentration and the incubation time. ATP was proved to be the only substrate which protected the inactivation. Acetyl-CoA did not effect inactivation, while HCO3 accelerated the process. Ki values for oATP in the absence and presence of HCO3 were 0.35 ± 0.04 and 0.5 ± 0.06 mM , and those of the modification constant (kmod) were 0.11 and 0.26 min−1 respectively. oATP completely inhibited the [14C]ADP ⇌ ATP exchange and did not effect the [14C]acetyl-CoA ⇌ malonyl-CoA exchange. Incorporation of ∼1 equivalent of [3H]oATP per acetyl-CoA car☐ylase subunit has been shown. No recovery of the modified enzyme activity has been observed in Tris or β-mercaptoethanol containing buffers, and treatment with NaB3H4 has not led to3H incorporation. The modification elimination of the ATP triphosphate chain. The results indicated the affinity modification of acetyl-CoA car☐ylase by oATP. It was shown that the reagent apparently interacted selectively with the ɛ-amino group of lysine in the ATP-binding site to form a morpholine-like structure.  相似文献   

7.
5'-p-Fluorosulphonylbenzoyl-adenosine (FSO2BzAdo), an affinity labelling analogue of ATP, was used to label the active site of sheep brain phosphatidylinositol 4-kinase (PtdIns 4-kinase). The incubation of PtdIns 4-kinase with concentrations of FSO2BzAdo as low as 50 microM resulted in considerate inactivation of the enzyme. (e.g. 55% less after 60 min with 50 microM FSO2BzAdo). The kinetics of inactivation of PtdIns 4-kinase by FSO2BzAdo suggest a two-step mechanism, in which a rapid reversible binding of FSO2BzAdo to the enzyme is followed by a covalent sulphonation step. The first-order rate constant (k2) for the inactivation of PtdIns 4-kinase was calculated to be 0.063 min-1, and the steady-state constant of inactivation (Ki) to be 200 microM. Preincubation of the enzyme with either ATP plus Mg2+, or PtdIns alone, prior to addition of FSO2BzAdo reduced the degree of inactivation of the enzyme; suggesting that FSO2BzAdo binds within the active site PtdIns 4-kinase. Moreover, since ATP plus Mg2+ provided the greatest protection against inactivation, it is concluded that the main site of labelling of PtdIns 4-kinase by FSO2BzAdo is within the ATP-binding site of the enzyme. Results obtained from chemical modification experiments, which employed pyridoxal 5'-phosphate and tetranitromethane, are consistent with a catalytically-essential lysine being present within the ATP-binding site of PtdIns 4-kinase. Therefore, it is hypothesised that the inactivation of PtdIns 4-kinase by FSO2BzAdo may be due to the labelling of this lysine residue.  相似文献   

8.
ATP analogues were used to study the active site specificity of the catalytic unit (C) of solubilized and partially purified bovine brain caudate nucleus adenylate cyclase. Phenylenediamine ATP (PD-ATP), 8-azido ATP (8-N3ATP), chromium(III) 3'-beta-alanylarylazido ATP (CrATPa), and 2',3'-dialdehyde ATP (oATP) are competitive inhibitors of C in the presence of the substrate MnATP and the activator forskolin. (Km for MnATP is 50 +/- 11 microM, n = 13). The Ki values determined under initial velocity conditions are: PD-ATP, Ki = 695 +/- 60 microM, n = 5; 8-N3ATP, Ki = 155 +/- 23 microM, n = 5; CrATPa, Ki = 7 +/- 3 microM, n = 2; oATP, Ki = 42 +/- 5 microM, n = 3. Irradiation of 100 microM 8-N3ATP by UV light (254 nm) causes the first-order loss of reagent either in the presence or absence of C. Concomitant irreversible inhibition of C in the presence of 8-N3ATP was more complex and asymptotically approached 50% within 4-6 min. Loss of C activity in controls was 10-20%. The fraction of C covalently modified by 8-N3ATP, alpha, was calculated for each time point of irradiation for an increasing initial concentration ([A]o) of 8-N3ATP. Extrapolated to infinite time of photolysis, the value of alpha reached a final level, termed alpha t whose magnitude depended on [A]o. From these data we calculated an apparent KD of 4.5 microM for 8-N3ATP. ATP protected against the irreversible inhibition due to 8-N3ATP. These data are most consistent with a mechanism of photoaffinity labeling involving equilibrium binding and covalent insertion of 8-N3ATP into the active site. These results indicate that the active site binds analogues of ATP which are considerably modified in the adenine, ribose, and gamma-phosphate portions and that the affinity of C for these analogues is within an order of magnitude of the Km for ATP.  相似文献   

9.
Interaction of Na+,K(+)-ATPase from pig kidney in various conformational states with the dialdehyde analogue of ATP, alpha,alpha-(9-adenyl)-alpha'-D-(hydroxymethyl)diglycolaldehyde triphosphate ester (oATP), has been studied. This interaction leads to an enzyme modification which was shown to be of the affinity type according to the following criteria. 1. oATP can be hydrolyzed by Na+,K(+)-ATPase and prevent inhibition of ATPase activity by gamma-[4-(N-2-chloroethyl-N-methylamino)]benzylamide ATP, indicating that it interacts with Na+,K(+)-ATPase in the enzyme active site. 2. oATP irreversibly inhibits ATP-hydrolyzing activity of Na+,K(+)-ATPase; the extent of inactivation is decreased in the presence of 20 mM ATP and depends on the ion composition of the modification medium. The inhibition and ATP protection are maximal in Na+,Mg2(+)-containing buffer. 3. The value of [14C]oATP incorporation into the alpha subunit is proportional to the degree of enzyme inactivation at low (less than 0.1 mM) concentration of oATP and, on extrapolation to complete inhibition, corresponds to incorporation of 1.05 mol reagent/mol alpha subunit. 4. Tryptic hydrolysis of the isolated oATP-modified alpha subunit and subsequent separation of the peptides revealed only one labelled fragment with a molecular mass of about 10 kDa. Localization of the modified fragment in the alpha-subunit polypeptide chain is discussed. A morpholine-like structure was shown to be formed as a result of the modification.  相似文献   

10.
Periodate-oxidized ADP and ATP (oADP and oATP) are substrates and affinity reagents for creatine kinase from rabbit skeletal muscle. oADP and oATP modified a lysine epsilon-amino group in the nucleotide-binding site of the enzyme. Complete inactivation is observed upon binding 2 moles oADP per 1 mole of the enzyme dimer. Modification with oADP is described by a liner dependence of the log of enzyme activity on time, testifying to a pseudo-first-order of the reaction. The reaction rate constant (ki = 8.10(3) min-1) and dissociation constant for the reversible enzyme-oADP complex (Kd = 62 microM) were determined. ADP protected the enzyme from inactivation and covalent binding of the analog, whereas oADP covalently bound to the enzyme was phosphorylated by phosphocreatine. The data obtained allow to suggest that the epsilon-amino group of a lysine residue of the active site is located in close proximity to ribose of ATP and ADP forming a complex with the enzyme. This group seems essential for correct orientation of the nucleotide polyphosphate chain in the enzyme active center, but take no immediate part in the transphosphorylation process.  相似文献   

11.
Properties of a highly purified mitochondrial deoxyguanosine kinase   总被引:3,自引:0,他引:3  
Deoxyguanosine kinase, purified over 6000-fold from beef liver mitochondria by means of deoxyguanosine-3'-(4-aminophenyl phosphate)-Sepharose affinity chromatography, was nearly homogeneous. It phosphorylates only deoxyguanosine and deoxyinosine among the natural nucleosides, with apparent Km values of 4.7 and 21 microM, respectively. Among nucleoside analogs tested, only arabinosylguanine (Ki = 125 microM) and 8-aza-deoxyguanosine (Ki = 450 microM) competed with deoxyguanosine. The relative molecular mass of the enzyme is 56,000, as determined by equilibrium sedimentation, and sodium dodecyl sulfate-gel electrophoresis suggests two subunits of Mr 28,000. The pH optimum for enzyme activity is 5.5, but optimum enzyme stability is seen at pH 7.0. Triton X-100 increased the stability of the enzyme markedly. ATP is the best phosphate donor at pH 5.5, but pyrimidine triphosphates such as dTTP and UTP are more efficient donors at pH 7.4. The activation energy, at pH 5.5, was estimated to be 10.9 kcal/mol. Amino acid modification experiments suggest the involvement of arginine, cysteine, and probably histidine. The inactivation of the enzyme by modification of these amino acid residues was time and pH dependent. Both substrates protected the enzyme from inactivation in every case but that of photooxidation by Rose Bengal, where only deoxyguanosine prevented inactivation.  相似文献   

12.
Cytidine 5'-triphosphate synthase (CTPS) catalyzes the ATP-dependent formation of CTP from UTP using either NH3 or L-glutamine as the source of nitrogen. To identify the location of the ATP-binding site within the primary structure of E. coli CTPS, we used the affinity label 2',3'-dialdehyde adenosine 5'-triphosphate (oATP). oATP irreversibly inactivated CTPS in a first-order, time-dependent manner while ATP protected the enzyme from inactivation. In the presence of 10 mM UTP, the values of k(inact) and K(I) were 0.054 +/- 0.001 min(-1) and 3.36 +/- 0.02 mM, respectively. CTPS was labeled using (2,8-3H)oATP and subsequently subjected to trypsin-catalyzed proteolysis. The tryptic peptides were separated using reversed-phase HPLC, and two peptides were identified using N-terminal sequencing (S(492)GDDQLVEIIEVPNH(506) and Y(298)IELPDAY(K(306)) in a 5:1 ratio). The latter suggested that Lys 306 had been modified by oATP. Replacement of Lys 306 by alanine reduced the rate of oATP-dependent inactivation (k(inact) = 0.0058 +/- 0.0005 min(-1), K(I) = 3.7 +/- 1.3 mM) and reduced the apparent affinity of CTPS for both ATP and UTP by approximately 2-fold. The efficiency of K306A-catalyzed glutamine-dependent CTP formation was also reduced 2-fold while near wild-type activity was observed when NH3 was the substrate. These findings suggest that Lys 306 is not essential for ATP binding, but does play a role in bringing about the conformational changes that mediate interactions between the ATP and UTP sites, and between the ATP-binding site and the glutamine amide transfer domain. Replacement of the nearby, fully conserved Lys 297 by alanine did not affect NH3-dependent CTP formation, relative to wild-type CTPS, but reduced k(cat) for the glutaminase activity 78-fold. Our findings suggest that the conformational change associated with binding ATP may be transmitted through the L10-alpha11 structural unit (residues 297-312) and thereby mediate effects on the glutaminase activity of CTPS.  相似文献   

13.
The localization of the binding sites of the different ligands on the constitutive subunits of yeast phenylalanyl-tRNA synthetase was undertaken using a large variety of affinity and photoaffinity labelling techniques. The RNAPhe was cross-linked to the enzyme by non-specific ultraviolet irradiation at 248 nm, specific irradiation in the wye base absorption band (315 nm), irradiation at 335 nm, in the absorption band of 4-thiouridine (S4U) residues introduced in the tRNA molecule, or by Schiff's base formation between periodate-oxidized tRNAPhe (tRNAPheox) and the protein. ATP was specifically incorporated in its binding site upon photosensitized irradiation. The amino acid could be linked to the enzyme upon ultraviolet irradiation, either in the free state, engaged in the adenylate or bound to the tRNA. The tRNA, the ATP molecule and the amino acid linked to the tRNA were found to interact exclusively with the beta subunit (Mr 63000). The phenylalanine residue, either free or joined to the adenylate, could be cross-linked with equal efficiency to eigher type of subunit, suggesting that the amino acid binding site is located in a contact area between the two subunits. The Schiff's base formation between tRNAPheox and the enzyme shows the existence of a lysyl group close to the binding site for the 3'-terminal adenosine of tRNA. This result was confirmed by the study of the inhibition of yeast phenylalanyl-tRNA synthetase with pyridoxal phosphate and the 2',3'-dialdehyde derivative of ATP, oATP.  相似文献   

14.
Ultraviolet irradiation of EcoRII methyltransferase in the presence of its substrate, S-adenosyl-L-methionine (AdoMet), results in the formation of a stable enzyme-substrate adduct. This adduct can be demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after irradiation of the enzyme in the presence of either [methyl-3H]AdoMet or [35S]AdoMet. The extent of photolabeling is low. Under optimal conditions, 4.5 pmol of [3H]AdoMet is incorporated into 100 pmol of enzyme. Use of the 8-azido derivative of AdoMet as the photolabeling substrate increases the incorporation by approximately 2-fold. However, this adduct, unlike the one formed with AdoMet, is not stable when treated with thiol reagents or precipitated with trichloroacetic acid. A catalytically active conformation of the enzyme is needed for AdoMet photolabeling. Heat-inactivated enzyme or proteins for which AdoMet is not a substrate or cofactor do not undergo adduct formation. Two other methyltransferases, MspI and dam methylases are also shown to form adducts with AdoMet upon UV irradiation. The binding constant of the EcoRII methyltransferase for AdoMet determined with the photolabeling reaction is 11 microM, which is similar to the binding constant of 9 microM previously reported (Friedman, S. (1986) Nucleic Acids Res. 14, 4543-4556). The AdoMet analogs S-adenosyl-L-homocysteine (Ki = 0.83 microM) and sinefungin (Ki = 4.3 microM) are effective inhibitors of photolabeling, whereas S-adenosyl-D-homocysteine (Ki = 46 microM) is a poor inhibitor. These experiments indicate that AdoMet becomes covalently bound at the AdoMet-binding site on the enzyme molecule. The EcoRII methyltransferase-AdoMet adduct is very stable and could be used to identify the AdoMet-binding site on DNA methyltransferases.  相似文献   

15.
Tetrammine cobalt(III) phosphate [Co(NH3)4PO4] inactivates Na+/K(+)-ATPase in the E2 conformational state, dependent on time and concentration, according to Eqn (1): Co(NH3)4PO4 + E2 Kd in equilibrium E2.Co(NH3)4PO4k2----E'2.Co(NH3)4PO4. The inactivation rate constant k2 for the formation of a stable E'2.Co(NH3)4PO4 at 37 degrees C was 0.057 min-1; the dissociation constant, Kd = 300 microM. The activation energy for the inactivation process was 149 kJ/mol. ATP and the uncleavable adenosine 5'-[beta, gamma-methylene]triphosphate competed with Co(NH3)4PO4 for its binding site with Ks = 0.41 mM and 5 mM, respectively. MgPO4 competed with Co(NH3)4PO4 linearly, with Ks = 50 microM, as did phosphate (Ks = 16 mM) and Mg2+ (Ks = 160 microM). It is concluded that the MgPO4 analogue binds to the MgPO4-binding subsite of the low-affinity ATP-binding site (of the E2 conformation). Also, Na+ (Ks = 860 microM) protected the enzyme against inactivation in a competitive manner. From the intersecting (slope and intercept linear) noncompetitive effect of Na+ against the inactivation by Co(NH3)4PO4, apparent affinities of K+ for the free enzyme of 41 microM, and for the E.Co(NH3)4PO4 complex of 720 microM, were calculated. Binding of Co(NH3)4PO4 to the enzyme inactivated Na+/K(+)-ATPase and K(+)-activated phosphatase, and, moreover, prevented the occlusion of 86Rb+; however, the activity of the Na(+)-ATPase, the phosphorylation capacity of the high-affinity ATP-binding site and the ATP/ADP-exchange reaction remained unchanged. With Co(NH3)432PO4 a binding capacity of 135 pmol unit enzyme was found. Phosphorylation and complete inactivation of the enzyme with Co(NH3)432PO4 or the 32P-labelled tetramminecobalt ATP ([gamma-32P]Co(NH3)4ATP) at the low-affinity ATP-binding site, allowed (independent of the purity of the Na+/K(+)-ATPase preparation) a further incorporation of radioactivity from 32P-labelled tetraaquachromium(III) ATP ([gamma-32P]CrATP) to the high-affinity ATP-binding site with unchanged phosphorylation capacity. However, inactivation and phosphorylation of Na+/K(+)-ATPase by [gamma-32P]CrATP prevented the binding of Co(NH3)4 32PO4 or [gamma-32P]Co(NH3)4ATP to the enzyme. [gamma-32P]CO(NH3)4ATP and Co(NH3)432PO4 are mutually exclusive. The data are consistent with the assumption of a cooperation of catalytic subunits within an (alpha,beta)2-diprotomer, which change their interactions during the Na+/K(+)-pumping process. Our findings seem not to support a symmetrical Repke and Stein model of enzyme action.  相似文献   

16.
17.
The (Na+ + Mg2+)-ATPase of the Acholeplasma laidlawii B plasma membrane was inactivated by the 2',3'-dialdehyde derivative of ATP (oATP). oATP behaved as a reversible competitive inhibitor of this ATPase and was slowly hydrolyzed by the enzyme. In addition, oATP induced an irreversible inactivation of the enzyme. A 62% inactivation of the enzyme correlated with the binding of 16 moles of oATP per mole of the enzyme. In the presence of 5'-adenylyl imidodiphosphate, a non-hydrolyzable substrate analogue, the stoichiometry was 8 moles oATP per mole of ATPase. By SDS-polyacrylamide gel electrophoresis, [U-14C]oATP was found to bind covalently to four of the five subunits of the enzyme, but specific labeling was highest for the gamma-subunit of the ATPase.  相似文献   

18.
The photoaffinity analog of ATP, 3'-O-(4-benzoyl) benzoyl ATP (BzATP), was used to covalently modify the catalytic sites on the beef heart mitochondrial F1-ATPase. In the absence of actinic illumination, BzATP was a slow substrate for the enzyme (Vmax = 0.19 mumol min-1 mg-1; kcat/Km = 2.2 X 10(6) M-1s-1) and behaved as a classical competitive inhibitor versus ATP (Ki = 0.85 microM). Under photolytic conditions, BzATP inactivated F1 with pseudo first-order kinetics, and the photoinactivation reaction showed rate saturation suggesting specific, reversible binding of BzATP to F1 prior to covalent bond formation. ATP protected against F1 photoinactivation (Kprotect = 0.3 microM) and partially covalently modified F1 yielded the same Km for ATP as unmodified enzyme. These results strongly suggested that BzATP was bound to catalytic sites on the enzyme. In the absence of photolysis, BzATP saturated two binding sites on the F1 (KD = 1.6 microM), and under photolytic conditions, 1 mol of BzATP was shown to be covalently liganded to the beta subunit of the enzyme coincident with 100% loss in ATPase activity. Previous studies with the mitochondrial F1-ATPase have suggested a mechanism involving catalytic cooperativity during ATP hydrolysis. Our demonstration of a molar stoichiometry of 1 for photoinactivation is in accord with this mechanism. It is suggested that either F1 is unable to hydrolyze covalently bound BzATP, or that subsequent to hydrolysis, the BzADP product can not be released from the catalytic site. It is therefore inferred that F1 hydrolytic activity requires cooperativity between multiple, viable catalytic sites and that covalent modification of a single catalytic site is sufficient for complete enzyme inactivation.  相似文献   

19.
Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides is irreversibly inactivated by the 2,3'-dialdehyde of NADP+ (oNADP+) in the absence of substrate. The inactivation is first order with respect to NADP+ concentration and follows saturation kinetics, indicating that the enzyme initially forms a reversible complex with the inhibitor followed by covalent modification (KI = 1.8 mM). NADP+ and NAD+ protect the enzyme from inactivation by oNADP+. The pK of inactivation is 8.1. oNADP+ is an effective coenzyme in assays of glucose-6-phosphate dehydrogenase (Km = 200 microM). Kinetic evidence and binding studies with [14C] oNADP+ indicate that one molecule of oNADP+ binds per subunit of glucose-6-phosphate dehydrogenase when the enzyme is completely inactivated. The interaction between oNADP+ and the enzyme does not generate a Schiff's base, or a conjugated Schiff's base, but the data are consistent with the formation of a dihydroxymorpholino derivative.  相似文献   

20.
The MgATP complex analogue cobalt-tetrammine-ATP [Co(NH3)4ATP] inactivates (Na+ + K+)-ATPase at 37 degrees C slowly in the absence of univalent cations. This inactivation occurs concomitantly with incorporation of radioactivity from [alpha-32P]Co(NH3)4ATP and from [gamma-32P]Co(NH3)4ATP into the alpha subunit. The kinetics of inactivation are consistent with the formation of a dissociable complex of Co(NH3)4ATP with the enzyme (E) followed by the phosphorylation of the enzyme: (Formula: see text). The dissociation constant of the enzyme-MgATP analogue complex at 37 degrees C is Kd = 500 microM, the inactivation rate constant k2 = 0.05 min-1. ATP protects the enzyme against the inactivation by Co(NH3)4ATP due to binding at a site from which it dissociates with a Kd of 360 microM. It is concluded, therefore, that Co(NH3)4ATP binds to the low-affinity ATP binding site of the E2 conformational state. K+, Na+ and Mg2+ protect the enzyme against the inactivation by Co(NH3)4ATP. Whilst Na+ or Mg2+ decrease the inactivation rate constant k2, K+ exerts its protective effect by increasing the dissociation constant of the enzyme.Co(NH3)4ATP complex. The Co(NH3)4ATP-inactivated (Na+ + K+)-ATPase, in contrast to the non-inactivated enzyme, incorporates [3H]ouabain. This indicates that the Co(NH3)4ATP-inactivated enzyme is stabilized in the E2 conformational state. Despite the inactivation of (Na+ + K+)-ATPase by Co(NH3)4ATP from the low-affinity ATP binding site, there is no change in the capacity of the high-affinity ATP binding site (Kd = 0.9 microM) nor of its capability to phosphorylate the enzyme Na+-dependently. Since (Na+ + K+)-ATPase is phosphorylated Na+-dependently from the high-affinity ATP binding site although the catalytic cycle is arrested in the E2 conformational state by specific modification of the low-affinity ATP binding site, it is concluded that both ATP binding sites coexist at the same time in the working sodium pump. This demonstration of interacting catalytic subunits in the E1 and E2 conformational states excludes the proposal that a single catalytic subunit catalyzes (Na+ + K+)-transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号