首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to determine the metabolic function of the marked increase in plasma epinephrine which occurs in fasted rats during treadmill exercise. Fasted adrenodemedullated (ADM) and sham-operated (SHAM) rats were run on a rodent treadmill (21 m/min, 15% grade) for 30 min or until exhaustion. ADM rats were infused with saline, epinephrine, glucose, or lactate during the exercise bouts. ADM saline-infused rats showed markedly reduced endurance, hypoglycemia, elevated plasma insulin, reduced blood lactate, and reduced muscle glycogenolysis compared with exercising SHAM's. Epinephrine infusion corrected all deficiencies. Glucose infusion restored endurance run times and blood glucose to normal without correcting the deficiencies in blood lactate and muscle glycogenolysis. Infusion of lactate partially corrected the hypoglycemia at 30 min of exercise, but endurance was not restored to normal and rats were hypoglycemic at exhaustion. We conclude that in the fasted exercising rat, actions of epinephrine in addition to provision of gluconeogenic substrate are essential for preventing hypoglycemia and allowing the rat to run for long periods of time.  相似文献   

2.
To determine the effect of maternal exercise on fetal liver glycogen content, fed and fasted rats that were pregnant for 20.5 or 21.5 days were run on a rodent treadmill for 60 min at 12 m/min with a 0% grade or 16 m/min up a 10% grade. The rats were anesthetized by intravenous injection of pentobarbital sodium, and fetal and maternal liver and plasma samples were collected and frozen. Fetal liver glycogenolysis did not occur as a result of maternal exercise. Fetal blood levels of lactate increased 22-60%, but glucose, plasma glucagon, and insulin were unchanged during maternal exercise. Maternal liver glycogen decreased as a result of exercise in all groups of rats except the fasted 20.5-day-pregnant group. Plasma free fatty acids increased in all groups and blood lactate increased in fed (20.5 days) and fasted (21.5 days) pregnant rats. Maternal glucose, glucagon, and insulin values remained constant during exercise. The fetus appears to be well-protected from metabolic stress during moderate-intensity maternal exercise.  相似文献   

3.
To determine whether feedforward control of liver glycogenolysis during exercise is subject to negative feedback by elevated blood glucose, glucose was infused into exercising rats at a rate that elevated blood glucose greater than 10 mM. Liver glycogen content decreased 22.4 mg/g in saline-infused rats compared with 13.6 mg/g in glucose-infused rats during the first 40 min of treadmill running (21 m/min, 15% grade). Liver adenosine 3',5'-cyclic monophosphate (cAMP) concentration was significantly lower in the glucose-infused rats during the exercise bout. The concentration of hepatic fructose 2,6-bisphosphate remained elevated throughout the exercise bout in glucose-infused rats but decreased markedly in saline-infused rats. Plasma insulin concentration was higher and plasma glucagon concentration lower in glucose-infused rats than in saline-infused rats during exercise. Early in exercise, liver glycogenolysis proceeds in the glucose-infused rats despite the fact that glucose and insulin concentrations are markedly elevated and liver cAMP is unchanged from resting values. These observations suggest the existence of a cAMP-independent feedforward system for activation of liver glycogenolysis that can override classical negative feedback mechanisms during exercise.  相似文献   

4.
The influence of supranormal compared with normal hepatic glycogen levels on hepatic glucose production (Ra) during exercise was investigated in chronically catheterized rats. Supranormal hepatic glycogen levels were obtained by a 24-h fast-24-h refeeding regimen. During treadmill running for 35 min at a speed of 21 m/min, Ra and plasma glucose increased more (P less than 0.05) and liver glucogen breakdown was larger in fasted-refed compared with control rats, although the stimuli for Ra were higher in control rats, the plasma concentrations of insulin and glucose being lower (P less than 0.05) in control compared with fasted-refed rats. Also, plasma concentrations of glucagon and both catecholamines tended to be higher and muscle glycogenolysis lower in control compared with fasted-refed rats. Lipid metabolism was similar in the two groups. The results indicate that hepatic glycogenolysis during exercise is directly related to hepatic glycogen content. The smaller endocrine glycogenolytic signal in face of higher plasma glucose concentrations in fasted-refed compared with control rats is indicative of metabolic feedback control of glucose mobilization during exercise. However, the higher exercise-induced increase in Ra, plasma glucose, and liver glycogen breakdown in fasted-refed compared with control rats indicates that metabolic feedback mechanisms are not able to accurately match Ra to the metabolic needs of working muscles.  相似文献   

5.
To investigate the effect of the increase in glucocorticoids during exercise on endurance, rats were either sham operated (SO) or adrenalectomized. All adrenalectomized rats were given a subcutaneously implanted corticosterone pellet at the time of adrenalectomy. Adrenalectomized rats were injected with corticosterone (ADX Cort) or corn oil (ADX) 5 min before exercise. Rats were killed at rest or after running on a treadmill (21 m/min, 15% grade) until exhaustion. SO rats ran 138 +/- 6 min compared with 114 +/- 9 min for ADX Cort and 89 +/- 8 min for ADX. All differences in run times were significant (P less than 0.05). Corticosterone levels were similar in exhausted SO and ADX Cort groups. ADX exhausted rats had corticosterone levels similar to resting values in SO and ADX rats. Inhibition of the rise in glucocorticoids during exercise had no effect on liver glycogen, liver adenosine 3',5'-cyclic monophosphate, plasma insulin, blood glucose, lactate, glycerol, or 3-hydroxybutyrate, plasma norepinephrine, or red quadriceps and soleus glycogen. Plasma free fatty acids were significantly depressed at exhaustion in ADX rats compared with SO. These data show that glucocorticoids exert effects within the time frame of a prolonged exercise bout and play a role in increasing endurance.  相似文献   

6.
To study the role of the central cholinergic system in pituitary prolactin (PRL) release during exercise we injected atropine (5 x 10(-7) mol) into the lateral cerebral ventricle of intact or adrenodemedullated (ADM) untrained rats, at rest or submitted to exercise on a treadmill (18 m x min(-1), 5% grade) until exhaustion. The rats were implanted with chronic jugular catheters for blood sampling and with unilateral intracerebroventricular (icv) cannulas placed in the right lateral ventricle. Blood prolactin concentrations were measured before and every 10 min after the start of exercise for a period of 60 min. After the animals started running, plasma prolactin levels rose rapidly in both normal and ADM rats, reaching near maximum at 10 min. Close to exhaustion (19.8 +/- 2.9 min for intact rats and 23.5 +/- 4.1 min for ADM) they were still high, remained increased until 30 min, and returned to preexercise levels at 40 min. Icv injections of atropine decreased the time to exhaustion by 67% in intact rats and by 96.2% in ADM and also reduced the exercise-induced PRL release in both intact (50%) and ADM rats (90%). The results showed that prolactin release induced by exercise was dependent on the exercise workload and could be observed as early as after 10 min of running, remaining increased until 30 min. These data indicate that adrenodemedullation does not affect prolactin secretion induced by exercise, although adrenodemedullated rats proved to be more sensitive to the reducing effect of central cholinergic blockade on their maximal capacity for exercise.  相似文献   

7.
In our previous work, we routinely observed that a combined cocaine-exercise challenge results in an abnormally rapid muscle glycogen depletion and excessive blood lactacidosis. These phenomena occur simultaneously with a rapid rise in norepinephrine and in the absence of any rise in epinephrine. We postulated that norepinephrine may cause vasoconstriction of the muscle vasculature through activation of alpha-1 receptors during cocaine-exercise, thus inducing hypoxia and a concomitant rise in glycogenolysis and lactate accumulation. To test this hypothesis, rats were pretreated with the selective alpha-1-receptor antagonist prazosin (P) (0.1 mg/kg iv) or saline (S). Ten minutes later, the animals were treated with cocaine (-C) (5 mg/kg iv) or saline (-S) and run for 4 or 15 min at 22 m/min at 10% grade. In the S-S group, glycogen content of the white vastus lateralis muscle was unaffected by exercise at both time intervals, whereas in S-C rats glycogen was reduced by 47%. This effect of cocaine-exercise challenge was not attenuated by P. Similarly, blood lactate concentration in S-C rats was threefold higher than that of S-S after exercise, a response also not altered by pretreatment with P. On the basis of these observations, we conclude that the excessive glycogenolysis and lactacidosis observed during cocaine-exercise challenge is not the result of vasoconstriction secondary to norepinephrine activation of alpha-1 receptors.  相似文献   

8.
The respective roles of allosteric regulators and catecholamines in the control of muscle glycogen breakdown during exercise remain a matter of controversy. This study was designed to reassess the role of the sympathoadrenal system during prolonged exercise in rats. Animals were studied at rest or after treadmill exercise (28 m.min-1; 8% slope) to exhaustion in a control situation or following administration of a specific beta 2-adrenergic receptor antagonist (ICI 118,551, 1 mg.kg-1, i.v.). Running times to exhaustion were 54 and 36 min in control and treated rats, respectively. For the purpose of comparison, another group of control rats was studied after a 36-min exercise bout. The reduction in endurance in treated rats was associated with an impairment in glycogen utilization, as measured by muscle glycogen stores, in soleus muscle but not in superficial vastus lateralis or gastrocnemius lateralis muscles. Utilization of liver glycogen stores was similar in the two groups of animals, but plasma glucose (7 vs. 13 mM) and lactate (4 vs. 7 mM) levels were significantly lower in rats under beta-blockade than in control rats run for 36 min. Plasma free fatty acid and glycerol concentrations were not significantly different between groups. On the other hand, plasma epinephrine concentration was significantly higher in treated rats (13 vs. 5 mM), which might reflect a compensatory increase in adrenal activity. These results suggest that glycogen breakdown during prolonged exercise is under the control of the sympathoadrenal system in predominantly slow-twitch but not in predominantly fast-twitch muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The aim of the study was to find out whether prolonged exercise influences plasma adrenomedullin (ADM) concentration and whether it is related to the hormonal, metabolic and cardiovascular changes. Eighteen healthy subjects (age 25+/-1 yrs) were submitted to cycle exercise for 90 min at 70% of maximal oxygen uptake. Heart rate (HR) and blood pressure (BP) were measured continously. Before, at 30(th) min, and at the end of exercise venous blood samples were taken for [ADM], noradrenaline [NA], adrenaline [A], atrial natriuretic peptide [ANP], plasma renin activity PRA, interleukin-6 [IL-6] and lactate [LA] determination. Significant increases in plasma ADM and IL-6 were found at 90(th) min whereas other hormones were elevated already at 30(th) min of exercise. Positive correlations were ascertained between [ADM] and [NA] (r=0.47), [ANP] (r=0.35) or [IL-6] (r=0.35) and between exercise-induced increases in [ADM] and [NA] (r=0.38). PRA correlated positively with [NA] and [ANP]. Negative correlation was found between plasma [ADM] and diastolic BP. The present data suggest that increase in sympathetic nervous activity and cytokine induction during prolonged exercise may be involved in plasma ADM release and that increase in ADM and ANP secretion may be a compensatory mechanism against further elevation of blood pressure.  相似文献   

10.
The aim of this study was to determine whether the decreased muscle and blood lactate during exercise with hyperoxia (60% inspired O2) vs. room air is due to decreased muscle glycogenolysis, leading to decreased pyruvate and lactate production and efflux. We measured pyruvate oxidation via PDH, muscle pyruvate and lactate accumulation, and lactate and pyruvate efflux to estimate total pyruvate and lactate production during exercise. We hypothesized that 60% O2 would decrease muscle glycogenolysis, resulting in decreased pyruvate and lactate contents, leading to decreased muscle pyruvate and lactate release with no change in PDH activity. Seven active male subjects cycled for 40 min at 70% VO2 peak on two occasions when breathing 21 or 60% O2. Arterial and femoral venous blood samples and blood flow measurements were obtained throughout exercise, and muscle biopsies were taken at rest and after 10, 20, and 40 min of exercise. Hyperoxia had no effect on leg O2 delivery, O2 uptake, or RQ during exercise. Muscle glycogenolysis was reduced by 16% with hyperoxia (267 +/- 19 vs. 317 +/- 21 mmol/kg dry wt), translating into a significant, 15% reduction in total pyruvate production over the 40-min exercise period. Decreased pyruvate production during hyperoxia had no effect on PDH activity (pyruvate oxidation) but significantly decreased lactate accumulation (60%: 22.6 +/- 6.4 vs. 21%: 31.3 +/- 8.7 mmol/kg dry wt), lactate efflux, and total lactate production over 40 min of cycling. Decreased glycogenolysis in hyperoxia was related to an approximately 44% lower epinephrine concentration and an attenuated accumulation of potent phosphorylase activators ADPf and AMPf during exercise. Greater phosphorylation potential during hyperoxia was related to a significantly diminished rate of PCr utilization. The tighter metabolic match between pyruvate production and oxidation resulted in a decrease in total lactate production and efflux over 40 min of exercise during hyperoxia.  相似文献   

11.
Effects of exercise on adiponectin and adiponectin receptor levels in rats   总被引:4,自引:0,他引:4  
Adiponectin reportedly reduces insulin-resistance. Exercise has also been shown to lessen insulin-resistance, though it is not known whether exercise increases levels of adiponectin and/or its receptors or whether its effects are dependent on exercise intensity and/or frequency. Catecholamine levels have been shown to increase during exercise and to fluctuate based on exercise intensity and duration. In light of this information, we examined the effects of exercise on catecholamine, adiponectin, and adiponectin receptor levels in rats. Our data showed that blood adiponectin levels increased by 150% in animals that exercised at a rate of 30 m/min for 60 min 2 days per week, but not 5 days, per week; no such increase was observed in rats that exercised at a rate of 25 m/min for 30 min. The effects of exercise on adiponectin receptor mRNA were variable, with adiponectin receptor 1 (AdipoR1) levels in muscle increasing up to 4 times while adiponectin receptor 2 (AdipoR2) levels in liver fell to below half in response to exercise at a rate of 25 m/min for 30 min 5 days per week. We also observed that urinary epinephrine levels and plasma lipids were elevated by exercise at a rate of 25 m/min for 30 min 2 days per week. Exercise frequency at a rate of 25 m/min for 30 min correlated with AdipoR1 and AdipoR2 mRNA expression in the muscle and liver, respectively (r=0.640, p<0.05 and r=-0.808, p<0.0005, respectively). Urinary epinephrine levels correlated with AdipoR2 mRNA expression in liver tissues (r=-0.664, p<0.05) in rats that exercised at a rate of 25 m/min for 30 min. Thus, exercise may regulate adiponectin receptor mRNA expression in tissues, which might cause increases in glucose uptake and fatty acid oxidation in the muscle. The effect of exercise on adiponectin levels depends on the specific conditions of the exercise.  相似文献   

12.
The effects of a beta 1-selective (metoprolol, 150 mg per day) and a non-selective beta-blocking agent (propranolol, 120 mg per day) on metabolic and hormonal responses to physical exercise (a 30 min bicycle ergometer test) were investigated against placebo in seven healthy male volunteers with a double blind cross-over design. The blood glucose level remained unchanged during placebo, it tended to increase during metoprolol, whereas it decreased during propranolol. Both metoprolol and propranolol counteracted the exercise-induced increase in plasma free fatty acids and caused a slight decrease in muscle glycogenolysis. The increase in blood lactate concentration during exercise was not influenced by beta-blockade. The secretion of glucagon and cortisol was not modified significantly by beta-blockade, whereas the growth hormone response to exercise was promoted equally by both beta-blocking agents. It has been assumed previously that, during treatment with beta-blocking agents, diminished hepatic gluconeogenesis, caused by the lack of lactate or free fatty acids, may result in a decline in blood glucose levels. The present results indicate that an inhibition of beta 2-mediated hepatic glycogenolysis by propranolol may also influence blood glucose homeostasis during exercise.  相似文献   

13.
To gain further insights into the mechanisms regulating skeletal muscle glycogenolysis during exercise, glycogen, phosphorylase, and adenosine 3',5'-cyclic monophosphate (cAMP) were determined in fast-twitch white (FTW) and fast-twitch red (FTR) muscle from groups of rats that ran for 0, 5, 10, 15, or 30 min at either 15 or 30 m/min. Glycogen degradation demonstrated an intensity and duration response in both fiber types. cAMP increased in both fiber types by 5 min and remained elevated at all times measured. FTW muscle cAMP levels were independent of both intensity and duration of exercise. FTR muscle cAMP levels were higher from 10 to 30 min at the 30-m/min intensity compared with the 15-m/min intensity. The ratio of the activity of phosphorylase in the presence of 2 mM AMP X 100 (phosphorylase a%) remained elevated at 20-22% independent of intensity and duration in FTW muscle; however, phosphorylase a% demonstrated an intensity and duration effect in FTR muscle. Glycogenolytic rates decreased with time, even though both cAMP and phosphorylase a% remained elevated in both fiber types. These data suggest that cAMP and phosphorylase a activation can be maintained during exercise in skeletal muscle but indicate a dissociation of these factors from glycogenolysis.  相似文献   

14.
In chronically catheterized rats hepatic glycogen was increased by fructose (approximately 10 g/kg) gavage (FF rats) or lowered by overnight food restriction (FR rats). [3-3H]- and [U-14C]glucose were infused before, during, and after treadmill running. During exercise the increase in glucose production (Ra) was always directly related to work intensity and faster than the increase in glucose disappearance, resulting in increased plasma glucose levels. At identical work-loads the increase in Ra and plasma glucose as well as liver glycogen breakdown were higher in FF and control (C) rats than in FR rats. Breakdown of muscle glycogen was less in FF than in C rats. Incorporation of [14C]glucose in glycogen at rest and mobilization of label during exercise partly explained that 14C estimates of carbohydrate metabolism disagreed with chemical measurements. In some muscles glycogen depletion was not accompanied by loss of 14C and 3H, indicating futile cycling of glucose. In FR rats a postexercise increase in liver glycogen was seen with 14C/3H similar to that of plasma glucose, indicating direct synthesis from glucose. In conclusion, in exercising rats the increase in glucose production is subjected to feedforward regulation and depends on the liver glycogen concentration. Endogenous glucose may be incorporated in glycogen in working muscle and may be used directly for liver glycogen synthesis rather than after conversion to trioses. Fructose ingestion may diminish muscular glycogen breakdown. The [14C]glucose infusion technique for determination of muscular glycogenolysis is of doubtful value in rats.  相似文献   

15.
The importance of adenosine in controlling the magnitude and distribution of blood flow among and within skeletal muscles in rats during slow locomotor exercise was tested by systemic infusion of adenosine deaminase (ADA). Blood flows were measured using labeled microspheres before exercise and at 0.5, 15, and 30 min of fast treadmill walking at 15 m/min. An initial infusion of ADA (1,000 U/kg) was given 30 min before the first blood flow measurement and a second injection (1,000 U/kg) was given 5 min into exercise. These infusions maintained ADA activity above 5 U/ml blood throughout the experimental period. This plasma concentration of ADA was shown to be sufficient to result in a 64% decrease in muscle adenosine levels during ischemic contraction. Blood flows were measured in all of the muscles of the hindlimb (28 samples) and in various nonmuscular tissues in ADA-treated and control rats. Preexercise blood flows were primarily directed to slow-twitch muscles and exercise blood flows were highest in muscles with fast-twitch oxidative fibers. ADA treatment did not reduce total muscle blood flow or exercise blood flows in any of the muscles at any time. These findings do not support the hypothesis that adenosine plays an essential role in controlling muscle blood flow in skeletal muscles during normal locomotor activity.  相似文献   

16.
Male rats (120 g) either were subjected to a 12-wk physical training program (T rats) or were sedentary controls (C rats). Subsequently the rats were killed at rest or after a 45- or 90-min forced swim. At rest, T rats had higher liver and muscle glycogen concentrations but lower plasma insulin. During exercise, blood glucose increased 60% in T rats but decreased 20% in C rats. Plasma glucagon and insulin concentrations did not change in T rats but plasma glucagon increased and insulin decreased markedly in C rats. Plasma epinephrine (90 min: range, 0.78-2.96 ng-ml-1, (T) vs. 4.42-15.67 (C)) and norepinephrine (90 min: 0.70-2.22 (T) vs. 2.50-6.10 (C)) were lower in T than in C rats. Hepatic glycogen decreased substantially and, as with muscle glycogen, the decrease was parallel in T and C rats. The plasma concentrations of free fatty acids were higher but lactate and alanine lower in T than in C rats. In trained rats the hormonal response to exercise is blunted partly due to higher glucose concentrations. In these rats adipose tissue sensitivity to catecholamines is increased, and changes in glucagon and insulin concentrations are not necessary for increased lipolysis and hepatic glycogen depletion during exercise.  相似文献   

17.
We have previously found that during exercise net muscle glycogen breakdown is impaired in adrenodemedullated rats, as compared with controls. The present study was carried out to elucidate whether, in rats with deficiencies of the sympatho-adrenal system, diminished exercise-induced glycogenolysis in skeletal muscle was accompanied by increased breakdown of triglyceride and/or protein. Thus, the effect of exhausting swimming and of running on concentrations of glycogen, protein, and triglyceride in skeletal muscle and liver were studied in rats with and without deficiencies of the sympatho-adrenal system. In control rats, both swimming and running decreased the concentration of glycogen in fast-twitch red and slow-twitch red muscle whereas concentrations of protein and triglyceride did not decrease. In the liver, swimming depleted glycogen stores but protein and triglyceride concentrations did not decrease. In exercising rats, muscle glycogen breakdown was impaired by adrenodemedullation and restored by infusion of epinephrine. However, impaired glycogen breakdown during exercise was not accompanied by a significant net breakdown of protein or triglyceride. Surgical sympathectomy of the muscles did not influence muscle substrate concentrations. The results indicate that when glycogenolysis in exercising muscle is impeded by adrenodemedullation no compensatory increase in breakdown of triglyceride and protein in muscle or liver takes place. Thus, indirect evidence suggests that, in exercising adrenodemedullated rats, fatty acids from adipose tissue were burnt instead of muscle glycogen.  相似文献   

18.
These experiments were designed to estimate the involvement of the sympathetic innervation in regulation of hindlimb muscle blood flow distribution among and within muscles during submaximal locomotory exercise in rats. Blood flows to 32 hindlimb muscles and 13 other selected tissues were measured using the radiolabeled microsphere technique, before exercise and at 0.5, 2, 5, and 15 min of treadmill exercise at 15 m/min. The two groups of rats studied were 1) intact control, and 2) acutely sympathectomized (hindlimb sympathectomy accomplished by bilateral section of the lumbar sympathetic chain and its connections to the spinal cord at L2-L3). There were no differences in total hindlimb muscle blood flow among the two groups during preexercise or at 30 s or 2 min of exercise. However, flow was higher in eight individual muscles at 2 min of exercise in the sympathectomized rats. At 5 and 15 min of exercise there was higher total hindlimb muscle blood flow in the denervated group compared with control. These differences were also present in many individual muscles. Our results suggest that 1) sympathetic nerves do not exert a net influence on the initial elevations in muscle blood flow at the beginning of exercise, 2) sympathetic nerves are involved in regulating muscle blood flow during steady-state submaximal exercise in conscious rats, and 3) these changes are seen in muscles of all fiber types.  相似文献   

19.
This study was designed to assess the effect of the dimethyl ester of succinic acid (SAD) upon the hormonal and metabolic response to a 60-min exercise in overnight-starved Goto-Kakizaki rats. Twenty Goto-Kakizaki rats were starved overnight and then either maintained at rest or obliged to swim for 60 min. Half of the rats were injected intraperitoneally with the dimethyl ester of succinic acid (SAD, 5.0 micromol g(-1) body wt) immediately before exercise (or 60 min of rest). In the hereditarily diabetic rats, overnight starvation lowered the plasma D- glucose, insulin and lactate concentrations, while increasing that of free fatty acids and beta-hydroxybutyrate. In resting rats, the injection of SAD increased the glycogen content of liver, heart and muscle and the plasma concentration of D-glucose, insulin, glycerol and free fatty acids. In control animals, not injected with SAD, exercise increased the plasma concentration of D- glucose, lactate and glycerol, whilst lowering both that of insulin and the glycogen content of liver, heart and muscle. The injection of SAD before exercise failed to prevent and, on occasion, even accentuated the changes in both the glycogen content of liver, heart and muscle and the plasma concentration of D-glucose, insulin, glycerol and free fatty acids, whilst minimizing the increase in lactate concentration otherwise caused by exercise. Nevertheless, the comparison between resting and exercising rats, both injected with SAD, suggested that the ester abolished the exercise-induced rise in D-glucose, glycerol and fatty acid concentrations. By comparison with comparable experiments conducted in overnight-starved normal rats, these findings emphasize both the difference between normal and diabetic rats in their metabolic response to exercise, especially in terms of changes in glycemia, and the usefulness of SAD to compensate for the increased consumption of endogenous nutrients during exercise.  相似文献   

20.
Sympathetic control of glucose turnover was studied in rats running 35 min at 21 m X min-1 on the level. The rats were surgically liver denervated, adrenodemedullated, or sham operated. Glucose turnover was measured by primed constant infusion of [3-3H]glucose. At rest, the three groups had identical turnover rates and concentrations of glucose in plasma. During running, glucose production always rose rapidly to steady levels. The increase was not influenced by liver denervation but was halved by adrenodemedullation. Similarly, hepatic glycogen depletion was identical in denervated and control rats but reduced after adrenodemedullation. Early in exercise, glucose uptake rose identically in all groups and, in adrenodemedullated rats, matched glucose production. Accordingly, plasma glucose concentration increased in liver-denervated and control rats but was constant in adrenodemedullated rats. Compensatory changes in hormone or substrate levels explaining the lack of effect of liver denervation were not found. In rats with intact adrenals, the plasma epinephrine concentration was increased after 2.5 min of running. It is concluded that, in rats carrying out exercise of moderate intensity and duration, hepatic glycogenolysis and glucose production are not influenced by the autonomic liver nerves but are enhanced by circulating epinephrine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号