首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 400 毫秒
1.
Resident peritoneal mouse macrophages (non-dividing differentiated cells) were fused with mouse embryo fibroblasts (cells with a limited lifespan), NIH 3T3 and C3H 10T 1/2 cells ('immortal' cell lines) and SV 3T3 cells (a malignant cell line). DNA synthesis was investigated in the resultant heterokaryons. No inhibitory effect upon the transition of NIH 3T3 and mouse embryo fibroblasts nuclei to the S-phase was observed. C3H 10T 1/2, NIH 3T3 and SV 3T3 cells induced the reactivation of DNA synthesis in the macrophage nuclei in the heterokaryons. At the same time, no replication was detected in the macrophage nuclei after fusion with mouse embryo fibroblasts.  相似文献   

2.
Serum-deprived (0.2%) resting and serum-stimulated (10%) proliferating NIH 3T3 mouse fibroblasts were fused with hepatocytes from intact, regenerating and embryonic mouse livers to elucidate mechanisms of liver cell proliferation, DNA synthesis being investigated in nuclei of heterokaryons and non-fused cells using radioautography. Hepatocytes in heterokaryons were found to have no inhibitory effect on the entry of stimulated fibroblast nuclei into the S-period, but on the contrary they were involved in DNA synthesis. In addition, the nuclei in heterokaryons mutually stimulated each other to enter the S-period. In their turn, the resting fibroblasts did not prevent the proliferating hepatocytes from the regenerating and embryonic livers to enter the S-period. Possible reasons of the absence of inhibitory effect of differentiated cells in heterokaryons are discussed. The data obtained enable us to conclude that the mechanism of proliferative process control in resting immortalized cells differs from that in differentiated cells where proliferation seems to be stopped without affecting the endogenous inhibitor postulated for the resting and ageing fibroblasts.  相似文献   

3.
DNA replication blockage in various differentiated cells was investigated on the model of heterokaryons. Two distinct types of DNA synthesis regulation in heterokaryons "differentiated cell + proliferating cell" were revealed: I. Neutrophils and nucleated erythrocytes efficiently prevented the entry of non-malignant proliferating cells nuclei into the S-period but usually failed to substantially inhibit the replication in malignant cells nuclei. Both "mortal" and immortalized proliferating cells activated the DNA synthesis in neutrophil and chicken erythrocyte nuclei. II. Macrophages did not influence the DNA synthesis in the nuclei of non-malignant cells in heterokaryons but drastically inhibited that in the nuclei of malignant cells. Only immortalized cells reactivated DNA synthesis in the nuclei of macrophages. These data show that the mechanisms maintaining differentiated cells in non-proliferating state are not uniform. Nucleated erythrocytes were shown to suppress the duplication of centrioles in partner cells. The possibility of the blockage of DNA replication upon the fusion of two proliferating cells (fibroblast + leukemia cell) was demonstrated for the first time in the present work. The influence of various oncogenes upon the regulation of DNA synthesis in heterokaryons was investigated in detail. New modifications of the methods of cell fusion, enucleation and heterokaryon identification were proposed.  相似文献   

4.
Serum-deprived (0.2%) resting NIH 3T3 mouse fibroblasts were fused with serum-stimulated (10%) proliferating cells to elucidate mechanisms of entering into S-period operating in the nuclei of the heterokaryons under the effect of cycloheximide--an inhibitor of protein synthesis. Using radioautography DNA synthesis was investigated in mono-, homo- and heterodikaryons. After short (0.5-3.0 h) depressing of protein synthesis, the nuclei of stimulated cells in heterokaryons were found to enter into S-period. Under these conditions no induction of DNA synthesis was found in the nuclei of resting cells in heterodikaryons. In other experiments, resting cells were under the effect of cycloheximide during 2-4 h before the fusion, that led to a great induction of DNA synthesis in the nuclei of these cells in heterodikaryons. The data obtained are consistent with the idea of fibroblast transition to the rest under the action of labile proteins-repressors.  相似文献   

5.
Heterokaryons between terminally differentiated polymorphonuclear leukocytes (PL) and culture cells of different proliferative potentials: mouse and rat embryo fibroblasts (EFM, EFR); immortal cells NIH 3T3 and E2; malignant cells NCC2, L929, He239 and SV 3T3,--were obtained by means of electrofusion. Radioautographic study of 3H-thymidine incorporation in the nuclei of heterokaryons showed that all the cells taken for fusion were able to induce reactivation of DNA synthesis in PL nuclei, however, with different rates: 7-37% for EFM and NIH 3T3 and 20-40% for malignant cells. The presence of oncogenes Elan in E2 cells and ras in NCC2 cells increased the rate of PL reactivation approximately twice as compared with the cells of original lines (EFR and NIH 3T3, correspondingly). In parallel to reactivation of DNA synthesis in PL nuclei inhibition of the synthesis in culture cell nuclei in the same heterokaryons was found. The rate of inhibition was about 70% for non-malignant and 23, 40 and 18% for NCC2, L and SV 3T3 cells, respectively. He239 cells, transformed by a temperature-dependent mutant of virus SV40 showed at permissive temperature the increased capacity of inducing reactivation of PL nuclei, though He239 cells susceptibility to inhibitory action of PL nuclei did not change with temperature. According to the behaviour in heterokaryons PL were found to be similar to chick erythrocytes, but differing from them by a pronounced inhibiting effect upon DNA synthesis in the nuclei of malignant cells.  相似文献   

6.
Setkov NA  Eremeev AV 《Tsitologiia》2001,43(6):567-574
Mouse liver regeneration after partial hepatectomy can be considered as a spectacular example of controlled tissue increase. In this study serum-deprived (0.2%) resting and serum-stimulated (10%) proliferating NIH 3T3 mouse fibroblasts were fused with primary hepatocytes isolated from normal (intact) and regenerating adult mouse liver at different times after partial hepatectomy (1-15 days) to elucidate mechanisms of liver cell proliferation cessation at the regeneration end. DNA synthesis was investigated in the nuclei of heterokaryons and non-fused cells using radioautography. Hepatocytes isolated from regenerating liver within 1-12 days following operation did not retard the entry of stimulated fibroblast nuclei into the S-period. In contrast, hepatocytes isolated within 15 days after hepatectomy were found to have inhibitory effect on the entry of stimulated fibroblast nuclei into the S-period in heterokaryons. Preincubation of these hepatocytes with cyclocheximide for 2-4 h abolished their ability to suppress DNA synthesis in stimulated fibroblast nuclei in heterokaryons. Possible reasons of inhibitory effect of differentiated cells in heterokaryos are discussed. The data obtained enable us to conclude that the mechanism of proliferative process control in regenerating hepatocytes seems to be stopped being affected by the intracellular growth inhibitors, whose formation depends on protein synthesis.  相似文献   

7.
Several types of culture cells with limited life span (rat embryo fibroblasts, rat chondrocytes and mouse premacrophages) were found to be unable to induce the reactivation of DNA synthesis in the nuclei of non-dividing differentiated cells (mouse peritoneal resident macrophages) in heterokaryons. By contrast, malignant HeLa cells have this ability. In heterokaryons formed by fusion of mouse macrophages with HE239 cells (Syrian hamster fibroblasts transformed with a ts mutant of the SV40 virus), DNA synthesis in macrophage nuclei is reactivated only at the permissive temperature (33° C), at which viral T antigen is stable. Immortalization of rat chondrocytes by transfection with p53 gene enables to induce DNA synthesis in macrophage nuclei upon fusion. All the evidence indicates that the function of immortalizing oncogenes is necessary for the resumption of the DNA synthesis in macrophage nuclei in heterokaryons.  相似文献   

8.
Fusion of chick erythrocytes with human primary fibroblasts results in the formation of heterokaryons in which the inactive chick nuclei become reactivated. The expression of chick DNA repair functions was investigated by the analysis of the DNA repair capacity after exposure to ultraviolet (UV) irradiation of such heterokaryons obtained after fusion of chick erythrocytes with normal human or xeroderma pigmentosum (XP) cells of complementation groups A, B, C and D. Unscheduled DNA synthesis (UDS) in normal human nuclei in these heterokaryons is suppressed during the first 2–4 days after fusion. The extent and duration of this suppression is positively correlated with the number of chick nuclei in the heterokaryons. Suppression is absent in heterokaryons obtained after fusion of chicken embryonic fibroblasts with XP cells (complementation group A and C).Restoration of DNA repair synthesis is found after fusion in XP nuclei of all complementation groups studied. It occurs rapidly in XP group A nuclei, starting one day after fusion and reaching near normal human levels after 5–8 days. In nuclei of the B, C and D group increased levels of UDS are found 5 days after fusion. At 8 days after fusion the UDS level is about 50% of that found in normal human nuclei. The pattern of UDS observed in the chick nuclei parallels that of the human counterpart in the fusion. A fast complementation pattern is also observed in chick fibroblast-XP group A heterokaryons resulting within 24 h in a UDS level comparable with that in chick fibroblast-normal human heterokaryons. In heterokaryons obtained after fusion of chick fibroblasts with XP group C cells UDS remains at the level of chick cells. These data suggest that reactivation of chick erythrocyte nuclei results in expression of repair functions which are able to complement the defects in the XP complementation groups A, B, C and D.  相似文献   

9.
The heterokaryons of undifferentiated mouse fibroblasts (L and 3T3-4E/TK-) and various cell elements of the rat peritoneal exudate were obtained under the treatment with inactivated Sendai virus. The reactivation of RNA and DNA synthesis in the nuclei of highly differentiated periotoneal exudate cells and the synthesis of thymidine kinase controlled by the nuclei of peritoneal exudate cells were shown to occur in the heterokaryons. During the process of reactivation, the ring-like nuclei of polymorphonuclear leucocytes acquired the form characteristic of the reactivated nuclei of mononuclears. The morphological changes of heparin-containing granules in the cytoplasm of the heterokaryons of mast cells and undifferentiated fibroblasts suggest the degeneration and breakdown of granules.  相似文献   

10.
11.
When 3T3 mouse fibroblasts are made quiescent by serum deprivation and are then fused with tsAF8 hamster fibroblasts synchronized by a combination of high temperature block and hydroxyurea, the nuclei of binucleated heterokaryons which are formed enter S phase asynchronously in media containing low levels of serum. The tsAF8 nuclei of these biphasic heterokaryons enter S phase shortly after fusion, as do the tsAFS nuclei of homokaryons in the same culture. In contrast, the nuclei of the biphasic heterokaryons which have been contributed by quiescent 3T3 enter S phase only after a lag following fusion. This suggests that the quiescent nucleus within the heterokaryon is stimulated by factor(s) from the more advanced cell to re-enter the cell cycle in the absence of serum. In contrast to factors which induce the immediate synthesis of DNA, these factors may be those responsible for the transition of a cell from a non-proliferating to a proliferating state.  相似文献   

12.
Previous studies have shown that the senescent phenotype is dominant with respect to DNA synthesis in fusions between late passage and actively replicating human diploid fibroblasts. Brief postfusion treatments with the protein synthesis inhibitor cycloheximide (CHX) or puromycin have been found to significantly delay (by 24-48 h) the inhibition of entry into DNA synthesis of young nuclei in heterokaryons after fusion with senescent cells. A significant fraction of the senescent nuclei incorporated tritiated thymidine in CHX-treated heterokaryons. The optimal duration of exposure to CHX was 1-3 h immediately after fusion, although treatments beginning as late as 9 h after fusion elevated the heterokaryon labeling index. Prefusion treatments with CHX were without a significant effect. These results are consistent with the interpretation that regulatory cell cycle inhibitor(s) which are dependent upon protein synthesis may be present in heterokaryons between senescent and actively replicating cells.  相似文献   

13.
In heterokaryons, DNA synthesis is reactivated in macrophage nuclei only in the case of fusion with immortal cells. Assuming that telomerase is responsible for reactivation, the effect of its inhibitor azidothymidine (AZT) was studied in heterokaryons of mouse resident peritoneal macrophages and immortal 3T3 Swiss cells. AZT suppressed reactivation of DNA synthesis in macrophage nuclei and had no effect on DNA synthesis in 3T3 Swiss cell nuclei, suggesting that telomere structure is impaired in normal mouse macrophages.  相似文献   

14.
EIn heterokaryons, DNA synthesis is reactivated in macrophage nuclei only in the case of fusion with immortal cells. Assuming that telomerase is responsible for reactivation, the effect of its inhibitor azidothymidine (AZT) was studied in heterokaryons of mouse resident peritoneal macrophages and immortal 3T3 Swiss cells. AZT suppressed reactivation of DNA synthesis in macrophage nuclei and had no effect on DNA synthesis in 3T3 Swiss cell nuclei, suggesting an altered telomere structure in normal mouse macrophages.  相似文献   

15.
Incorporation of [3H]thymidine was observed in both parental nuclei in heterokaryons resulting from the fusion of post-mitotic, "senescent" human diploid cells and a thymidine kinase-deficient murine cell line (3T3der-4E). The senescent nuclei displayed a sudden increase of activity approximately 4--6 hours after fusion. A moderate increase of thymidine incorporation was observed in 3T3der-4E cells cocultivated with but not fused to senescent cells, consistent with metabolic cooperation. Chromosome preparations of cultures fixed approximately 24 hr after fusion revealed the presence of hybrid metaphase cells containing almost the entire human complement. All of the identifiable human chromosomes were bi-armed, suggesting that the senescent nuclei were stimulated to reinitiate replicative DNA synthesis rather than repair synthesis in these heterokaryons.  相似文献   

16.
Cytoplasts were prepared from senescent human diploid fibroblasts. The cytoplasts were fused to young human diploid fibroblasts and DNA synthesis was analyzed in the fusion products. DNA synthesis was inhibited (greater than or equal to 40%) in the senescent cytoplast fusion products when compared to unfused young cells or young cytoplasts fused with young cells. These results are consistent with previous experiments that have shown the blockage of DNA synthesis in both nuclei of heterokaryons from fusions of senescent and young human diploid fibroblast cells. Furthermore, these results support the postulate that senescent cells synthesize a specific substance(s), which is present in the cytoplasm of the senescent cell that inhibits DNA synthesis.  相似文献   

17.
DNA replication in haploid spermatid nuclei has been induced by hybridization of mouse early spermatids to proliferating HeLa cells. Use of polyethylene glycol rather than inactivated Sendai virus as the cell fusion agent was found to be essential to the production of large numbers of heterokaryons containing spermatid nuclei. DNA replication was detected in the heterokaryons by autoradiography. Density of silver grains over spermatid nuclei closely approximated the grain density over labelled HeLa nuclei in the same heterokaryons. Mouse centromeric heterochromatin appeared to be labelled last during the spermatid DNA synthetic period. On the average, HeLa nuclei in heterokaryons began DNA synthesis before spermatid nuclei. Results indicated, however, that DNA synthesis by HeLa nuclei might not be a prerequisite for spermatid DNA synthesis. These experiments demonstrate induction of DNA synthesis in spermatid nuclei, the first major step toward reactivation and recovery of their haploid genome by cell hybridization.  相似文献   

18.
Hepatocyte proliferation in the liver regenerating after partial hepatectomy ceases when the organ is restored, and the mechanism of this phenomenon is still unclear. In the experiments on fusing hepatocytes from the regenerated mouse liver (15 days after partial hepatectomy) with NIH 3T3 mouse fibroblasts, we revealed no DNA synthesis in the nuclei of stimulated fibroblasts in heterokaryons (in the presence of hepatocyte nuclei), whereas DNA synthesis in nonfused cells was undisturbed. In this work, our purpose was to find out whether the suppression of DNA synthesis in heterokaryons could be due to the appearance in hepatocytes of some endogenous factors having an inhibitory effect on proliferation. To this end, hepatocytes from the mouse liver regenerated after partial hepatectomy were treated with cycloheximide for 1–4 h and were then fused with stimulated fibroblasts. Such a short-term treatment of hepatocytes with cycloheximide proved to result in the loss of their ability to inhibit DNA synthesis in the nuclei of stimulated or quiescent fibroblasts in heterokaryons, but hepatocytes proper actively proliferated in the medium with a low serum content (0.2%). When the mice with the liver regenerated after partial hepatectomy were treated with a single sublethal dose of cycloheximide (3 mg/kg), their hepatocytes taken two days after this treatment had no inhibitory effect. Puromycin, another inhibitor of protein synthesis, had the same effect on hepatocytes. These results may be interpreted as evidence that the final stage of liver regeneration after damage is controlled by the factors having a negative effect on cell proliferation.  相似文献   

19.
J Zeuthen 《Humangenetik》1975,27(4):275-301
Cytological and chemical analysis of heterokaryons, the immediate product of cell fusion, offer new possibilities for studying the factors responsible for genetic regulation in eukaryotic cells. In comparison with proliferating cell hybrids the heterokaryon state offers the important advantage that a heterokaryon contains two complete genomes since chromosome loss does not occur, but since segregation and recombination are absent, heterokaryons cannot be used for gene mapping in the same way as proliferating cell hybrids. However, if two cell types carrying different genetic defects are fused the analysis can be used for studies of gene complementation. The biological information obtained with heterokaryons has emphasized the role of the cytoplasm in the control of nuclear activity. When a G1 nucleus is brought into contact with the cytoplasm of an S phase cell the G1 nucleus is stimulated to synthesize DNA. If the nucleus is brought into a mitotic cell, the chromatin of the G1 nucleus is forced to condense into prematurely condensed chromosomes. Inactive nuclei such as the dormant chick erythrocyte nucleus will be stimulated to initiate RNA and DNA synthesis when brought into contact with an active cytoplasm by cell fusion. Specific nuclear proteins have been shown to be responsible for this process of reactivation. Other inactive nuclei such as the nuclei of macrophages and spermatozoa have likewise been shown to be reactivated by fusion with active cells. The degree of activation in all of these cases appears to be determined by the state of the active cell. Inactive nuclei are activated to the same level as the active nucleus but seldom beyond this level. If differentiated cells are fused with undifferentiated cells, usually the differentiated character is lost rapidly after fusion. This observation is in agreement with several studies on proliferating cell hybrids indicating some type of negative control of differentiated properties. In heterokaryons obtained by fusion of cells of a similar type of histotypic differentiation usually coexpression of the differentiated markers is observed.  相似文献   

20.
NIH 3T3 mouse fibroblasts arrested in medium containing 0.5% serum were fused with stimulated cells taken at 2-h intervals after replacing the medium with one containing 10% serum, and DNA synthesis was studied in mono-, homo- and heterokaryons using radioautography with double-labelling technique. The presence of a resting nucleus in a common cytoplasm with a stimulated nucleus from the prereplicative period has an inhibitory effect on the entry of the stimulated nucleus into the S period in medium containing either 0.5 or 10% serum, but ongoing DNA synthesis continues. After a 24-h stay in a common cytoplasm with resting nuclei the stimulated nuclei return into the state of rest. When resting cells are stimulated by 10% serum, their inhibitory effect on stimulated nuclei in heterokaryons still persists, at least for 2 h following stimulation. Preincubation of resting cells with cycloheximide for 4 h abolishes their ability to suppress DNA synthesis in stimulated nuclei.The data suggest that resting cells produce an endogenous inhibitor of cell proliferation, whose formation depends upon the synthesis of protein. When stimulated, the cells can proliferate only after decreasing the level of this inhibitor. The results obtained are consistent with the idea of a negative control of cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号