首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studying patterns of parasite local adaptation can provide insights into the spatiotemporal dynamics of host–parasite coevolution. Many factors, both biotic and abiotic, have been identified that influence parasite local adaptation. In particular, dispersal and population structuring are considered important determinants of local adaptation. We investigated how the shape of the spatial dispersal network within experimental landscapes affected local adaptation of a bacteriophage parasite to its bacterial host. Regardless of landscape topology, dispersal always led to the evolution of phages with broader infectivity range. However, when the spatial dispersal network resulted in spatial variation in the breadth of phage infectivity range, significant levels of parasite local adaptation and local maladaptation were detected within the same landscape using the local versus foreign definition of local adaptation. By contrast, local adaptation was not detected using the home versus away or local versus global definitions of local adaptation. This suggests that spatial dispersal networks may play an important role in driving parasite local adaptation, particularly when the shape of the dispersal network generates nonuniform levels of host resistance or parasite infectivity throughout a species’ range.  相似文献   

2.
The study of evolutionary constraint is an active and important area, and genetic correlations and quantitative genetic techniques more generally have been the dominant approach to constraint. Here, I argue that genetic correlations are not very useful for studying constraint, review recent alternative approaches, and briefly discuss the state of our knowledge of the evolutionary importance of constraints caused by genetic variance and covariance.  相似文献   

3.
In heterogeneous landscapes, the genetic and demographic consequences of dispersal influence the evolution of niche width. Unless pollen is limiting, pollen dispersal does not contribute directly to population growth. However, by disrupting local adaptation, it indirectly affects population dynamics. We compare the effect of pollen versus seed dispersal on the evolution of niche width in heterogeneous habitats, explicitly considering the feedback between maladaptation and demography. We consider two scenarios: the secondary contact of two subpopulations, in distinct, formerly isolated habitats, and the colonization of an empty habitat with dispersal between the new and ancestral habitat. With an analytical model, we identify critical levels of genetic variance leading to niche contraction (secondary contact scenario), or expansion (new habitat scenario). We confront these predictions with simulations where the genetic variance freely evolves. Niche contraction occurs when habitats are very different. It is faster as total gene flow increases or as pollen predominates in overall gene flow. Niche expansion occurs when habitat heterogeneity is not too high. Seed dispersal accelerates it, whereas pollen dispersal tends to retard it. In both scenarios very high seed dispersal leads to extinction. Overall, our results predict a wider niche for species dispersing seeds more than pollen.  相似文献   

4.
5.
An enduring hypothesis for the proximal benefits of sex is that recombination increases the genetic variation among offspring and that this genetic variation increases offspring performance. A corollary of this hypothesis is that mothers that mate multiply increase genetic variation within a clutch and gain benefits due to genetic diversity alone. Many studies have demonstrated that multiple mating can increase offspring performance, but most attribute this increase to sexual selection and the role of genetic diversity has received less attention. Here, we used a breeding design to generate populations of full-siblings, half-siblings, and unrelated individuals of the solitary ascidian Ciona intestinalis. Importantly, we preclude the potentially confounding influences of maternal effects and sexual selection. We found that individuals in populations with greater genetic diversity had greater performance (metamorphic success, postmetamorphic survival, and postmetamorphic size) than individuals in populations with lower genetic diversity. Furthermore, we show that by mating with multiple males and thereby increasing genetic variation within a single clutch of offspring, females gain indirect fitness benefits in the absence of mate-choice. Our results show that when siblings are likely to interact, genetic variation among individuals can decrease competition for resources and generate substantial fitness benefits within a single generation.  相似文献   

6.
Metabolic rates are related to the pace of life. Hence, research into their variability at global scales is of vital importance for several contemporary theories in physiology, ecology, and evolution. Here we evaluated the effect of latitude, climate, primary productivity, habitat aridity, and species trophic habits, on mass‐independent basal metabolic rates (BMRs) for 195 rodent species. The aims of this article were twofold. First, we evaluated the predictive power of different statistical models (via a model selection approach), using a dimensional reduction technique on the exogenous factor matrix to achieve a clear interpretation of the selected models. Second, we evaluated three specific predictions derived from a recently proposed hypothesis, herein called the “obligatory heat” model (OHM), for the evolution of BMR. Obtained results indicate that mean/minimum environmental temperature, rainfall/primary productivity and, finally, species trophic habits are, in this order, the major determinants of mass‐independent BMR. Concerning the mechanistic causes behind this variation, obtained data agree with the predictions of the OHM: (1) mean annual environmental temperature was the best single predictor of residual variation in BMR, (2) herbivorous species have greater mass‐independent metabolic rates, and tend to be present at high‐latitude cold environments, than species in other trophic categories.  相似文献   

7.
MIRAN EPSTEIN 《Bioethics》2010,24(5):226-233
An educated guess about the future of academic bioethics can only be made on the basis of the historical conditions of its success. According to its official history, which attributes its success primarily to the service it has done for the patient, it should be safe at least as long as the patient still needs its service. Like many other academic disciplines, it might suffer under the present economic downturn. However, in the plausible assumption that its social role has not been exhausted yet, it should recover as soon as the economy does. But if, as this paper tries to argue, the success of academic bioethics should be attributed first and foremost to the service it has done for the neoliberal agenda, then its future would have to depend on the fate of the latter. The exact implications of the downturn for the neoliberal agenda are obviously impossible to predict. Among the various options, however, the one of going back to ‘normal’ seems to be the least likely. The other options suggest that the future of academic bioethics, as we have known it, is bleak.  相似文献   

8.
Quantitative genetics has been an immensely powerful tool in manipulating the phenotypes of domesticated plants and animals. Much of the predictive power of quantitative genetics depends on the breeder's control over the context in which phenotype and mating are being expressed. In the natural world, these contexts are often difficult to describe, let alone control. We are left, therefore, with a poor understanding of the limits of quantitative genetics in natural populations. One of the crucial contextual elements for assessing breeding value is the genetic background in which an individual's genes are being assessed. When interacting genes are polymorphic within a population, the degree of mating among relatives can influence the correlations among mates and the predictions of a response to selection. Population structure can strongly influence the degree to which dominance and epistasis influences additive genetic variance and heritability. The extent of inbreeding can also influence heritabilities through its effect on the environmental component of phenotypic variance. The applicability of standard quantitative genetic breeding designs to the measurement of heritabilities in natural populations therefore depends in part on: (1) the mating system of the population; and (2) the importance of gene interactions in determining phenotypic variation. We tested for an effect of mating structure on the partitioning of phenotypic variance and heritability by comparing two breeding designs in a common environment. Both breeding designs used 139 pollen parents taken from mapped locations in a population of Plantago lanceolata L., and crossed to 280 seed parents from the same population. One design was random-mating, the second was biased toward near-neighbor matings to an extent determined by field measure of pollen-mediated gene flow distances. The offspring were grown randomly mixed in a common garden. Nine traits were measured: central corm diameter, number of leaves, area of the most recently fully expanded leaf, density of hairs (cm-2) on the leaves, dry weight per unit leaf area, photosynthetic capacity, transpiration rates, water use efficiency, and reproductive dry weight. Heritabilities and variance components from the two designs were compared using randomization tests. None of the variance components or the heritabilities differed significantly between breeding designs at the 0.05 level. The test could distinguish differences between the heritabilities measured in the two breeding designs as small as 0.11, on average. Thus, for the degree of inbreeding normally exhibited in P. lanceolata there is insufficient gene interaction present within populations to influence the partitioning of variance between additive and nonadditive components or to influence heritability estimates to a meaningful extent. We suggest that for Plantago other sources of variation in heritability estimates, such as maternal effects and genotype × environment interactions, are more important influences than the interaction between inbreeding and gene interactions, and standard heritability estimate based on random breeding is as accurate as one taking the natural mating structure into account.  相似文献   

9.
Recent studies with Drosophila have suggested that there is extensive genetic variability for phenotypic plasticity of body size versus food level. If true, we expect that the outcome of evolution at very different food levels should yield genotypes whose adult size show different patterns of phenotypic plasticity. We have tested this prediction with six independent populations of Drosophila melanogaster kept at extreme densities for 125 generations. We found that the phenotypic plasticity of body size versus food level is not affected by selection or the presence of competitors of a different genotype. However, we document increasing among population variation in phenotypic plasticity due to random genetic drift. Several reasons are explored to explain these results including the possibility that the use of highly inbred lines to make inferences about the evolution of genetically variable populations may be misleading.  相似文献   

10.
Size increments following interindividual fusions appear as a general benefit for organisms, such as coalescing seaweeds and modular invertebrates, with the capacity to fuse with conspecifics. Using sporelings of the red algae Gracilaria chilensis C. J. Bird, McLachlan et E. C. Oliveira and Mazzaella laminarioides (Bory) Fredericq, we measured the growth patterns of sporelings built with different numbers of spores, and the magnitude and persistence of the size increments gained by fusions. Then we studied three morphological processes that could help explain the observed growth patterns. Results indicate that in these algae, coalescence is followed by immediate increase in total size of the coalesced individual and that the increment is proportional to the number of individuals fusing. However, the size increments in sporelings of both species do not last >60 d. Increasing reductions of marginal meristematic cells and increasing abundance of necrotic cells in sporelings built with increasing numbers of initial spores are partial explanations for the above growth patterns. Since sporelings formed by many spores differentiate erect axes earlier and in larger quantities than sporelings formed by one or only a few spores, differentiation, emergence, and growth of erect axes appear as a more likely explanation for the slow radial growth of the multisporic sporelings. Erect axis differentiation involves significant morphological and physiological changes and a shift from radial to axial growth. It is concluded that the growth pattern exhibited by these macroalgae after fusion differs from equivalent processes described for other organisms with the capacity to fuse, such as modular invertebrates.  相似文献   

11.
Interest in the possibility of sexual selection in plants has focused primarily on competition among pollen donors based on the speed of pollen-tube growth. However, when pollen arrives on stigmas, there is the opportunity for both races for access to ovules (exploitation competition) and interference with the germination and growth of pollen from other donors (interference competition). We considered whether this second form of competition might occur among pollen grains of wild radish in two experiments. In the first, interference likely occurred because the amount of pollen germination was less in mixed-donor than in single-donor pollinations. This result was duplicated in a second experiment, which also showed that interference occurred only when pollen grains from different donors were in direct contact with each other. In addition, in the second experiment, the opportunity for interference affected the frequency of seeds sired by different pollen donors. Because pollen loads are often mixed in nature, interference competition among pollen grains may be important in the ecology and evolution of plant reproduction.  相似文献   

12.
Fluctuating environments are expected to select for individuals that have highest geometric fitness over the experienced environments. This leads to the prediction that genetically determined environmental robustness in fitness, and average fitness across environments should be positively genetically correlated to fitness in fluctuating environments. Because quantitative genetic experiments resolving these predictions are missing, we used a full‐sib, half‐sib breeding design to estimate genetic variance for egg‐to‐adult viability in Drosophila melanogaster exposed to two constant or fluctuating temperatures that were above the species’ optimum temperature, during development. Viability in two constant environments (25°C or 30°C) was used to estimate breeding values for environmental robustness of viability (i.e., reaction norm slope) and overall viability (reaction norm elevation). These breeding values were regressed against breeding values of viability at two different fluctuating temperatures (with a mean of 25°C or 30°C). Our results based on genetic correlations show that average egg‐to‐adult viability across different constant thermal environments, and not the environmental robustness, was the most important factor for explaining the fitness in fluctuating thermal environments. Our results suggest that the role of environmental robustness in adapting to fluctuating environments might be smaller than anticipated.  相似文献   

13.
Natural selection can reduce the effective population size of the nonrecombining Y chromosome, whereas local adaptation of Y-linked genes can increase the population divergence and overall intra-species polymorphism of Y-linked sequences. The plant Silene latifolia evolved a Y chromosome relatively recently, and most known X-linked genes have functional Y homologues, making the species interesting for comparisons of X- and Y-linked diversity and subdivision. Y-linked genes show higher population differentiation, compared to X-linked genes, and this might be maintained by local adaptation in Y-linked genes (or low sequence diversity). Here we attempt to test between these causes by investigating DNA polymorphism and population differentiation using a larger set of Y-linked and X-linked S. latifolia genes (than used previously), and show that net sequence divergence for Y-linked sequences (measured by D(a) , also known as δ) is low, and not consistently higher than X-linked genes. This does not support local adaptation, instead, the higher values of differentiation measures for the Y-linked genes probably result largely from reduced total variation on the Y chromosome, which in turn reflect deterministic processes lowering effective population sizes of evolving Y-chromosomes.  相似文献   

14.
The effect of colchicine and vinblastine on cell aggregation was studied, using BHK cells and their transformed derivatives (pyBHK cells). When cells were dissociated with EDTA and the assay was made in a Ca2+-containing medium, the aggregation of transformed cells was prevented by colchicine and vinblastine, whereas the aggregation of normal cells was unaffected. When a Ca2+-free medium was used for aggregation, neither type of cell was influenced by these drugs. BHK and pyBHK cells, dissociated by trypsin in the presence of Ca2+, can aggregate only in the Ca2+-containing medium and the aggregation of both cell types was equally prevented by colchicine and vinblastine. Based on these results, it was concluded that colchicine and vinblastine inhibited the Ca2+-dependent mechanism of cell adhesion, but not the Ca2+-independent one which occurs in the Ca2+-free aggregation medium.  相似文献   

15.
Although the spectral quality of light in the ocean varies considerably with depth, the effect of light quality on different physiological processes in marine phytoplankton remains largely unknown. In cases where experiments are performed under full spectral irradiance, the meaning of these experiments in situ is thus unclear. In this study, we determined whether variations in spectral quality affected the sinking rates of marine diatoms. Semicontinuous batch cultures of Thalassiosira weissflogii (Gru.) Fryxell et Hasle and Ditylum brightwellii (t. West) Grunow in Van Huerk were grown under continuous red, white, or blue light. For T. weissflogii, sinking rates (SETCOL method) were twice as high (~0.2 m·d?1)for cells grown under red light as for cells grown under white or blue light (~0.08 m·d?1), but there were no significant differences in carbohydrate content (~105 fg·μm?3) or silica content (~ 17 fg·μ?3) to account for the difference in sinking rates. Thalassiosira weissflogii grown under blue light was significantly smaller (495 μm3) than cells grown under red light (661 μm3), which could contribute to its reduced sinking rate. However, cells grown under white light were similar in size to those grown under red light but had sinking rates not different from those of cells grown under blue light, indicating the involvement of factors other than size. There were no significant differences in sinking rate (~0.054 m·d?1) or silica content (~20 fg·μm?3) in D. brightwellii grown under red, white, or blue light, but cells grown under red light were significantly (20%) larger and contained significantly (20%) more carbohydrate per μm3 than cells grown under white or blue light. Spectral quality had no consistent effect on sinking rate, biochemical composition (carbohydrate or silica content), or cell volume in the two diatoms studied. The similarity in sinking rate of cells grown under white light compared to those grown under blue light supports the ecological validity of sinking rate studies done under white light.  相似文献   

16.
We tested the hypothesis that positive relationships between sinking rate and irradiance were due to increases in cell density caused by accumulations of carbohydrate. In semicontinuous batch cultures of Thalassiosira weissflogii (Gru.) Fryxell el Hasle and Ditylum brightwellii (t. West) Grunow in Van Huerk, carbohydrate content was varied by growing cells under diel cycles of high or low light. Sinking rate was measured at the end of the light period and the end of the dark period, on live and heat-killed cells. No positive correlations were found between sinking rate (which varied from – 0.060 to 0.13 m·d?1) and carbohydrate content (which varied from 10 to 950 pg · cell?1), indicating that accumulations of carbohydrate did not significantly affect sinking rate. There were no large diel variations in the sinking rate of T. weissflogii, but sinking rates of D. brightwellii grown under high light ranged from being negative (i.e. cells were floating) at the end of the light period to positive at the end of the dark period. This is the first report of positive buoyancy in vegetative D. brightwellii, a phenomenon that may only occur in D. brightwellii grown under diel cycles.  相似文献   

17.
The generation of mutants in model organisms by geneticists and developmental biologists over the last century has occasionally produced phenotypes that are startlingly reminiscent of those seen in other species. Such extreme mutations have generally been dismissed by evolutionary geneticists since the "modern synthesis" as irrelevant to adaptation and speciation. But only in recent years has information on the molecular bases of mutant phenotypes become widely available, and thus work on testing the relevance of such extreme mutations to the generation of phylogenetic diversity has just begun. Here we evaluate whether evolutionary mimics are, in fact, useful for pinpointing the genetic differences that distinguish morphological variants generated during evolution. Examples come from both plants and animals, and range from intraspecific to interordinal taxonomic ranges. The use of mutationally defined candidate genes to predict evolutionary mechanisms has so far been most fruitful in explaining intraspecific variants, where it has been effective in both plants and animals. In several cases these efforts were facilitated or supported by parallel results from quantitative trait loci studies, in which natural alleles controlling continuous variation in developmental model organisms were mapped to mutationally defined genes. However, despite these successes the approach's utility seems to rapidly decay as a function of phylogenetic distance. This suggests that the divergence of developmental genetic systems is great even in closely related organisms and may become intractable at larger distances. We discuss this result in the context of what it teaches us about development, the future prospects of the candidate gene approach, and the historical debate over process in micro- and macroevolution.  相似文献   

18.
Abstract: Past studies suggest that the productivity of common loons (Gavia immer) is lower on acidic lakes in northern Wisconsin, USA, than on neutral lakes. Two hypotheses have been proposed to explain low chick survival: (1) reduced food consumption related to changes in prey communities on lower pH lakes and (2) high mercury (Hg) exposure on lower pH lakes. To address these hypotheses, we quantified prey and Hg consumption by loon chicks on 51 lakes and survival on 55 lakes ranging in pH from 4.9 to 9.5 in northern Wisconsin in 1995 and 1996. The time adults spent providing prey to chicks was unrelated to lake pH but increased with number of chicks and chick age. The number of prey caught per provisioning time declined as lake pH declined because adults made fewer dives, not because success of prey capture declined. Chicks consumed more insect larvae on acidic lakes and more crayfish (Family Astacidae) on neutral lakes. Biomass consumed ranged from an average 1.99 ± 1.05 (SE) g/hr/chick during the first week of a chick's life to a peak of 7.93 ± 1.93 g/hr/chick during the eighth week. Biomass intake per chick body weight (g/Wg/hr) declined with lake acidity but was not related to chick survival (P = 0.25). Although the Hg concentration in the 3 major prey species was positively related to lake acidity and blood Hg level of chicks at a lake, total Hg consumption (μg/Wg/hr) was highest on moderately acidic lakes rather than on the most acidic lakes. We suggest that loon chick survival in northern Wisconsin lakes is more likely related to prey availability than to Hg exposure. When we removed from our analysis 1 lake where 2 11-day-old chicks were killed by predators, chick survival was negatively related to lake acidity but not to biomass or Hg consumption. We discuss mechanisms of Hg excretion that may allow young chicks to survive on acidic lakes in northern Wisconsin despite high Hg intake.  相似文献   

19.
20.
As a critical framework for addressing a diversity of evolutionary and ecological questions, any method that provides accurate and detailed phylogeographic inference would be embraced. What is difficult to understand is the continued use of a method that not only fails, but also has never been shown to work--nested clade analysis is applied widely even though the conditions under which the method will provide reliable results have not yet been demonstrated. This contradiction between performance and popularity is even more perplexing given the recent methodological and computational advances for making historical inferences, which include estimating population genetic parameters and testing different biogeographic scenarios. Here I briefly review the history of criticisms and rebuttals that focus specifically on the high rate of incorrect phylogeographic inference of nested-clade analysis, with the goal of understanding what drives its unfettered popularity. In this case, the appeal of what nested-clade analysis claims to do--not what the method actually achieves--appears to explain its paradoxical status as a favorite method that fails. What a method promises, as opposed to how it performs, must be considered separately when evaluating whether the method represents a valuable tool for historical inference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号