首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
[3H]verapamil binding to muscle tubule membrane has the following properties. KD = 27 ± 5 nM and maximum binding capacity Bmax = 50 ± 5 pmol/mg of protein. A 1 = 1 stoichiometry of binding was found for the ratio of [3H]verapamil versus [3H] nitrendipine binding sites. The dissociation constant found at equilibrium is near that determined from the ratio of the rate constants for association (k1) and dissociation (k?1). Antiarrhythmic drugs like D600, diltiazem and bepridil are competitive inhibitors of [3H]verapamil binding with KD values between 40 and 200 nM. Dihydropyridine analogs are apparent non competitive inhibitors of [3H]verapamil binding with half-maximum inhibition values (K0.5) between 1 and 5 nM.  相似文献   

2.
Synthesis of polyphosphoinositides has been studied in transverse (T-) tubule and sarcoplasmic reticulum (SR) membrane fractions of frog skeletal muscle, following 32P-labeling with [gamma-32P]ATP. Purified SR and T-tubule fractions respectively synthesize 9.4 +/- 0.8 and 71.9 +/- 9.8 pmol PtdInsP/mg per min, indicating nearly 8-fold higher activity of PtdIns kinase in the T-tubules than in the SR. The activity of this enzyme in both membrane systems is maximum at pH 7 and pCa 6. PtdInsP2 is synthesized from the endogenous PtdInsP, only in T-tubule membranes by the action of PtdInsP kinase. This lipid is the most intensely 32P-labeled phosphoinositide (181.7 +/- 9.2 pmol/mg per min) in these membranes. PtdIns kinase in the T-tubule and SR membranes, and PtdInsP kinase in the former are modulated by the free [Mg2+]. Loss of radiolabel from transiently maximal 32P-incorporation in polyphosphoinositides in T-tubule membranes, concomitant with a decrease in the ATP concentration in the incubation buffer, shows the occurrence of phosphoinositidases in these membranes. Under the conditions used, no such activities were evident in SR membranes. Compound 48/80, a mixture of condensation products of N-methyl-p-methoxyphenethylamine with formaldehyde, known to block phosphoinositidase C and phospholipase A2, causes a dose-dependent increase in the 32P-label of PtdInsP, in T-tubule membranes. The synthesis of lyso PtdInsP2, a deacylated form of PtdInsP2 which occurs in nearly equal quantities in both T-tubule and SR membranes, may result from a mechanism independent of phospholipase A2.  相似文献   

3.
The level and proportion of lipids and their fatty acid composition were analyzed in highly purified transverse tubule membranes of amphibian skeletal muscle. Tubule membranes show (a) a higher content of lipids, (b) a higher phospholipid/cholesterol ratio and (c) a different phospholipid composition from other subcellular fractions, such as the light and heavy membranes from sarcoplasmic reticulum, which are similar in lipid profile. Transverse tubule membranes are characterized by a high percentage of phosphatidylserine and sphingomyelin and a low proportion of phosphatidylcholine compared with the other membranes. All three show a high proportion of ethanolamine plasmalogens (50% of the total ethanolamine glycerophospholipid). Transverse tubule membrane lipids contain a high proportion of 20- and 22-carbon polyunsaturated fatty acids, predominantly 20:4, 20:5, 22:5 and 22:6. Arachidonate predominates in phosphatidylinositol, eicosapentaenoate and docosahexaenoate in ethanolamine and serine glycerophospholipids.  相似文献   

4.
The lipid phase of transverse tubule membrane was probed with a variety of fatty acid spin labels. The motion of the probe increased as the distance between the spin label and polar head group increased, in agreement with results reported in other membranes. The value of the order parameter at 37 degrees C for a fatty acid spin label containing the label attached to its fifth carbon atom was closer to values reported for bacterial membranes than to the lower values reported for other mammalian membranes. Order parameters for spin labels containing the label nearer to the center of the bilayer were closer to the values reported in other mammalian membranes than to values reported for bacterial membranes. These results indicate that the lipid segments in the vicinity of the polar head group, and less so those near the center of the bilayer, are motionally more restricted in transverse tubules than in other mammalian membranes. In particular, the lipid phase of the transverse tubule membrane is less fluid than that of the sarcoplasmic reticulum membrane. A possible role of the high cholesterol content of transverse tubules in generating the lower fluidity of its lipid phase is discussed.  相似文献   

5.
A new method for isolating transverse tubule membranes from rabbit skeletal muscle has been developed. This procedure has the advantage of being mild, fast, and producing with good yields a purified membrane fraction. The transverse tubule membranes are purified by a discontinuous sucrose density centrifugation after loading contaminating light sarcoplasmic reticulum vesicles with calcium phosphate in the presence of ATP. Immunofluorescence staining of cryostat sections of rabbit psoas muscle with purified goat antibodies directed against the purified membranes shows that the reacting antigens are distributed at the boundary of the A and I bands of the myofibrils where transverse tubules are localized in mammalian muscle. The purified antibodies showed no cross-reactivity with sarcoplasmic reticulum, nor did they show any fluorescence staining of the muscle plasma membrane, indicating that the isolated membranes indeed originate from the transverse tubules. The transverse tubule fraction has a characteristic protein composition distinguishable from that of sarcoplasmic reticulum, a much higher cholesterol content than that of the crude microsomes, plasma membrane, and sarcoplasmic reticulum, and a phospholipid content about twice as high as that of sarcoplasmic reticulum and plasma membrane. The purified transverse tubule membrane has a distinct phospholipid composition with high contents of sphingomyelin and phosphatidylserine. A Mg2+-activated ATPase characteristic of the transverse tubule fraction undergoes a 20-30-fold increase in specific activity during purification. The levels of Ca2+-ATPase activity present in the purified transverse tubule fraction remain comparable to those of sarcoplasmic reticulum even after extensive removal of the latter.  相似文献   

6.
Summary A microsomal fraction consisting of membranes of transverse tubule origin has been purified by a modification of the calcium-loading procedure initially described by Rosemblatt et al. (J Biol Chem 256:8140–8, 1981). Enzymatic analysis of this fraction shows an enrichment of the vesicles in the Mg++ATPase (basal) activity characteristic of the T-tubules and an absent or very low Ca++-dependant ATPase activity. Stereological analysis of freeze fracture replica of the membranes in the purified fraction indicates that they have a very low density of particles in their P faces and lack the structural manifestation of the caveolae typical of the sarcolemma. Immunological analysis performed with monoclonal antibodies prepared against purified T-tubule and sarcoplasmic reticulum membranes define some T-tubule specific antigens and confirm the morphological and biochemical data regarding the origin and purity of the Ttubule preparation.  相似文献   

7.
The nitrendipine receptor associated with the voltage-dependent calcium channel from rabbit skeletal muscle transverse tubule membranes has been solubilized by detergent extraction. A highly stable solubilized receptor preparation was obtained using 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate as detergent with phospholipids or glycerol present as stabilizing agents. Binding of [3H]nitrendipine to the solubilized receptor was reversible and saturable. At 4 degrees C the equilibrium dissociation constant of the [3H]nitrendipine X receptor complex was 7 +/- 3 nM and was close to that determined from the rate constants of association (k1 = 1.3 10(5) M-1 s-1) and dissociation (k-1 = 1.10 X 10(-3) s-1) of 8.4nM. The nitrendipine concentration that gave a half-maximal inhibition of [3H]nitrendipine binding to the solubilized receptor was 10 nM, which was similar to the values for the dissociation constant determined for the radiolabelled ligand. [3H]Nitrendipine binding to its solubilized receptor was also inhibited by other antiarrythmic drugs, such as bepridil and verapamil, and enhanced by d-cis-diltiazem. Since these drugs are apparent non-competitive inhibitors of [3H]nitrendipine binding it was concluded that these different binding sites are tightly coupled. Sucrose density sedimentation of solubilized nitrendipine receptor resulted in the separation of three [3H]nitrendipine binding activities with apparent sedimentation coefficients of 11.4 S, 14.4 S and 21 S.  相似文献   

8.
D R Ferry  K Kmpf  A Goll    H Glossmann 《The EMBO journal》1985,4(8):1933-1940
The arylazide 1,4-dihydropyridine, [3H]azidopine, binds with high affinity to calcium channels in partially purified guinea-pig skeletal muscle transverse tubule membranes. Upon brief exposure to u.v. light, [3H]azidopine incorporates covalently into transverse tubule membrane proteins, as judged by SDS-PAGE. After alkylation of sulfhydryl groups with N-ethylmaleimide three specifically labelled bands of mol wts. 240 kd, 158 kd and 99 kd are always observed with fluorography after one-dimensional SDS-PAGE. Two other specific bands with mol. wts. of 52 kd and 55 kd, respectively, were sometimes observed. Two-dimensional SDS-PAGE (non-reduced but alkylated in the first dimension and reduced in the second dimension) revealed that the 240-kd band after reduction migrates with a mol. wt. of 99 kd. The 158-kd and 99-kd bands do not change in mobility. It is suggested that [3H]azidopine binds in such a way that the arylazide moiety of the ligand comes into contact with at least three calcium channel components: the A component of mol. wt. 240 kd, the B component of mol. wt. 158 kd and a C component of mol. wt. 99 kd. B and C are non-covalently bonded subunits of the channel, whereas A could be a heterodimer consisting of B and C, linked by disulfide bonds. Subunits of smaller mol. wt. may be also part of the ionic pore. Photolabelling of transverse tubule membranes after high energy irradiation with 10 MeV electrons supports this interpretation.  相似文献   

9.
Highly purified transverse tubule membranes isolated from frog skeletal muscle phosphorylate phosphatidylinositol to phosphatidylinositol 4-phosphate and phosphatidylinositol (4,5)-bisphosphate. The two phosphorylation reactions have different calcium requirements. Phosphorylation of phosphatidylinositol to phosphatidylinositol 4-phosphate, which takes place in both isolated transverse tubules and sarcoplasmic reticulum membrane, is independent of calcium in a range of concentrations from 10(-9) to 10(-6) M, and is progressively inhibited to 10% of the maximal values by increasing calcium to 10(-4) M or higher (K0.5 = 5 X 10(-6) M). In contrast, phosphorylation of phosphatidylinositol 4-phosphate to phosphatidylinositol (4,5)-bisphosphate, a reaction exclusively present in transverse tubule membranes, is maximal at calcium concentrations higher than 2 X 10(-6) M and decreases to 30% of maximal values at calcium concentrations of 2 X 10(-7) M or lower (K0.5 = 10(-6) M). Unlike frog membranes, transverse tubules from rabbit muscle need exogenous phosphatidylinositol 4-phosphate in order to produce the bisphosphate derivative in the same range of calcium concentrations. Inositol (1,4,5)-trisphosphate has been proposed recently as a chemical messenger in excitation-contraction coupling in skeletal muscle. Calcium regulation of the synthesis of phosphatidylinositol (4,5)-bisphosphate, the membrane-bound precursor of inositol (1,4,5)-trisphosphate, might have physiological implications regarding modulation of excitation-contraction coupling by intracellular calcium levels.  相似文献   

10.
Transverse tubule membranes isolated from rabbit skeletal muscle have high levels of a Ca2+- or Mg2+-ATPase with Km values for Ca-ATP or Mg-ATP in the 0.2 mM range, but do not display detectable levels of ATPase activity activated by micromolar [Ca2+]. The transverse tubule enzyme is less temperature or pH dependent than the Ca2+-ATPase of sarcoplasmic reticulum and hydrolyzes equally well ATP, ITP, UTP, CTP, and GTP. Of several ionic, non-ionic, and zwitterionic detergents tested, only lysolecithin solubilizes the transverse tubule membrane while preserving ATPase activity. After extraction of about 50% of the transverse tubule proteins by solubilization with lysolecithin most of the ATPase activity remains membrane bound, indicating that the Ca2+- or Mg2+-ATPase is an intrinsic membrane enzyme. A second extraction of the remaining transverse tubule proteins with lysolecithin results in solubilization and partial purification of the enzyme. Sedimentation of the Ca2+- or Mg2+-ATPase, partially purified by lysolecithin solubilization, through a continuous sucrose gradient devoid of detergent leads to additional purification, with an overall 3- to 5-fold purification factor. The purified enzyme preparation contains two main protein components of molecular weights 107,000 and 30,000. Cholesterol, which is highly enriched in the transverse tubule membrane, copurifies with the enzyme. Transverse tubule membrane vesicles also display ATP-dependent calcium transport which is not affected by phosphate or oxalate. The possibility that the Ca2+- or Mg2+-ATPase is the enzyme responsible for the Ca2+ transport displayed by isolated transverse tubules is discussed.  相似文献   

11.
The organization of lipids surrounding membrane proteins can influence their properties. We have used 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan) to study phase coexistence and phase interconversion in membrane model systems. The fluorescence properties of Laurdan provide a unique possibility to study lipid domains because of the different excitation and emission spectra of this probe in the gel and in the liquid-crystalline phase. The difference in excitation spectra allows photoselection of Laurdan molecules in one of the two phases. Using the difference in emission spectra it is then possible to observe interconversion between the two phases. We have performed experiments in dipalmitoyl-phosphatidylcholine (DPPC) vesicles at different temperatures, in particular in the region of the phase transition, where phase coexistence and interconversion between phases is likely to be maximal. We have also studied vesicles of different lipids and mixtures dilauroyl-phosphatidylcholine (DLPC), DPPC, and 50% DLPC in DPPC. Both steady-state fluorescence intensity and polarization data have been collected. To quantitate phase coexistence and interconversion we have introduced the concept of "generalized polarization." We have also performed time-resolved experiments to directly prove the interconversion process. We have found that in DLPC-DPPC mixtures, at 20 degrees C, phase interconversion occurs in approximately 30-40 ns.  相似文献   

12.
Summary A combination voltage clamp and admittance analysis of single skeletal muscle fibers showed that moderate depolarizations activated a steady-state negative sodium conductance in both the surface and transverse tubular membranes. The density of the voltage-dependent channels was similar for the surface and tubular conductances. The relaxation times associated with the negative conductance were in the millisecond range and markedly potential dependent. The negative tubular conductance has the consequence of increasing the apparent steady-state radial space constant to large values. This occurs because the positiv conductance is counterbalanced by the maintained inward-going sodium current. The enhancement of the space constant by a negative conductance provides a means for the nearly simultaneous activation of excitation-contraction coupling.  相似文献   

13.
The binding of nitrendipine to transverse (T) tubules isolated from skeletal muscle triads is inhibited by dithiothreitol (KI approximately 0.05 mM) and glutathione (KI approximately 3 mM). The t 1/2's of inhibition (18.3 and 11.5 min, respectively) suggest that these hydrophylic reagents act upon the exposed surface of the vesicles. Dithiothreitol shifts the apparent KD for nitrendipine from 8.5 nM to 30 nM without altering the Bmax extrapolated by Scatchard analysis. That T-tubules isolated by disruption of triad junctions are constrained to have the protoplasmic (P) face uniformly exposed was experimentally confirmed. These studies show that a sulfhydryl residue on the P-face of the T-tubule influences the affinity of the receptor for dihydropyridines.  相似文献   

14.
This study has identified specific, stereoselective phenylalkylamine (PAA, (±)- [3H]verapamil) binding sites of low-affinity and high-density in cockroach (Periplaneta americana) nervous system and skeletal muscle membranes. Scatchard transformation of equilibrium binding data revealed a single population of binding sites in both tissues with dissociation constants (Kd) of 273 nM and 377 nM and binding capacities (Bmax) of 23 pmol·mg protein?1 and 37pmol·mg protein?1 for cockroach nervous tissue and skeletal muscle membranes, respectively. The PAA binding site in cockroach nervous tissue membranes was found to be dihydropyridine (DHP)-insensitive, whereas the corresponding site in cockroach skeletal muscle membranes was DHP-sensitive. This property of a DHP-sensitive PAA receptor distinguishes the binding sites identified in cockroach skeletal muscle from those in cockroach nervous tissue and indicates that pharmacologically distinct putative Ca2+ channel subtypes are present in insect nerve and muscle. © 1993 Wiley-Liss, Inc.  相似文献   

15.
The relationship between the molecular composition and organization of the triad junction and the development of excitation-contraction (E-C) coupling was investigated in cultured skeletal muscle. Action potential-induced calcium transients develop concomitantly with the first expression of the dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR), which are colocalized in clusters from the time of their earliest appearance. These DHPR/RyR clusters correspond to junctional domains of the transverse tubules (T-tubules) and sarcoplasmic reticulum (SR), respectively. Thus, at first contact T-tubules and SR form molecularly and structurally specialized membrane domains that support E-C coupling. The earliest T-tubule/SR junctions show structural characteristics of mature triads but are diverse in conformation and typically are formed before the extensive development of myofibrils. Whereas the initial formation of T-tubule/SR junctions is independent of association with myofibrils, the reorganization into proper triads occurs as junctions become associated with the border between the A band and the I band of the sarcomere. This final step in triad formation manifests itself in an increased density and uniformity of junctions in the cytoplasm, which in turn results in increased calcium release and reuptake rates.  相似文献   

16.
Microsomes were isolated from white rabbit muscle and separated into several fractions by centrifugation in a discontinuous sucrose density gradient. Four membrane fractions were obtained namely surface membrane, light, intermediate and heavy sarcoplasmic reticulum. The origin of these microsomal vesicles was investigated by studying biochemical markers of sarcoplasmic reticulum and surface and T-tubular membranes. The transverse tubule derived membranes were further purified by using a discontinuous sucrose density gradient after loading contaminating light sarcoplasmic reticulum vesicles with calcium phosphate in the presence of ATP. All membrane preparations displayed acetylcholinesterase activity (AChE, EC 3.1.1.7), this being relatively more concentrated in T-tubule membranes than in those derived from sarcoplasmic reticulum. The membrane-bound AChE of unfractioned microsomes notably increased its activity by aging, treatment with detergents and low trypsin concentrations indicating that the enzyme is probably attached to the membrane in an occluded form, the unconstrained enzyme displaying higher activity than the vesicular acetylcholinesterase.Sedimentation analysis of Triton-solubilized AChE from different membrane fractions revealed enzymic multiple forms of 13.5S, 9–10S and 4.5–4.8S, the lightest form being the predominant one in all membrane preparations. Therefore, in both sarcoplasmic reticulum and T-tubule membrane the major component of AChE appears to be a membrane-bound component, probably a G1 form.  相似文献   

17.
Calmodulin (CaM) is a regulator of the calcium release channel (ryanodine receptor) of the sarcoplasmic reticulum of skeletal and cardiac muscle. The locations where CaM binds on the surface of the skeletal muscle ryanodine receptor were determined by electron microscopy. Wheat germ CaM was labeled specifically at Cys-27 with a maleimide derivative of a 1.4-nm-diameter gold cluster, and the gold-cluster-labeled CaM was bound to the purified ryanodine receptor. The complexes were imaged in the frozen-hydrated state by cryoelectron microscopy with no stains or fixatives present. In the micrographs, gold clusters were frequently observed near the corners of the square-shaped images of the ryanodine receptors. In some images, all four corners of the receptor were occupied by gold clusters. Image averaging allowed the site of CaM binding to be determined in two dimensions with an estimated precision of 4 nm. No changes were apparent in the quaternary structure of the ryanodine receptor upon binding CaM to the resolution attained, about 3 nm. Side views of the ryanodine receptor, in which the receptor is oriented approximately perpendicular to the much more frequent fourfold symmetric views, were occasionally observed, and showed that the CaM binding site is most likely on the surface of the receptor that faces the cytoplasm. We conclude that the CaM binding site is at least 10 nm from the transmembrane channel of the receptor and, consequently, that long-range conformational changes are involved in the modulation of the calcium channel activity of the receptor by CaM.  相似文献   

18.
The receptor sites for 1,4-dihydropyridine (DHP) calcium channel ligands were identified and pharmacologically characterized in partially purified canine coronary artery smooth muscle (CSM) membranes (purification factor for 1,4-DHPs 2.8 and 2.2 respectively) using Ca2+ channel agonist (-)-S-[3H]BAYK 8644 and antagonist (+)-[3H]PN 200-110 as radioligands. The beta-adrenergic receptors were identified with (-)-3-[125I]iodocyanopindolol (ICYP). Specific binding of 1,4-DHPs and ICYP to membrane fraction was saturable, reversible and of both high and low affinity. The Kd for 1,4-DHP Ca2+ channel agonist was 0.59 +/- 0.05 and for antagonist 0.35 +/- 0.06 nmol/l and for low affinity binding sites Kd = 9.0 +/- 0.18 and 18.0 +/- 1.1 nmol/l. The high affinity 1,4-DHP binding (Bmax = 265 +/- 21 and 492 +/- 12 fmol/mg protein), showed stereoselectivity, temperature-dependence as well as pharmacological specificity: isoprenaline- and GTP-sensitivity, positive modulation with dilthiazem and negative modulation with verapamil, that is, properties characteristic of 1,4-DHP receptor sites on L-type Ca2+ channels. The low affinity binding sites were characterized as nonselective, temperature independent, dipyridamol-sensitive and represented a nucleoside transporter. The proportion of high affinity binding sites identified in the CSM membranes was 1.85 : 1.0 in favour of the antagonist. Results obtained with [125I]omega Conotoxin GVI A demonstrated that CSM membrane fractions isolated from median layers of coronary artery were devoid of substantial contamination with fragments of neuronal cells.  相似文献   

19.
《The Journal of cell biology》1988,107(6):2587-2600
The architecture of the junctional sarcoplasmic reticulum (SR) and transverse tubule (T tubule) membranes and the morphology of the two major proteins isolated from these membranes, the ryanodine receptor (or foot protein) and the dihydropyridine receptor, have been examined in detail. Evidence for a direct interaction between the foot protein and a protein component of the junctional T tubule membrane is presented. Comparisons between freeze-fracture images of the junctional SR and rotary-shadowed images of isolated triads and of the isolated foot protein, show that the foot protein has two domains. One is the large hydrophilic foot which spans the junctional gap and is composed of four subunits. The other is a hydrophobic domain which presumably forms the SR Ca2+-release channel and which also has a fourfold symmetry. Freeze-fracture images of the junctional T tubule membranes demonstrate the presence of diamond-shaped clusters of particles that correspond exactly in position to the subunits of the feet protein. These results suggest the presence of a large junctional complex spanning the two junctional membranes and intervening gap. This junctional complex is an ideal candidate for a mechanical coupling hypothesis of excitation-contraction coupling at the triadic junction.  相似文献   

20.
We have studied mu-conotoxin (mu-CTX) block of rat skeletal muscle sodium channel (rSkM1) currents in which single amino acids within the pore (P-loop) were substituted with cysteine. Among 17 cysteine mutants expressed in Xenopus oocytes, 7 showed significant alterations in sensitivity to mu-CTX compared to wild-type rSkM1 channel (IC50 = 17.5 +/- 2.8 nM). E758C and D1241C were less sensitive to mu-CTX block (IC50 = 220 +/- 39 nM and 112 +/- 24 nM, respectively), whereas the tryptophan mutants W402C, W1239C, and W1531C showed enhanced mu-CTX sensitivity (IC50 = 1.9 +/- 0.1, 4.9 +/- 0.9, and 5.5 +/- 0.4 nM, respectively). D400C and Y401C also showed statistically significant yet modest (approximately twofold) changes in sensitivity to mu-CTX block compared to WT (p < 0.05). Application of the negatively charged, sulfhydryl-reactive compound methanethiosulfonate-ethylsulfonate (MTSES) enhanced the toxin sensitivity of D1241C (IC50 = 46.3 +/- 12 nM) while having little effect on E758C mutant channels (IC50 = 199.8 +/- 21.8 nM). On the other hand, the positively charged methanethiosulfonate-ethylammonium (MTSEA) completely abolished the mu-CTX sensitivity of E758C (IC50 > 1 microM) and increased the IC50 of D1241C by about threefold. Applications of MTSEA, MTSES, and the neutral MTSBN (benzyl methanethiosulfonate) to the tryptophan-to-cysteine mutants partially or fully restored the wild-type mu-CTX sensitivity, suggesting that the bulkiness of the tryptophan's indole group is a determinant of toxin binding. In support of this suggestion, the blocking IC50 of W1531A (7.5 +/- 1.3 nM) was similar to W1531C, whereas W1531Y showed reduced toxin sensitivity (14.6 +/- 3.5 nM) similar to that of the wild-type channel. Our results demonstrate that charge at positions 758 and 1241 are important for mu-CTX toxin binding and further suggest that the tryptophan residues within the pore in domains I, III, and IV negatively influence toxin-channel interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号