首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reversed-phase high-performance liquid chromatographic method using a mobile phase of acetonitrile-methanol-trifluoroacetic acid-water (16.1:7.2:0.1:76.6, v/v/v/v) at a flow rate of 1.0 ml min(-1) on a LiChrospher RP-18 column with UV (254 nm) detection has been developed for the separation of sulfadoxine and its metabolite N-acetyl sulfadoxine in plasma. No interferences due to endogenous compounds or common antimalarial drugs were noticed. The limit of detection for sulfadoxine and N-acetyl sulfadoxine was 0.01 microg ml(-1) with a signal-to-noise ratio of 5:1 while the limit of quantification was 2.5 microg ml(-1). Intra-day mean relative standard deviations (RSD's) for sulfadoxine and N-acetyl sulfadoxine were 2.6 and 2.8%, respectively, while mean inter-day RSD's for sulfadoxine and N-acetyl sulfadoxine were 2.4 and 2.8%, respectively. Extraction recoveries averaged 90.6% for sulfadoxine and 86.9% for N-acetyl sulfadoxine. The method was applied for the assay of sulfadoxine and its metabolite N-acetyl sulfadoxine in plasma from Plasmodium falciparum malaria patients. Mean plasma sulfadoxine concentrations on day 2 (51 h) from samples collected from sensitive and resistant P. falciparum patients treated with three tablets of Fansidar were 62.8 and 60.5 microg ml(-1), respectively. Mean ratio of N-acetyl sulfadoxine to sulfadoxine was 9.1% for responders and 13.9% for non-responders which revealed that higher amounts of the metabolite N-acetyl sulfadoxine were present in non-responders. The method described should find an application in the therapeutic monitoring of malaria patients.  相似文献   

2.
We have developed a sensitive, selective and reproducible reversed-phase HPLC method with ultraviolet detection (340 nm) for the simultaneous quantification of amodiaquine (AQ) and its major metabolite, desethylamodiaquine (AQm) in a small volume (200 microl) of whole blood spotted on filter paper. The method involves liquid-liquid extraction with diethyl ether followed by elution from a reversed-phase phenyl column with an acidic (pH 2.8) mobile phase (25 mM KH2PO4-methanol; 80:20% (v/v) +1% (v/v) triethylamine). Calibration curves in spiked whole blood were linear from 100-2500 ng/ml (r2 > or = 0.99) for AQ and 200-2500 ng/ml (r2 > or = 0.99) for AQm. The limit of detection was 5 ng for AQ and 10 ng for AQm. The relative recovery at 150 ng/ml of AQ (n = 6) was 84.0% and at 300 ng/ml of AQm the relative recovery was 74.3%. The intra-assay coefficients of variation at 150, 600 and 2250 ng/ml of AQ and 300, 600 and 2250 ng/ml of AQm were 7.7, 8.9 and 6.2% (AQ) and 10.1, 5.4 and 3.9% (AQm), respectively. The inter-assay coefficient of variation at 150, 600 and 2250 ng/ml of AQ and 300, 600 and 2250 ng/ml of AQm were 5.2, 8.1 and 6.9% (AQ) and 3.3, 2.3 and 4.6% (AQm). There was no interference from other commonly used antimalarial and antipyretic drugs (chloroquine, quinine, sulfadoxine, pyrimethamine, artesunate, acetaminophen and salicylate). The method is particularly suitable for pharmacokinetic studies in settings where facilities for storing blood/plasma samples are not available.  相似文献   

3.
Voriconazole is a widely used triazole antifungal agent with a broad spectrum including Aspergillus species. A simple, sensitive and selective high-performance liquid chromatography method for the determination of voriconazole in human plasma and saliva was developed. Drug and internal standard (UK-115 794) were extracted from alkaline plasma and saliva with n-hexane-ethyl acetate (3:1, v/v) and analyzed on a Luna C 18 column with fluorimetric detection set at excitation and emission wavelengths of 254 and 372 nm, respectively. The calibration curve was linear through the range of 0.1-10 microg/ml using a 0.3 ml sample volume. The intra- and inter-day precisions were all below 6.1% for plasma and below 9.1% for saliva. Accuracies ranged from 94 to 109% for both matrices. Mean recovery was 86+/-4% for voriconazole. The method showed acceptable values for precision, recovery and sensitivity and is well suited for routine analysis work and for pharmacokinetic studies.  相似文献   

4.
High performance liquid chromatographic (HPLC) methods were validated for the determination of aripiprazole (OPC-14597, Abilify) in rat plasma and brain. Separation was by Nova-pak phenyl column; flow rate, 1.0 ml/min; mobile phase, acetonitrile-methanol-20 mM sodium sulfate-acetic acid (27:25:48:1, v/v/v/v); UV detection at 254 nm. Reproducibility in plasma and brain showed excellent precision (within 7.8 and 10.6%) and accuracy (96.0-102.4% and 99.0-108.7%) with calibration curve ranges 10.0-2000 ng/ml and 30.0-6000 ng/g, respectively. Validated HPLC methods were successfully applied to pharmacokinetic study of aripiprazole in rats, demonstrating brain concentrations after oral administration five times higher than plasma concentrations.  相似文献   

5.
A simple and sensitive column-switching high-performance liquid chromatographic method was developed for the simultaneous determination of omeprazole and its two main metabolites, 5-hydroxyomeprazole and omeprazole sulfone, in human plasma. Omeprazole, its two metabolites and lansoprazol as an internal standard were extracted from 1 ml of alkalinized plasma sample using diethyl ether-dichloromethane (45:55, v/v). The extract was injected into a column I (TSK-PW precolumn, 10 microm, 35 mm x 4.6 mm i.d.) for clean-up and column II (Inertsil ODS-80A column, 5 microm, 150 mm x 4.6mm i.d.) for separation. The mobile phase consisted of phosphate buffer-acetonitrile (92:8 v/v, pH 7.0) for clean-up and phosphate buffer-acetonitrile-methanol (65:30:5 v/v/v, pH 6.5) for separation, respectively. The peak was detected with an ultraviolet detector set at a wavelength of 302 nm, and total time for chromatographic separation was approximately 25 min. The validated concentration ranges of this method were 3-2000 ng/ml for omeprazole, 3-50 ng/ml for 5-hydroxyomeprazole and 3-1000 ng/ml for omeprazole sulfone. Mean recoveries were 84.3% for omeprazole, 64.3% for 5-hydroxyomeprazole and 86.1% for omeprazole sulfone. Intra- and inter-day coefficient variations were less than 5.1 and 6.6% for omeprazole, 4.6 and 5.0% for 5-hydroxyomeprazole and 4.6 and 4.9% for omeprazole sulfone at the different concentrations. The limits of quantification were 3 ng/ml for omeprazole and its metabolites. This method was suitable for use in pharmacokinetic studies in human volunteers, and provides a useful tool for measuring CYP2C19 activity.  相似文献   

6.
A simple and sensitive method was developed for determination of irbesartan by liquid chromatography with fluorescence detection. Irbesartan and losartan (I.S.) in human plasma were extracted using diethyl ether:dichloromethane (7:3, v/v) followed by back extraction with 0.05 M sodium hydroxide. Neutralized samples were analyzed using 0.01 M potassium dihydrogen phosphate buffer (containing 0.07% triethylamine as peak modifier, pH was adjusted with orthophosphoric acid to pH 3.0) and acetonitrile (66:34, v/v). Chromatographic separation was achieved on an ODS-C-18 column (100 mm x 4.6 mm i.d., particle size 5 microm) using isocratic elution (at flow rate 1.25 ml/min). The peak was detected using a fluorescence detector set at Ex 259 nm and Em 385 nm, and the total time for a chromatographic separation was approximately 13 min. The validated quantitation ranges of this method were 15-4000 ng/ml with coefficients of variation between 0.75 and 12.53%. Mean recoveries were 73.3-77.1% with coefficients of variation of 3.7-6.3%. The between- and within-batch precision were 0.4-2.2% and 0.9-6.2%, respectively. The between- and within-batch relative errors (bias) were (-5.5) to 0.9% and (-0.6) to 6.9%, respectively. Stability of irbesartan in plasma was >89%, with no evidence of degradation during sample processing and 60 days storage in a deep freezer at -70 degrees C. This validated method is sensitive and simple with between-batch precision of <3% and can be used for pharmacokinetic studies.  相似文献   

7.
A HPLC method with automated column switching and UV detection is described for the simultaneous determination of retinol and major retinyl esters (retinyl palmitate, retinyl stearate, retinyl oleate and retinyl linoleate) in human plasma. Plasma (0.2 ml) was deproteinized by adding ethanol (1.5 ml) containing the internal standard retinyl propionate. Following centrifugation the supernatant was directly injected onto the pre-column packed with LiChrospher 100 RP-18 using 1.2% ammonium acetate–acetic acid–ethanol (80:1:20, v/v) as mobile phase. The elution strength of the ethanol containing sample solution was reduced by on-line supply of 1% ammonium acetate–acetic acid–ethanol (100:2:4, v/v). The retained retinol and retinyl esters were then transferred to the analytical column (Superspher 100 RP-18, endcapped) in the backflush mode and chromatographed under isocratic conditions using acetonitrile–methanol–ethanol–2-propanol (1:1:1:1, v/v) as mobile phase. Compounds of interest were detected at 325 nm. The method was linear in the range 2.5–2000 ng/ml with a limit of quantification for retinol and retinyl esters of 2.5 ng/ml. Mean recoveries from plasma were 93.4–96.5% for retinol (range 100–1000 ng/ml) and 92.7–96.0% for retinyl palmitate (range 5–1000 ng/ml). Inter-assay precision was ≤5.1% and ≤6.3% for retinol and retinyl palmitate, respectively. The method was successfully applied to more than 2000 human plasma samples from clinical studies. Endogenous levels of retinol and retinyl esters determined in female volunteers were in good accordance with published data.  相似文献   

8.
An enantioseparation of the antipsychotic drug butaclamol in human plasma by high-performance liquid chromatography (HPLC) with solid phase extraction is presented. The separation was achieved on the vancomycin macrocyclic antibiotic chiral stationary phase (CSP) Chirobiotic V with a polar ionic mobile phase (PIM) consisting of methanol : glacial acetic acid : triethylamine (100:0.2:0.05, v/v/v) at a flow rate of 0.5 ml/min. The detection wavelength was 262 nm. Bond Elut C18 solid phase extraction cartridges were used in the sample preparation of butaclamol samples from plasma. The method was validated over the range of 100-3,000 ng/ml for each enantiomer concentration (R(2) > 0.999). Recoveries for (+)- and (-)-butaclamol were in the range of 94-104% at the 300-2,500 ng/ml level. The method proved to be precise (within-run precision ranged from 1.1-2.6% and between-run precision ranged from 1.9-3.2%) and accurate (within-run accuracies ranged from 1.5-5.8% and between-run accuracies ranged from 2.7-7.7%). The limit of quantitation (LOQ) and limit of detection (LOD) for each enantiomer in human plasma were 100 ng/ml and 50 ng/ml, respectively.  相似文献   

9.
We have developed a sensitive, selective and reproducible reversed-phase high-performance liquid chromatography method coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS) for the simultaneous quantification of midazolam (MDZ) and its major metabolite, 1'-hydroxymidazolam (1'-OHM) in a small volume (200 microl) of human plasma. Midazolam, 1'-OHM and 1'-chlordiazepoxide (internal standard) were extracted from alkalinised (pH 9.5) spiked and clinical plasma samples using a single step liquid-liquid extraction with 1-chlorobutane. The chromatographic separation was performed on a reversed-phase HyPURITY Elite C18 (5 microm particle size; 100 mm x 2.1mm i.d.) analytical column using an acidic (pH 2.8) mobile phase (water-acetonitrile; 75:25% (v/v) containing formic acid (0.1%, v/v)) delivered at a flow-rate of 200 microl/min. The mass spectrometer was operated in the positive ion mode at the protonated-molecular ions [M+l]+ of parent drug and metabolite. Calibration curves in spiked plasma were linear (r2 > or = 0.99) from 15 to 600 ng/ml (MDZ) and 5-200 ng/ml (1'-OHM). The limits of detection and quantification were 2 and 5 ng/ml, respectively, for both MDZ and 1'-OHM. The mean relative recoveries at 40 and 600 ng/ml (MDZ) were 79.4+/-3.1% (n = 6) and 84.2+/-4.7% (n = 8), respectively; for 1'-OHM at 30 and 200 ng/ml the values were 89.9+/-7.2% (n = 6) and 86.9+/-5.6% (n = 8), respectively. The intra-assay and inter-assay coefficients of variation (CVs) for MDZ were less than 8%, and for 1'-OHM were less than 13%. There was no interference from other commonly used antimalarials, antipyretic drugs and antibiotics. The method was successfully applied to a pharmacokinetic study of MDZ and 1'-OHM in children with severe malaria and convulsions following administration of MDZ either intravenously (i.v.) or intramuscularly (i.m.).  相似文献   

10.
A simple high-performance liquid chromatographic method was developed for the determination of ranitidine in human plasma. Prior to analysis, ranitidine and the internal standard (metoprolol) were extracted from alkalinized plasma samples using dichloromethane. The mobile phase was 0.05 M potassium dihydrogenphosphate–acetonitrile (88:12, v/v) adjusted to pH 6.5. Analysis was run at a flow-rate of 1.3 ml/min and at a detection wavelength of 229 nm. The method is sensitive with a detection limit of 1 ng/ml at a signal-to-noise ratio of 3:1, while the quantification limit was set at 15 ng/ml. The calibration curve was linear over a concentration range of 15–2000 ng/ml. Mean recovery value of the extraction procedure was about 90%, while the within-day and between-day coefficients of variation and percent error values of the assay method were all less than 15%.  相似文献   

11.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantification of donepezil, a centrally and selectively acting acetyleholinesterase inhibitor, in human plasma. After sample alkalinization with 0.5 ml of NaOH (0.1 M), the test compound was extracted from I ml of plasma using isopropanol-hexane (3:97, v/v). The organic phase was back-extracted with 75 microl of HCl (0.1 M) and 50 microl of the acid solution was injected into a C18 STR ODS-II analytical column (5 microm, 150x4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.02 M, pH 4.6), perchloric acid (6 M) and acetonitrile (59.5:0.5:40, v/v) and was delivered at a flow-rate of 1.0 ml/min at 40 degrees C. The peak was detected using a UV detector set at 315 nm, and the total time for a chromatographic separation was approximately 8 min. The method was validated for the concentration range 3-90 ng/ml. Mean recoveries were 89-98%. Intra- and inter-day relative standard deviations were less than 7.3 and 7.6%, respectively, at the concentrations ranging from 3 to 90 ng/ml. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it could be successfully applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

12.
This paper describes a method of determining clioquinol levels in hamster plasma and tissue by means of HPLC and electrochemical detection. Clioquinol was separated on a Nucleosil C18 300 mm x 3.9 mm i.d. 7 microm column at 1 ml/min using a phosphate/citrate buffer 0.1M (400 ml) with 600 ml of a methanol:acetonitrile (1:1, v/v) mobile phase. The retention times of clioquinol and the IS were, respectively, 11.6 and 8.1 min; the quantitation limit (CV>8%) was 5 ng/ml in plasma and 10 ng/ml in tissues. The intra- and inter-assay accuracies of the method were more than 95%, with coefficients of variation between 3.0 and 7.7%, and plasma and tissue recovery rates of 72-77%. There was a linear response to clioquinol 5-2000 ng/ml in plasma, and 10-1000 ng/g in tissues. The method is highly sensitive and selective, makes it possible to study the pharmacokinetics of plasma clioquinol after oral administration and the distribution of clioquinol in tissues, and could be used to monitor plasma clioquinol levels in humans.  相似文献   

13.
A sensitive and selective high-performance liquid chromatographic method was developed for the determination of itraconazole and its active metabolite, hydroxyitraconazole, in human plasma. Prior to analysis, both compounds together with the internal standard were extracted from alkalinized plasma samples using a 3:2 (v/v) mixture of 2,2,4-trimethylpentane and dichloromethane. The mobile phase comprised 0.02 M potassium dihydrogen phosphate-acetonitrile (1:1, v/v) adjusted to pH 3.0. Analysis was run at flow-rate of 0.9 ml/min with excitation and emission wavelengths set at 260 and 365 nm, respectively. Itraconazole was found to adsorb on glass or plastic tubes, but could be circumvented by prior treating the tubes using 10% dichlorodimethylsilane in toluene. Moreover, rinsing the injector port with acetonitrile helped to overcome any carry-over effect. This problem was not encountered with hydroxyitraconazole. The method was sensitive with limit of quantification of 3 ng/ml for itraconazole and 6 ng/ml for hydroxyitraconazole. The calibration curve was linear over a concentration range of 2.8-720 ng/ml for itraconazole and 5.6-720 ng/ml for the hydroxy metabolite. Mean recovery value of the extraction procedure for both compounds was about 85%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 15%. Hence, the method is suitable for use in pharmacokinetic and bioavailability studies of itraconazole.  相似文献   

14.
A simple and sensitive reversed-phase isocratic HPLC method for the determination of albendazole and its metabolites has been developed. The mobile phase consisting of acetonitrile-water-perchloric acid (70%) (30:110:0.06 (v/v/v)) was pumped at a flow rate of 0.80 ml/min on a 5 microm, reverse phase, Discovery RPamide C16 column with UV detection at 290 nm. The calibration graphs were linear in the range of 0.05- 1 microg/ml for albendazole, albendazole sulphoxide and albendazole sulphone. The limit of quantification was 50 ng/ml for albendazole, 25 ng/ml for albendazole sulphoxide and 30 ng/ml for albendazole sulphone. The within-day and day-to-day coefficient of variation averaged 4.98 and 6.95% for albendazole, 3.83 and 6.83% for albendazole sulphoxide and 3.44 and 5.51% for albendazole sulphone, respectively. The mean extraction recoveries of albendazole, albendazole sulphoxide and albendazole sulphone were 79.25, 93.03 and 88.78%, respectively. The method was applied to determine the plasma levels of albendazole sulphoxide in endemic normals administered with albendazole during pharmacokinetic studies.  相似文献   

15.
A sensitive and relatively rapid reversed-phase HPLC method was applied to the enantiomeric separation of tramadol and its two main metabolites, O-desmethyltramadol (M1) and N-desmethyltramadol (M2) in plasma samples. Chromatography was performed on an AGP column containing alpha1-acid glycoprotein as chiral selector with a mobile phase of 30 mM diammonium hydrogen phosphate buffer-acetonitrile-triethylamine (98.9:1:0.1, v/v), adjusted to pH 7 by phosphoric acid, and a flow rate of 0.5 ml/min. The fluorescence of analytes was detected at excitation and emission wavelengths of 200 and 301 nm, respectively. The sample preparation was a simple extraction with ethyl acetate using fluconazol as internal standard (IS). The enantiomers of all analytes and IS peaks eluted within 32 min, without any endogenous interference. The calibration curves were linear (r(2) > 0.993) in the concentration range of 2-200, 2.5-100 and 2.5-75 ng/ml for tramadol, M1, and M2 enantiomers, respectively. The within- and between-day variation determined by the measurement of quality control samples at four tested concentrations, showed acceptable values. The lower limit of quantitation was 2 ng/ml for tramadol enantiomers and 2.5 ng/ml for M1 or M2 enantiomers. Mean recoveries of enantiomers from plasma samples were > 81% for all analytes. The procedure was applied to assess the pharmacokinetics of the enantiomers of tramadol and its two main metabolites following oral administration of single 100-mg doses to healthy volunteers.  相似文献   

16.
An HPLC method for determining quercetin in human plasma and urine is presented for application to the pharmacokinetic study of rutin. Isocratic reversed-phase HPLC was employed for the quantitative analysis by using kaempferol as an internal standard. Solid-phase extraction was performed on an Oasis HLB cartridge (>95% recovery). The HPLC assay was carried out using a Luna ODS-2 column (150 x 2.1 mm I.D., 5 microm particle size). The mobile phase was acetonitrile-10 mM ammonium acetate solution containing 0.3 mM EDTA-glacial acetic acid, 29:70:1 (v/v, pH 3.9) and 26:73:1 (v/v, pH 3.9) for the determination of plasma and urinary quercetin, respectively. The flow-rate was 0.3 ml/min and the detection wavelength was set at 370 nm. Calibration of the overall analytical procedure gave a linear signal (r>0.999) over a concentration range of 4-700 ng/ml of quercetin in plasma and 20-1000 ng/ml of quercetin in urine. The lower limit of quantification was approximately 7 ng/ml of quercetin in plasma and approximately 35 ng/ml in urine. The detection limit (defined at a signal-to-noise ratio of about 3) was approximately 0.35 ng/ml in plasma and urine. A preliminary experiment to investigate the plasma concentration and urinary excretion of quercetin after oral administration of 200 mg of rutin to a healthy volunteer demonstrated that the present method was suitable for determining quercetin in human plasma and urine.  相似文献   

17.
The combination of two sensitive, selective and reproducible reversed phase liquid chromatographic (RP-HPLC) methods was developed for the determination of artesunate (AS), its active metabolite dihydroartemisinin (DHA) and mefloquine (MQ) in human plasma. Solid phase extraction (SPE) of the plasma samples was carried out on Supelclean LC-18 extraction cartridges. Chromatographic separation of AS, DHA and the internal standard, artemisinin (QHS) was obtained on a Hypersil C4 column with mobile phase consisting of acetonitrile-0.05 M acetic acid adjusted to pH 5.2 with 1.0M NaOH (42:58, v/v) at the flow rate of 1.50 ml/min. The analytes were detected using an electrochemical detector operating in the reductive mode. Chromatography of MQ and the internal standard, chlorpromazine hydrochloride (CPM) was carried out on an Inertsil C8-3 column using methanol-acetonitrile-0.05 M potassium dihydrogen phosphate adjusted to pH 3.9 with 0.5% orthophosphoric acid (50:8:42, v/v/v) at a flow rate of 1.00 ml/min with ultraviolet detection at 284 nm. The mean recoveries of AS and DHA over a concentration range of 30-750 ng/0.5 ml plasma and MQ over a concentration of 75-1500 ng/0.5 ml plasma were above 80% and the accuracy ranged from 91.1 to 103.5%. The within-day coefficients of variation were 1.0-1.4% for AS, 0.4-3.4% for DHA and 0.7-1.5% for MQ. The day-to-day coefficients of variation were 1.3-7.6%, 1.8-7.8% and 2.0-3.4%, respectively. Both the lower limit of quantifications for AS and DHA were at 10 ng/0.5 ml and the lower limit of quantification for MQ was at 25 ng/0.5 ml. The limit of detections were 4 ng/0.5 ml for AS and DHA and 15 ng/0.5 ml for MQ. The method was found to be suitable for use in clinical pharmacological studies.  相似文献   

18.
Ebastine (CAS 90729-43-4) is an antiallergic agent which selectively and potently blocks histamine H1-receptors in vivo. A simple and sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of ebastine and its two oxidized metabolites, carebastine (CAS 90729-42-3) and hydroxyebastine (M–OH), in human plasma. After a pretreatment of plasma sample by solid-phase extraction, ebastine and its metabolites were analyzed on an HPLC system with ultraviolet detection at 254 nm. Chromatography was performed on a cyano column (250×4.0 mm I.D.) at 40 °C with the mobile phase of acetonitrile–methanol–0.012 M ammonium acetate buffer (20:30:48, v/v/v) at a flow rate of 1.2 ml/min. Accurate determinations were possible over the concentration range of 3–1000 ng/ml for the three compounds using 1 ml plasma samples. The intra- and inter-day assay accuracy of this method were within 100±15% of nominal values and the precision did not exceed 12.4% of relative standard deviation. The lower limits of quantitation were 3 ng/ml for ebastine and its metabolites in human plasma. This method was satisfactorily applied to the determination of ebastine and its two oxidized metabolites in human plasma after oral administration of ebastine.  相似文献   

19.
A simple high-performance liquid chromatographic method using fluorescence detection was developed for the determination of ketoconazole in human plasma. The method entailed direct injection of the plasma sample after deproteinization using acetonitrile. The mobile phase comprised 0.05 M disodium hydrogen orthophosphate and acetonitrile (50:50, v/v) adjusted to pH 6. Analysis was run at a flow-rate of 1.5 ml/min with the detector operating at an excitation wavelength of 260 nm and an emission wavelength of 375 nm. The method is specific and sensitive with a quantification limit of approximately 60 ng/ml and a detection limit of 40 ng/ml at a signal-to-noise ratio of 3:1. Mean absolute recovery value was about 105%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 14%. The calibration curve was linear over a concentration range of 62.5–8000 ng/ml.  相似文献   

20.
This paper describes sensitive and reliable determination of midazolam (MDZ) and its major metabolite 1'-hydroxymidazolam (1-OHMDZ) in human plasma by liquid chromatography-mass spectrometry (LC-MS) with a sonic spray ionization (SSI) interface. MDZ, 1-OHMDZ and diazepam as an internal standard were extracted from 1ml of alkalinized plasma using n-hexane-chloroform (70:30, v/v). The extract was injected into an analytical column (YMC-Pak Pro C(18), 50mmx2.0mmi.d.). The mobile phase for separation consisted of 10mM ammonium acetate and methanol (50:50, v/v) and was delivered at a flow-rate of 0.2ml/min. The drift voltage was 100V. The sampling aperture was heated at 120 degrees C and the shield temperature was 260 degrees C. The total time for chromatographic separation was less than 16min. The validated concentration ranges of this method were 0.25-50ng/ml for both MDZ and 1-OHMDZ. Mean recoveries were 93.6% for MDZ and 86.6% for 1-OHMDZ. Intra- and inter-day coefficient variations were less than 6.5 and 5.5% for MDZ, and 6.1 and 5.7% for 1-OHMDZ at 0.3, 4, 20 and 40ng/ml. The limits of quantification were 0.25ng/ml for both MDZ and 1-OHMDZ. This method was sensitive and reliable enough for pharmacokinetic studies on healthy volunteers, and was applied for the measurement of CYP3A activity in humans after an intravenous (1mg) and a single-oral administration (2mg) of subtherapeutic MDZ dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号