首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SCF induces autophosphorylation of Kit and activates a variety of signaling components including Jnks, Erks, PI 3 Kinase, the JAK-Stat pathway and members of the Src family. Previously we showed that Lyn is activated at multiple points during SCF-induced cell cycle progression and contributes to SCF-mediated growth, chemotaxis and internalization of Kit. However, the Kit-dependent biochemical events that require Lyn are unknown. In this study, we used Lyn-deficient bone marrow mast cells (BMMC) to examine the contribution of this Src family member to tyrosine phosphorylation of Kit and SCF-induced activation of Jnks, Akt, Stat3 and Erks. Although surface expression of Kit was increased in Lyn-deficient BMMC, SCF-induced phosphorylation and growth was reduced compared to wild-type BMMC. Downstream of Kit, SCF-induced activation of Jnks was markedly reduced in Lyn-deficient BMMC. Further, Lyn was required for SCF-induced tyrosine phosphorylation of Stat3. Interestingly, Kit was constitutively associated with PI 3 Kinase in Lyn-deficient BMMC and this correlated with constitutive phosphorylation of Akt. This was in marked contrast to wild-type BMMC, where both these events were induced by SCF. These data indicate that in BMMC, Lyn contributes to SCF-induced phosphorylation of Kit, as well as phosphorylation of Jnks and Stat3. In contrast, Lyn may negatively regulate the PI 3 Kinase/Akt pathway. The opposing effects of Lyn on these signaling pathways may explain the pleiotropic effects ascribed to this Src family member in the literature.  相似文献   

2.
It is widely accepted that neurokinin 1 (NK(1)) receptors are not generally expressed on mast cells but little is known about their expression in inflammation. The present study shows expression of NK(1) receptors on bone marrow-derived mast cells (BMMC) under the influence of IL-4 or stem cell factor (SCF). Highest expression was found when both cytokines are present. Six days of coculture with the cytokines IL-4 and SCF showed significant expression of NK(1) receptors (NK(1) receptor(+)/c-kit(+) BMMC; control: 7%, IL-4/SCF: 16%), while 12 days of cytokine coculture increased this expression to 37% positive cells. A longer coculture with IL-4 and SCF did not give an additional effect. Increased expression in IL-4/SCF-treated BMMC was further confirmed using Western blot analysis. Next, we demonstrated the functional relevance of NK(1) receptor expression for mast cell activation, resulting in an enhanced degranulation upon stimulation by substance P. BMMC activation was significantly diminished by the NK(1) receptor antagonist RP67580 (10 micro M) when stimulated with low concentrations of substance P. The inactive enantiomer RP65681 had no effect. In addition, BMMC cultured from bone marrow of NK(1) receptor knockout mice showed significantly decreased exocytosis to low concentrations of substance P. The present study clearly shows that NK(1) receptor-induced activation contributes significantly at low physiological substance P concentrations (<100 micro M). In conclusion, BMMC were shown to express NK(1) receptors upon IL-4/SCF coculture. This expression of NK(1) receptors has been demonstrated to be of functional relevance and leads to an increase in the sensitivity of BMMC to substance P.  相似文献   

3.
4.
5.
6.
7.
The involvement of the TGF-beta family in cell growth of bone marrow-derived mast cells (BMMC) cultured with medium containing pokeweed mitogen-stimulated spleen cell-conditioned medium (PWM-SCM) was examined. Doubling time of BMMC from Smad3-null mice was longer than that from wild-type (WT) mice, and the differences tended to be larger with time of culture. Consistent with the results, uptake and reduction of [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; MTS] was lower in Smad3-deficient BMMC. Cell cycle analyses revealed no apparent differences between WT BMMC and Smad3-deficient BMMC, suggesting that longer doubling time in Smad3-deficient BMMC resulted from increased cell death. TGF-beta and activin A were supplied by PWM-SCM rather than by self-production by BMMC. Blocking the TGF-beta pathway by anti-TGF-beta neutralizing antibody or an inhibitor for the type I receptors for ligands including TGF-beta and activin, SB431542, inhibited MTS uptake and reduction in WT BMMC, whereas anti-activin A antibody and SB431542 tended to inhibit them in Smad3-deficient BMMC. The present results suggest that TGF-beta-induced and Smad3-mediated signaling is essential for maximal cell growth in mast cells, and that the activin pathway may be required for it when mast cell context is modulated by Smad3 depletion.  相似文献   

8.
9.
10.
11.
KIT receptor is required for mast cell development, survival, and migration toward its ligand stem cell factor (SCF). Many solid tumors express SCF and this leads to mast cell recruitment to tumors and release of mediators linked to tumor angiogenesis, growth, and metastasis. Here, we investigate whether FES protein-tyrosine kinase, a downstream effector of KIT signaling in mast cells, is required for migration of mast cells toward SCF-expressing mammary tumors. Using a novel agarose drop assay for chemotaxis of bone marrow-derived mast cells (BMMC) toward SCF, we found that defects in chemotaxis of fes-null BMMCs correlated with disorganized microtubule networks in polarized cells. FES displayed partial colocalization with microtubules in polarized BMMCs and has at least two direct microtubule binding sites within its N-terminal F-BAR and SH2 domains. An oligomerization-disrupting mutation within the Fer/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain had no effect on microtubule binding, whereas microtubule binding to the SH2 domain was dependent on the phosphotyrosine-binding pocket. FES involvement in mast cell recruitment to tumors was tested using the AC2M2 mouse mammary carcinoma model. These tumor cells expressed SCF and promoted BMMC recruitment in a KIT- and FES-dependent manner. Engraftment of AC2M2 orthotopic and subcutaneous tumors in control or fes-null mice, revealed a key role for FES in recruitment of mast cells to the tumor periphery. This may contribute to the reduced tumor growth and metastases observed in fes-null mice compared with control mice. Taken together, FES is a potential therapeutic target to limit the progression of tumors with stromal mast cell involvement.  相似文献   

12.
13.
14.
Sprouty/Spred family proteins have been identified as negative regulators of growth factor-induced ERK/mitogen-activated protein (MAP) kinase activation. However, it has not been clarified whether these proteins regulate cytokine-induced ERK activity. We found that Spred-1 is highly expressed in interleukin-3 (IL-3)-dependent hematopoietic cell lines and bone marrow-derived mast cells. To investigate the roles of Spred-1 in hematopoiesis, we expressed wild-type Spred-1 and a dominant negative form of Spred-1, DeltaC-Spred, in IL-3- and stem cell factor (SCF)-dependent cell lines as well as hematopoietic progenitor cells from mouse bone marrow by retrovirus gene transfer. In IL-3-dependent Ba/F3 cells expressing c-kit, forced expression of Spred-1 resulted in a reduced proliferation rate and ERK activation in response to not only SCF but also IL-3. In contrast, DeltaC-Spred augmented IL-3-induced cell proliferation and ERK activation. Wild-type Spred-1 inhibited colony formation of bone marrow cells in the presence of cytokines, whereas DeltaC-Spred-1 expression enhanced colony formation. Augmentation of ERK activation and proliferation in response to IL-3 was also observed in Spred-1-deficient bone marrow-derived mast cells. These data suggest that Spred-1 negatively regulates hematopoiesis by suppressing not only SCF-induced but also IL-3-induced ERK activation.  相似文献   

15.
Suppressor of cytokine signaling 1 (SOCS1) is a negative regulator of c-Kit and interleukin-3 (IL-3) receptor signaling. We examined the role of SOCS1 in regulating IL-3-induced cell growth of primary bone marrow-derived mast cells (BMMCs) from SOCS1-/- mice. Instead of showing increased proliferation, SOCS1-deficient BMMCs responded poorly to IL-3 and stem cell factor. SOCS1-/- BMMCs showed increased apoptosis and defective cell cycle entry. We show that the growth retardation of SOCS1-/- BMMCs was due to a cell intrinsic defect. Protein tyrosine phosphorylation following IL-3 stimulation was markedly diminished in SOCS1-/- BMMCs. Intriguingly, JAK2 and STAT5 proteins were selectively diminished in SOCS1-/- BMMCs, which also showed lower molecular mass products of p85 and Vav suggesting proteolytic degradation. Incubation of the SOCS1-/- BMMC lysate with STAT5, p85, and Vav immunoprecipitated from SOCS1+/+ cells directly demonstrated the dysregulated proteolytic activity in SOCS1-/- BMMCs. The proteolytic activity in SOCS1-/- BMMCs was selectively inhibited by phenylmethylsulfonyl fluoride and soybean trypsin inhibitor, suggesting that the protease regulated by SOCS1 is a tryptase. The dysregulated tryptase in SOCS1-/- BMMCs is unlikely to be mMCP6 or mMCP7, because the enzyme activity was not inhibited by Polybrene but was inhibited by normal mouse plasma. SOCS1+/+ BMMC lysate inhibited the proteolytic activity present in SOCS1-/- BMMC lysate, indicating that SOCS1-/- BMMCs lack an endogenous protease inhibitor. These results show that SOCS1 is required for the expression and/or stability of an endogenous protease inhibitor, which protects mast cells from their own proteolytic enzymes.  相似文献   

16.
17.
18.
19.
Recent studies have revealed that murine bone marrow-derived cultured mast cells (BMMC), which are phenotypically immature mast cells, express functional TLR2 and TLR4 that recognize distinct pathogen-associated molecules. However, it remains relatively uncertain whether mast cells express other TLR. We recently established a method to obtain large numbers of murine fetal skin-derived cultured mast cells (FSMC); these cells exhibit important features of connective tissue type mast cells. Working with FSMC and BMMC, the TLR mRNA expression profiles were compared between both cell types. Although TLR2 and TLR4 mRNA were detected in both cells at comparable levels, TLR3, TLR7, and TLR9 mRNA were expressed by FSMC at higher levels than by BMMC, suggesting distinct TLR expression profiles among different mast cell populations. With respect to their functional aspects, FSMC, but not BMMC, dose dependently produced proinflammatory cytokines (TNF-alpha and IL-6) and chemokines (RANTES, MIP-1alpha, and MIP-2) in response to poly(I:C), R-848, and CpG oligodeoxynucleotide, which are TLR3, TLR7, and TLR9 activators, respectively. Interestingly, these TLR activators failed to induce degranulation and IL-13 production by both mast cells, although peptidoglycan and LPS (TLR2 and TLR4 activators, respectively) induced IL-13 production by both cells. Mast cells, thus, may have potential to recruit other immune cells to the infected sites by responding to various bacterial and viral components through TLR signaling pathways, presumably being involved in initiating innate immunity and subsequently linking innate and acquired immune responses.  相似文献   

20.
We investigated the possible role of tyrosine phosphorylation in the activation process of mast cells by cross-linking of cell-bound IgE antibodies. Bone marrow-derived mouse mast cells (BMMC) were sensitized with mouse IgE antiDNP mAb and then challenged with multivalent Ag DNP conjugates of human serum albumin. Analysis of phosphotyrosine-containing proteins in their lysates by SDS-PAGE and immunoblotting revealed that cross-linking of cell-bound IgE antibodies induced a marked increase in tyrosine phosphorylation of several proteins. To obtain direct evidence for activation of protein-tyrosine kinases (PTK), phosphotyrosine-containing proteins in lysates of mast cells were affinity purified, and kinase activity of the immunoprecipitates was assessed by an in vitro kinase assay. The results clearly showed activation of PTK upon cross-linking of Fc epsilon RI. Activation of PTK was not detected by the same assay when the sensitized BMMC were challenged with monovalent DNP-lysine. Treatment of sensitized BMMC with either Ca2+ ionophore or PMA failed to induce the activation of PTK. A representative IgE-independent secretagogue, thrombin, induced histamine release from BMMC but failed to induce activation of PTK. The results excluded the possibility that PTK activation is the consequence of an increase in intracellular Ca2+ or activation of protein kinase C. Addition of genistein, a PTK inhibitor, to sensitized BMMC before Ag challenge inhibited not only Ag-induced PTK activation, but also inositol 1,4,5-trisphosphate production, and histamine release in a similar dose-response relationship. Other PTK inhibitors, such as lavendustin A and tyrphostin RG50864, also inhibited the Ag-induced activation of PTK and histamine release. The results collectively suggest that activation of PTK is an early event upstream of the activation of phospholipase C, and is involved in transduction of IgE-dependent triggering signals to mediator release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号