首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein chemistry of the Neurospora crassa plasma membrane H+-ATPase   总被引:1,自引:0,他引:1  
A highly effective procedure for fragmenting the Neurospora crassa plasma membrane H+-ATPase and purifying the resulting peptides is described. The enzyme is cleaved with trypsin to form a limit digest containing both hydrophobic and hydrophilic peptides, and the hydrophobic and hydrophilic peptides are then separated by extraction with an aqueous ammonium bicarbonate solution. The hydrophilic peptides are fractionated by Sephadex G-25 column chromatography into three pools, and the individual peptides in each pool are purified by high-performance liquid chromatography. The hydrophobic peptides are dissolved in neat trifluoroacetic acid (TFA), diluted with chloroform-methanol (1:1), and the hydrophobic peptide solution thus obtained is then fractionated by Sephadex LH-60 column chromatography in chloroform-methanol (1:1) containing 0.1% TFA. The recoveries in all of the above procedures are greater than 90%. The N-terminal amino acid sequences of three of the hydrophobic H+-ATPase peptides purified by this methodology have been determined, which establishes the position of these peptides in the 100,000 Da polypeptide chain by reference to the published gene sequence, and documents the sequencability of the hydrophobic peptides purified in this way. This methodology should facilitate the identification of a variety of amino acid residues important for the structure and function of the H+-ATPase molecule. Moreover, the overall strategy for working with the protein chemistry of the H+-ATPase should be applicable to other amphiphilic integral membrane proteins as well.  相似文献   

2.
A procedure for successful analysis of the hydrophobic tryptic peptides of the Neurospora crassa plasma membrane H+-ATPase by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is described. The features of this procedure that are essential for the best results include (i) treatment of the hydrophobic peptide samples with neat trifluoroacetic acid, (ii) dissolution and disaggregation of the hydrophobic peptide samples with SDS at 0 degrees C, (iii) SDS-PAGE of the hydrophobic peptide samples in gels containing a 200:1 ratio of acrylamide to bisacrylamide and a 5-20% convex acrylamide gradient, and (iv) silver-staining of the gels after electrophoresis. This method results in the reproducible resolution and visualization of the H+-ATPase hydrophobic tryptic peptides, which range in size from ca. 5 to 21 kDa, as well as other peptides and proteins ranging in size from ca. 2.5 to 150 kDa. The methods described should also prove useful in other studies where resolution and visualization of hydrophobic peptides of integral membrane proteins are required.  相似文献   

3.
The plasma membrane of the cereal aleurone layer is the site of perception of germination signals and release of enzymes to the starchy endosperm. Analysis of membrane proteins is challenging due to their hydrophobicity and low abundance; thus, little is known about the membrane proteins involved in seed germination. A membrane fraction highly enriched for the plasma membrane H+-ATPase was prepared from barley aleurone layers by aqueous two-phase partitioning. Because detergent and salt washes did not efficiently remove soluble proteins from the membrane preparations, an alternative procedure was developed, comprising batch reversed-phase chromatography with stepwise elution of hydrophobic proteins by 2-propanol. Proteins in the most hydrophobic fraction were separated by SDS-PAGE and identified by LC-MS/MS and barley EST sequence database search. The method was efficient for enrichment of integral membrane proteins with relatively low levels of soluble contaminating proteins. Forty-six proteins associated with barley aleurone plasma membranes were identified, including proteins with more than 10 transmembrane domains. Among the identified proteins were two new isoforms of the plasma membrane H+-ATPase, two proteins possibly involved in ion-channel regulation, and two proteins of unknown function. This represents the first analysis of membrane proteins involved in seed germination using a proteomics approach.  相似文献   

4.
Highly purified plasma membranes of calf thymocytes were fractionated by means of affinity chromatography on ouabain-Sepharose. By the method used two subfractions were obtained, one eluting freely from the affinity gel (MF1oua) and a second specifically retained by matrix-bound ouabain (MF2oua), with a total recovery of 95 per cent. Fractionation required the binding of matrix-bound ouabain to its plasma membrane receptor, i.e. (Na+ + K+)-ATPase. Increasing the temperature and binding time did not significantly alter the fractionation of plasma membranes into the two subfractions. Both plasma membrane subfractions separated by ouabain-Sepharose were of plasma membrane origin, as revealed by the identical specific activities of several membrane bound enzymes, gamma-glutamyl transpeptidase, alkaline phosphatase and Mg2+-ATPase in unseparated plasma membranes and in both subfractions, and by the identical amounts of the cytoskeletal protein actin in unseparated plasma membranes and subfractions. The plasma membrane subfractions MF1oua and MF2oua showed different structural and functional properties. In SDS-polyacrylamide gel electrophoresis polypeptides of 170, 150, 110, 94, 39, and 30 kDa were several-fold enriched in the adherent fraction, MF2oua. The phospholipid fatty acid composition of the plasma membrane subfractions proved to be different, as well. MF2oua contained significantly higher amounts of saturated fatty acids as compared to MF1oua. The specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysolecithin acyltransferase were highly enriched in the adherent fraction MF2oua, as compared to MF1oua. The data suggest that by the means of affinity chromatography on ouabain-Sepharose plasma membrane domains of the lymphocyte plasma membrane can be isolated, most probably implicated in the initiation of lymphocyte activation.  相似文献   

5.
Elicitor preparations containing the avr5 gene products from race 4 of Cladosporium fulvum and tomato (Lycopersicon esculentum L.) cells near isogenic for the resistance gene Cf5 were used to investigate events following the treatment of host plasma membranes with elicitor. A 4-fold increase in H+-ATPase activity, coincident with the acidification of the extracellular medium, was detected immediately after elicitor treatment. The elicitor-induced stimulation of the plasma membrane H+-ATPase was inhibited by okadaic acid but not by staurosporine, suggesting that protein dephosphorylation was required for increased H+-ATPase activity. This observation was confirmed by [gamma]-32P labeling and immunodetection of the plasma membrane H+-ATPase. Effects of guanidine nucleotide analogs and mastoparan on the ATPase activity suggested the role of GTP-binding proteins in mediating the putative elicitor-receptor binding, resulting in activation of a phosphatase(s), which in turn stimulates the plasma membrane H+-ATPase by dephosphorylation.  相似文献   

6.
7.
Purified plasma membranes of mouse EL4 lymphoma cells were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (MF1) eluted freely from the affinity column, the second (MF2) adhered specifically to Con A-Sepharose. Both membrane subfractions proved to be of plasma membrane origin, as evidenced by the following criteria. (i) The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. (ii) When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. (iii) After enzymatic radioiodination of the cells, the total content of labelled proteins was very similar in isolated plasma membranes and in both subfractions. (iv) Some plasma membrane marker enzymes exhibited nearly identical specific activities in plasma membranes, MF1 or MF2 including gamma-glutamyl transpeptidase, 5'-nucleotidase and Mg2+-ATPase. Both subfractions exhibited characteristic differences. Thus the specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysophosphatidylcholine acyltransferase were several-fold enriched in MF2 compared to MF1. SDS-polyacrylamide gel electrophoresis revealed a different polypeptide composition of the two subfractions. Polypeptides of apparent molecular mass of 116, 95, 42, 39, 30 and 28 kDa were highly enriched in MF2, whereas MF1 contained another set of proteins, of apparent molecular mass of 70, 55 and 24 kDa. The phospholipid fatty acid composition of the subfractions proved to be different, as well, MF2 contained more saturated fatty acids than MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of the mouse EL4 lymphoma cells, containing a set of polypeptides, among others membrane bound enzymes, embedded in a different phospholipid milieu.  相似文献   

8.
H+-translocating, Mg2+-ATPase was solubilized from vacuolar membranes of Saccharomyces cerevisiae with the zwitterionic detergent N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate and purified by glycerol density gradient centrifugation. Partially purified vacuolar membrane H+-ATPase, which had a specific activity of 18 units/mg of protein, was separated almost completely from acid phosphatase and alkaline phosphatase. The purified enzyme required phospholipids for maximal activity and hydrolyzed ATP, GTP, UTP, and CTP, with this order of preference. Its Km value for Mg2+-ATP was determined to be 0.21 mM and its optimal pH was 6.9. ADP inhibited the enzyme activity competitively, with a Ki value of 0.31 mM. The activity of purified ATPase was strongly inhibited by N,N'-dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, tributyltin, 7-chloro-4-nitrobenzoxazole, diethylstilbestrol, and quercetin, but was not affected by oligomycin, sodium azide, sodium vanadate, or miconazole. It was not inhibited at all by antiserum against mitochondrial F1-ATPase or mitochondrial F1-ATPase inhibitor protein. These results indicated that vacuolar membrane H+-ATPase is different from either yeast plasma membrane H+-ATPase or mitochondrial F1-ATPase. The vacuolar membrane H+-ATPase was found to be composed of two major polypeptides a and b of Mr = 89,000 and 64,000, respectively, and a N,N'-dicyclohexylcarbodiimide binding polypeptide c of Mr = 19,500, whose polypeptide composition was also different from those of either plasma membrane H+-ATPase or mitochondrial F1-ATPase of S. cerevisiae.  相似文献   

9.
The NH2-terminus of the plasma membrane H+-ATPase is one of the least conserved segments of this protein among fungi. We constructed and expressed a mutant H+-ATPase from Saccharomyces cerevisiae deleted at an internal peptide within the cytoplasmic NH2-terminus (D44-F116). When the enzyme was subjected to limited trypsinolysis it was digested more rapidly than wild type H+-ATPase. Membrane fractionation experiments and immunofluorescence microscopy, using antibodies against H+-ATPase showed that the mutant ATPase is retained in the endoplasmic reticulum. The pattern observed in the immunofluorescence microscopy resembled structures similar to Russell bodies (modifications of the endoplasmic reticulum membranes) recently described in yeast. When the wild type H+-ATPase was co-expressed with the mutant, wild type H+-ATPase was also retained in the endoplasmic reticulum. Co-expression of both ATPases in a wild type yeast strain was lethal, demonstrating that this is a dominant negative mutant.  相似文献   

10.
20-Hydroxyecdysone induces evagination of imaginal discs of Drosophila melanogaster cultured in vitro. The possible involvement of cell-surface proteins in this process has prompted us to study the synthesis of membrane proteins in imaginal discs. A procedure is reported for the isolation of membrane vesicle fractions from discs that are enriched for the plasma membrane enzyme, Na+/K+-ATPase, and that label with the surface-labeling reagent [125I]iodosulfanilic acid. 20-Hydroxyecdysone alters the pattern of [35S]methionine incorporation into polypeptides in these membrane vesicle fractions. Increased and decreased incorporation as well as changes in migration on two-dimensional gels of specific polypeptides are caused by the hormone. These changes parallel in time the onset and the continuation of evagination.  相似文献   

11.
Using radiation inactivation, we have measured the size of the H+-ATPase in Neurospora crassa plasma membranes. Membranes were exposed to either high energy electrons from a Van de Graaff generator or to gamma irradiation from 60Co. Both forms of radiation caused an exponential loss of ATPase activity in parallel with the physical destruction of the Mr = 104,000 polypeptide of which this enzyme is composed. By applying target theory, the size of the H+-ATPase in situ was found to be approximately 2.3 X 10(5) daltons. We also used radiation inactivation to measure the size of the Ca2+-ATPase of sarcoplasmic reticulum and got a value of approximately 2.4 X 10(5) daltons, in agreement with previous reports. By irradiating a mixture of Neurospora plasma membranes and rabbit sarcoplasmic reticulum, we directly compared the sizes of these two ATPases and found them to be essentially the same. We conclude that both H+-ATPase and Ca2+-ATPase are oligomeric enzymes, most likely composed of two approximately 100,000-dalton polypeptides.  相似文献   

12.
New data are presented on the organization of H+-pumps in plasma membranes of cells of bacteria fungi, plants and animals. It is shown that H+-ATPase of bacteria differs in principle from H+-ATPases of plasma membranes of other organisms. The transport H+, K+-ATPase functioning in cells of mucous membrane of the animal stomach as an electroneutral H+-pump is similar by its properties to Na+, K+-ATPase of plasma membranes of animal cells. H+-ATPase of plasma membranes in cells of fungi and higher plants which functions as an electrogenic H+-pump differs essentially from H+-ATPases of F0 X F1-type. Distribution of H+-ATPases in cells of different organisms and their evolution are under discussion.  相似文献   

13.
Gastric heavy microsomal membranes highly enriched in (H+-K+)-ATPase were obtained from cimetidine- or carbachol-treated rats through 2H2O and Percoll gradient centrifugations. Both the resting (cimetidine-treated) and the stimulated (carbachol-treated) heavy membranes which presumably represent the apical membrane of gastric parietal cells were enriched with the polypeptides of 81,000 and 45,000 besides that of 93,000 representing (H+-K+)-ATPase. No apparent differences could be detected between the resting and the stimulated heavy membranes in their polypeptide profiles or their specific activity of (H+-K+)-ATPase. Nevertheless, the level of 86RbCl uptake was greater in the stimulated than the resting heavy microsomal membrane vesicles. The light gastric microsomes which abound in intracellular tubulovesicles containing reserve (H+-K+)-ATPase as isolated from cimetidine-treated rats were similarly purified with respect to (H+-K+)-ATPase. The purified light gastric membranes were largely devoid of the polypeptides of 81,000 and 45,000 found in the heavy gastric membranes. These observations further support the current hypothesis that secretagogues bring about changes in the environment of (H+-K+)-ATPase and induce KCl permeability in the apical membrane of the parietal cells, although at present we have been unable to identify the polypeptide(s) responsible for the KCl pathway.  相似文献   

14.
Current methods for purifying the Mr 100,000 H+-ATPase from the plasma membrane of fungi and higher plants rely on detergent solubilization followed by density gradient centrifugation. The procedure yields catalytically active enzyme of high purity but takes several days, and the yields are low. For chemical studies on the primary structure of this enzyme, an alternative more rapid procedure was sought. In this paper a method which uses a high-performance gel filtration column in the presence of sodium dodecyl sulfate to purify nanomole quantities of the enzyme in only 30 min is described. With this procedure the enzyme was isolated free of other protein contaminants, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel filtration was performed on a high-pressure liquid chromatograph equipped with a diode array spectrophotometric detector, allowing spectral analysis of the membrane proteins. An ultraviolet absorption spectrum of the plasma membrane Mr 104,000 H+-ATPase revealed an absorption peak at ca. 275 nm that is consistent with its content of aromatic amino acids.  相似文献   

15.
Isolated membrane vesicles from pig stomach smooth muscle (antral part) were subfractionated by a density gradient procedure modified in order to obtain an efficient extraction of extrinsic proteins. By using this method in combination with digitonin-treatment, an endoplasmic reticulum fraction contaminated with maximally 10 to 20% of plasma membranes was isolated, together with a plasma membrane fraction containing at most 30% endoplasmic reticulum. The endoplasmic reticulum and plasma membrane fractions differed in protein composition, reaction to digitonin, binding of wheat germ agglutinin, activities of marker enzymes and in the characteristics of the Ca2+ uptake. The Ca2+ uptake by the endoplasmic reticulum was much more stimulated by oxalate than the uptake by plasma membranes. Both fractions showed a (Ca2+ + Mg2+)-ATPase activity, but the largest amount of this enzyme was present in the plasma membranes. The study of the phosphorylated intermediates of the (Ca2+ + Mg2+)-ATPase by polyacrylamide gel electrophoresis revealed two phosphoproteins one of 130 kDa and one of 100 kDa (Wuytack, F., Raeymaekers, L., De Schutter, G. and Casteels, R. (1982) Biochim. Biophys. Acta 693, 45-52). The 130 kDa enzyme was predominant in the fraction enriched in plasma membrane whereas the distribution of the 100 kDa polypeptide correlated with the endoplasmic reticulum markers. The 130 kDa ATPase was the main 125I-calmodulin binding protein detected on nitrocellulose blots of proteins separated by gel electrophoresis. The (Ca2+ + Mg2+)-ATPase activity of the plasma membranes was higher than the (Na+ + K+)-ATPase activity, suggesting that the Ca2+ extrusion from these cells depends much more on the activity of the (Ca2+ + Mg2+)-ATPase than on Na+-Ca2+ exchange.  相似文献   

16.
A rapid method for preparation of plasma membrane fromAcanthamoeba culbertsoni involving toluene treatment followed by lithium bromide extraction is described. In the plasma membrane preparation, 5′-nucleotidase, Na+ + K+ -ATPase, Mg2+ -ATPase and glucose-6-phosphatase activities were enriched. The membrane preparation was free from nucleic acid, cytochrome P-450 and cytochrome b5. Amino acid (14C-Ieucine) was not incorporated in the plasma membrane in 2 min. Succinic dehydrogenase was not detectable in the plasma membrane preparation. The molar ratio of cholesterol and phospholipids was 0.95 which is characteristics for plasma membranes. Under electronmicroscopy the preparation was homogenous without any other component of the cell. Plasma membrane proteins and glycoproteins were separated on acrylamide gel electrophoresis  相似文献   

17.
Treatment by EDTA of purified plasma membranes from MF2S cells (a variant of the murine plasmacytoma MOPC 173) solubilized proteins and increased by a 1000-fold the sensitivity of (Na+ + K+)-ATPase to ouabain. When added back with Ca2+ to treated plasma membranes, these EDTA-solubilized proteins restored the initial sensitivity of the enzyme to its inhibitor. We report the purification of a protein of Mr 32000, isolated from the EDTA-treated membrane supernatant. This protein was purified by a one-step procedure involving a preparative polyacrylamide gel electrophoresis without detergent. In the presence of Ca2+ it was able to restore the original sensitivity to ouabain of (Na+ + K+)-ATPase from EDTA-treated membrane. This protein was shown to be similar to the beta-actinin described by Maruyama by the following criteria: (1) molecular weight and amino acid composition; (2) cross-reactivity with their respective antisera; (3) in the presence of Ca2+ the same quantitative biological activity on ouabain sensitivity of the (Na+ + K+)-ATPase. A possible interaction between beta-actinin, calmodulin and membrane-bound (Na+ + K+)-ATPase is discussed.  相似文献   

18.
Subunit structure of the lysosomal H+-ATPase was investigated using cold inactivation, immunological cross-reactivity with antibodies against individual subunits of the H+-ATPase from chromaffin granules and chemical modification with N,N'-dicyclohexyl[14C]carbodiimide. The lysosomal H+-ATPase was irreversibly inhibited when incubated at 0 degrees C in the presence of chloride or nitrate and MgATP. Inactivation in the cold resulted in the release of several polypeptides (72, 57, 41, 34 and 33 kDa) from the membrane, which had the same electrophoretic mobility as the corresponding subunits of chromaffin granule H+-ATPase. Cross-reactivity of antibodies revealed that the 72, 57 and 34 kDa polypeptides were immunologically identical to the corresponding subunits of chromaffin granule H+-ATPase. Dicyclohexylcarbodiimide, which inhibits proton translocation in the vacuolar ATPase, predominantly labeled two polypeptides of 18 and 15 kDa, which compose the membrane sector of the enzyme. These results suggest that the lysosomal H+-ATPase is a multimeric enzyme, whose subunit structure is similar to the chromaffin granule H+-ATPase. The subunit structure of other vacuolar H+-ATPases, revealed by cold inactivation and immunological cross-reactivity, is also presented.  相似文献   

19.
J Nandi  M A Zhou  T K Ray 《Biochemistry》1987,26(14):4264-4272
The microsomal (H+,K+)-ATPase systems from dog and pig fundic mucosa were purified to homogeneity and partially characterized. The method involves sodium dodecyl sulfate (SDS) (0.033% w/v) extraction of the microsomal non-ATPase proteins under appropriate conditions followed by sucrose density gradient centrifugation. Two distinct membrane bands of low (buoyant density = 1.08 g/mL) and high (buoyant density = 1.114 g/mL) densities having distinct enzymatic and chemical composition were harvested. The low-density membrane was highly enriched in Mg2+- or Ca2+-stimulated ATPase and 5'-nucleotidase activities but totally devoid of (H+,K+)-ATPase and K+-p-nitrophenylphosphatase activities. The latter two activities were found exclusively in the high-density membrane. SDS-polyacrylamide gel electrophoresis revealed the high-density membranes to consist primarily of a major 100-kilodalton (kDa) protein and a minor 85-kDa glycoprotein, the former being the catalytic subunit of the (H+,K+)-ATPase. The amino acid composition of the pure dog (H+,K+)-ATPase revealed close similarities with that from pig. The N-terminal amino acid was identified to be lysine as the sole residue. Similar to the high-density membrane-associated pure (H+,K+)-ATPase, the low-density membranes containing high Mg2+-ATPase activity also contained a 100-kDa peptide and a 85-kDa glycopeptide in addition to numerous low molecular weight peptides. Also, similar to the pure (H+,K+)-ATPase, the Mg2+-ATPase-rich fraction produced an E approximately P unstable to hydroxylamine and partially (about 25%) sensitive to K+ but having a slow turnover. The levels of E approximately P produced by the pure (H+,K+)-ATPase- and Mg2+-ATPase-rich fractions were 1400 and 178 pmol/mg of protein, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Plasma membranes were isolated from the cultured Sertoli cells of 20-day-old rat testes by differential centrifugation and sucrose density fractionation. The distribution and purity of subcellular components was determined by marker enzyme analysis of gradient fractions. The plasma membrane fraction showed an enrichment in two plasma membrane marker enzymes, 5'-nucleotidase and ouabain-sensitive Na+/K+-ATPase-specific activities, of 9- and 23-fold, respectively. Forty-two percent and 52% of the total cellular 5'-nucleotidase and ouabain-sensitive Na+/K+-ATPase activities, respectively, were found in the membrane fraction. The protein yield of plasma membrane was approximately 6% of the total cellular protein. Two-dimensional polyacrylamide gel electrophoresis was used to compare [35S] methionine- and [3H] glucosamine-labeled membrane proteins. The incorporation of [35S] methionine and [3H] glucosamine was increased in several proteins when the cultured Sertoli cells were treated with follicle-stimulating hormone, insulin, retinol, and testosterone. Isolated Sertoli cell membranes contained a membrane-associated form of plasminogen activator. Analysis of this plasminogen activator demonstrated that the membrane-associated enzyme existed primarily as a single 38,000-40,000-Mr form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号