首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Mixing for two gases of markedly different gaseous diffusivity, helium (He) (mol wt = 4) and sulfur hexafluoride (SF6) (mol wt = 146) has been studied by a rebreathing method in different postures. In nine normal subjects duplicate measurements were made in the erect (seated), supine, and lateral decubitus posture, at a constant tidal volume (700 ml) and frequency (1 Hz) starting from functional residual capacity (FRC). Additional measurements were made on four of the subjects, rebreathing seated erect at a volume similar to the relaxed FRC supine and supine at a volume similar to the relaxed FRC seated. In the supine posture the mean breath number to reach 99% equilibrium (n99), was not significantly different for the two gases, 8.9 for He and 9.8 for SF6. There was a difference (P less than 0.01) when erect; n99 (He) = 8.2 and n99 (SF6) = 10.9. The greatest He-SF6 difference (P less than 0.001) was in the lateral decubitus position n99 (He) = 10.1 and n99 (SF6) = 15.9. The mean relaxed FRC as percent of seated was 71% supine and 75% in lateral decubitus posture. Rebreathing seated at a lower volume did not abolish the He-SF6 mixing difference nor did rebreathing at a higher volume when supine induce a He-SF6 mixing difference. Thus the effect of posture on gas mixing cannot be due solely to lung volume and must represent a convective and diffusive dependent change in the distribution of ventilation per unit lung volume.  相似文献   

2.
Twelve seated male subjects were exposed to 15 vibration conditions to investigate the nature and mechanisms of the non-linearity in biomechanical response. Subjects were exposed to three groups of stimuli: Group A comprised three repeats of random vertical vibration at 0.5, 1.0 and 1.5 m s−2 r.m.s. with subjects sitting in a relaxed upright posture. Group B used the same vibration stimuli as Group A, but with subjects sitting in a ‘tense’ posture. Group C used vibration where the vibration spectrum was dominated by either low-frequency motion (2–7 Hz), high-frequency motion (7–20 Hz) or a 1.0 m s−2 r.m.s. sinusoid at the frequency of the second peak in apparent mass (about 10–14 Hz) added to 0.5 m s−2 r.m.s. random vibration. In the relaxed posture, frequencies of the primary peak in apparent mass decreased with increased vibration magnitude. In the tense posture, the extent of the non-linearity was reduced. For the low-frequency dominated stimulus, the primary peak frequency was lower than that for the high-frequency dominated stimulus indicating that the frequency of the primary peak in the apparent mass is dominated by the magnitude of the vibration encompassing the peak. Cross-axis transfer functions showed peaks of about 15–20% and 5% of the magnitudes of the peaks in the apparent mass for x- and y-direction transfer functions, respectively, in the relaxed posture. In the tense posture, cross-axis transfer functions reduced in magnitude with increased vibration, likely indicating a reduced fore-aft pitching of the body with increased tension, supporting the hypothesis that pitching contributes to the non-linearity in apparent mass.  相似文献   

3.
Trunk muscle electromyography and whole body vibration   总被引:2,自引:0,他引:2  
By measuring the electromyographic (EMG) activity of the paraspinal muscles, we have estimated the average and peak-to-peak torque imposed on the spine during whole body vibration. Six subjects had surface electrodes placed on their erector spinae muscles at the L3 level. The EMG-torque relationship was estimated by having each subject perform isometric horizontal pulls in an upright seated posture. The subject was then vibrated vertically and sinusoidally in a controlled, flexed, slightly lordotic seated posture, in 1 Hz increments from 3 to 10 Hz at a 0.1 g RMS seat acceleration level. Between vibration readings taken at each frequency, a static reading was also taken with the subject maintaining the same posture. The entire vibration-static 3-10 Hz test was repeated for reliability purposes. Specialized digital signal processing techniques were developed for the EMG signals to enhance the measured cyclic muscle activity and to allow automatic measurement of the time relationship between the mechanical displacement and the estimated torque. We found significantly more average and peak-to-peak estimated torque at almost all frequencies for vibration vs static sitting.  相似文献   

4.
The apparent mass of the seated human body: vertical vibration   总被引:4,自引:1,他引:3  
Apparent mass frequency response functions of the seated human body have been measured with random vibration in the vertical direction at frequencies up to 20 Hz. A group of eight subjects was used to investigate some factors (footrest, backrest, posture, muscle tension, vibration magnitude) that may affect the apparent mass of a person; a group of 60 subjects (24 men, 24 women and 12 children) was used to investigate variability between people. Relative movement between the feet and the seat was found to affect the apparent mass at frequencies below resonance, particularly near zero-frequency. The resonance frequency generally increased with the use of a back rest, an erect posture and, in particular, increased muscle tension; but there was considerable intersubject variability in the changes. The magnitude of the vibration had a consistent effect: the resonance frequency decreased from about 6 to 4 Hz when the magnitude of the vibration was increased from 0.25 to 2.0 ms-2 r.m.s. The apparent masses of all the subjects were remarkably similar when normalized with respect to sitting weight. However, there were statistically significant correlations between apparent mass and some body characteristics (such as weight and age).  相似文献   

5.
Mounting of the transducers in measurement of segmental motion of the spine   总被引:1,自引:0,他引:1  
A seated female subject was subjected to sinusoidal whole body vibration at 2, 4, 5 and 6 Hz. Accelerations were measured by accelerometers on pins screwed into the spinous process. The pins were also fitted with light emitting diodes (LED). The displacement of these LEDs were compared to LEDs attached directly to the skin. Substantial differences in measured displacements were noted between surface mounted LEDs and those mounted on pins rigidly attached to the skeleton. These differences were more marked further out from the center line.  相似文献   

6.
Effects of vibration on arm and shoulder muscles in three body postures   总被引:1,自引:0,他引:1  
The electromyographic responses of arm and shoulder muscles to vibrations were studied in three postures similar to the postures of drilling in a ceiling, drilling in a wall and drilling in a floor. This experiment was performed within the defined parameters of: vibrational frequency at 30 Hz, acceleration level 40 m.s-2 (rms), pushing force expressed as percentage maximal voluntary contraction, and gripping force which was set at 100 N. The exposure time for each test was 5 min. The general findings from these three body postures show that all the examined muscles were affected by exposure to vibration. The EMG index increased as follows: trapezius muscle 39% (p less than 0.05), lower-arm flexor muscles 23% (p less than 0.05), infraspinatus muscle 14% (p less than 0.05), lower-arm extensor muscles 14% (p less than 0.1) and biceps muscle 6% (p less than 0.1). The muscle most affected by vibration was found to be the trapezius muscle. It should be taken into consideration that vibration can be a contributing factor in neck/shoulder disorders among power handtool operators. The general conclusion from this study is that changes in working posture give different transmissions of vibration in the upper extremities. It seems as if the prime movers and muscles with an increased muscle length or increased degree of contraction are most affected by vibration.  相似文献   

7.
Left ventricular hemodynamics during exercise recovery   总被引:1,自引:0,他引:1  
The directional response of human left ventricular stroke volume during exercise recovery is unclear. Stroke volume has been reported to increase and decrease over exercise values during early recovery. The confounding variable may be posture. With the use of pulsed Doppler ultrasound, we tested the hypothesis that there is a significant difference between seated and supine stroke index (SI) during passive recovery from seated ergometer exercise. Thirteen subjects aged 26 +/- 2 yr performed two seated cycle ergometer exercise tests to 70% of predicted maximum heart rate (HR). Recovery was supine on one test and seated on the other. Cardiac index (CI), HR, and SI were calculated during rest, exercise, and 10 min of recovery. At rest, SI and CI were significantly (P less than 0.01) less and HR significantly (P less than 0.01) greater when the subjects were seated than when they were supine. At the last exercise work load, no significant differences were found in any measured variable between tests. During recovery, supine SI was maximal 180 s postexercise (99 +/- 14 ml/m2) and exceeded (P less than 0.01) resting supine (81 +/- 14 ml/m2) and peak exercise (77 +/- 14 ml/m2) SI by 22 and 29%, respectively. Seated SI was constant at peak exercise levels for 2 min. Seated and supine recovery CI never exceeded exercise values. Systolic and diastolic blood pressure recovery curves were similar in the two postures. We conclude that posture significantly affects SI during recovery from submaximal seated exercise. These results have implications for choice of recovery posture after stress testing in cardiac patients where it is desirable to minimize ventricular loading.  相似文献   

8.
Epidemiological studies have shown a relatively strong association between occupational lower back pain (LBP) and long-term exposure to vibration. However, there is limited knowledge of the impact of vibration and sedentariness on bone metabolism of the lumbar vertebra and the mechanism of bone-derived LBP. The aim of this study was to investigate the effects of vibration in forced posture (a seated posture) on biochemical bone metabolism indices, and morphometric and mechanical properties of the lumbar vertebra, and provide a scientific theoretical basis for the mechanism of bone-derived LBP, serum levels of Ca2+, (HPO4)2−, tartrate-resistant acid phosphatase (TRAP), bone-specific alkaline phosphatase (BALP), and bone gla protein (BGP),the pathological changes and biomechanics of lumbar vertebra of New Zealand white rabbits were studied. The results demonstrate that both forced posture and vibration can cause pathological changes to the lumbar vertebra, which can result in bone-derived LBP, and vibration combined with a seated posture could cause further damage to bone metabolism. Serological changes can be used as early markers for clinical diagnosis of bone-derived LBP.  相似文献   

9.
1. Tilting sloths anesthetized with chloralose from erect to supine or supine to erect produced little or no effect on heart rate. 2. Tilting anesthetized sloths from erect to supine increased both systolic and diastolic pressures significantly and by about the same amounts. The maximum effect was produced in 20 sec. 3. Pressures stabilized at a higher level than in the erect posture but below the maximum reached in tilting. 4. Tilting these sloths from the supine to the erect posture resulted in a rapid (20 sec) and dramatic fall in pressures to below the initial erect pressure levels. Return to initial erect levels took place slowly. 5. Tilting reserpinized sloths from erect to supine or supine to erect produced little or no effect on heart rate. 6. Tilting reserpinized sloths from erect to supine increased both systolic and diastolic pressures materially and by similar amounts. The maximum effect took 50 sec. 7. Pressures stabilized at higher levels than in the erect posture but less than maximum reached with tilting. 8. Tilting these sloths from supine to erect caused significant falls in pressure to slightly below the initial erect pressure, with maximum effect reached in 30 sec and eventual return to control level. 9. Pressure changes were almost entirely the result of altered venous return. 10. Neither chloralose nor reserpine completely blocked vascular control but reduced it materially.  相似文献   

10.
Harmonic distortion (HD) from 1,055 responses of muscle spindles sensory endings to sinusoidal stretches (frequency range 0.0008 to 0.8333 Hz, amplitude range 0.019 to 3.09 mm) has been studied in the cat soleus muscle. Sixty-six per cent were primary afferents (Ia) and 34% secondary (II). HD mean value (0.28) did not show any significant differences between both types of endings. Analysis of variance for HD versus stimulation amplitude showed a greater HD when stretch amplitudes were beyond 1.599 mm or less than 0.031 mm on primary afferents (p less than 0.001) and less than 0.070 mm on secondary (p less than 0.001). The effect of stimulus frequency was also significant (p less than 0.01 Ia and p less than 0.001 II), however only at 0.8333 Hz and in secondary endings HD was significantly higher. The silent period in the response, at release of stretch, caused by half wave rectification could explain about 50% of measured HD.  相似文献   

11.
Lumbar back muscle activity of helicopter pilots and whole-body vibration   总被引:1,自引:0,他引:1  
Several studies have attributed the prevalence of low back pain (LBP) in helicopter pilots mainly to poor posture in-flight and whole-body vibration, with the latter hypothesis particularly related to a cyclic response of the erector spine (ES) muscle to vibration. This work aims to determine if helicopter vibration and the pilot's normal posture during flight have significant effects on the electromyogram (EMG) of the ES muscle. The bilateral surface EMG of the ES muscle at the L3 level was collected in 10 young pilots before and during a short flight in UH-50 helicopters. The vibration was monitored by a triaxial accelerometer fixed to the pilots' seat. Prior to the flight, the EMG was recorded for relaxed seated and standing postures with 0 degrees (P0) and 35 degrees (P35) of trunk flexion. The effect of the posture during the flight was tested by comparing left and right EMG (normalized with respect to P35). The in-flight muscle stress was evaluated by histograms of EMG activity, and compared to P0 values. Only one pilot in ten showed significant (p<0.05) correlation between the vibration and the EMG over cycles of vibration, and no consistent causal effect was found. The pilots' posture did not show significant asymmetric muscular activity, and low EMG levels were observed during most of the duration of the flight. The results do not provide evidence that LBP in helicopter pilots is caused by ES muscle stress in the conditions studied.  相似文献   

12.
Standing during cycling may increase overall muscular activity. However, effects of standing vs. seated posture on performance measures during repeated bouts have not been extensively explored. The purpose of this study was to examine the effects of standing vs. seated posture on repeated Wingate performance. Healthy volunteers (n = 35) performed 3 consecutive Wingate anaerobic power tests (W(1), W(2), W(3)) in a standing (STA) as well as seated (SIT) posture. Within-group comparisons were made for peak power, mean power, minimum power, and fatigue index. Results were considered significant at p < or = 0.05. No significant differences were found for peak power in W(1), W(2), or W(3). No significant difference was found for mean power in W(1) or W(2), but significant differences were found for mean power in W(3) (STA: 451.5 +/- 105.3, SIT: 425.7 +/- 110.0); minimum power in W(1) (STA: 433.6 +/- 100.8, SIT: 381.5 +/- 96.9), W(2) (STA: 348.1 +/- 112.9, SIT: 308.0 +/- 95.8), W(3) (STA: 292.0 +/- 103.6, SIT: 265.3 +/- 90.8); and fatigue index: W(1) (STA: 51.3 +/- 10.7, SIT: 56.9 +/- 9.3), W(2) (STA: 56.5 +/- 12.6, SIT: 61.8 +/- 12.2), W(3) (STA: 59.4 +/- 13.1, SIT: 63.6 +/- 12.4). Results suggest that a standing posture enhances performance during repeated Wingate cycling. The enhancement is most likely due to an attenuated loss in power, which in turn improves fatigue index.  相似文献   

13.
The detection of vibration applied to the glabrous skin of the hand varies with contact conditions. Three experiments have been conducted to relate variations in the perception of hand-transmitted vibration to previously reported properties of tactile channels. The effects of a surround around the area of contact, the size of the area of contact, the location of the area of contact, the contact force, and the hand posture on perception of thresholds were determined for 8-500 Hz vibration. Removal of a surround around a contact area on the fingertip elevated thresholds of the NP II channel (FA I fibres) at frequencies less than 31.5 Hz and reduced thresholds of the Pacinian channel (FA II fibres) at frequencies greater than about 63 Hz. When no surround was present, thresholds reduced systematically as the contact area increased from the fingertip to the whole hand at frequencies from 16 to 125 Hz, although the decrease was not inversely proportional to the increase in contact area. The results are partly explained by spatial summation in the Pacinian channel (FA II fibres) and the involvement of the NP II channel (SA II) with some influence of biodynamic responses and contact pressures. There were regional differences in sensitivity over the hand within the NP I channel but not within the Pacinian channel: the NP I thresholds (less than 31.5 Hz) decreased from proximal to distal regions of the hand, whereas the Pacinian thresholds (125 Hz) were independent of contact location over the hand.  相似文献   

14.
A two-dimensional, sagittally-symmetric biomechanical model was developed to analyze the joint moments required to stabilize the trunk in a seated, dynamic, weight-moving task. Kinematic and reaction force data were measured while subjects moved a hand-held weight (0-4 kgf) at shoulder level to and fro at 1 Hz. These data were then used for model input and validation purposes. A second, simpler model was used to simulate how joint loads varied with weight held, trunk inclination, and movement frequency. The results for this seated task demonstrate a) significant trunk, hip, knee, and ankle joint moments (37, 13, 4, 13 percent of maximum strength values, respectively) were required, b) considerable intersubject differences in mean joint moments (more than 66 percent) were found, which primarily were due to subtle differences in body segment kinematics and lower extremities use, and c) the important role of the lower extremities in stabilizing the trunk in the seated posture.  相似文献   

15.
Effect of posture and locomotion on energy expenditure   总被引:3,自引:0,他引:3  
Energy expenditure for human adults and infants and for dogs was measured in resting (supine or lateral) posture, in bipedal posture and locomotion, and in quadrupedal posture and locomotion. Variations in respiratory and heart rate and in body temperature were utilized in this comparative study. Oxygen consumption was also measured in human adults. In human adults, bipedal posture and locomotion were shown to be much less energy-consuming than corresponding quadrupedal posture and locomotion. The opposite was observed in adult dogs, where bipedalism was shown to be much more energy-consuming than quadrupedalism. In addition, this study demonstrated, for human adults in their natural erect posture, an energy expenditure barely higher than in supine or lateral resting posture, while the dogs in their natural quadrupedal stance, the energy expenditure is much higher than in their resting posture. With respect to energy, therefore, humans are more adapted to bipedalism than dogs to quadrupedalism. Human children, at the transitional stage between quadrupedalism and bipedalism, have high and almost equal requirements for all postures and locomotions. This demonstrates, in term of energy, their incomplete adaptation to erect behavior.  相似文献   

16.
The roles of antidiuretic hormone (ADH) and aldosterone in the elicited diuretic responses of trained and untrained men to seated, supine, and head-out water immersed conditions were studied. Volunteers were comprised of groups of six untrained individuals, six trained swimmers, and six trained runners. Each subject underwent three protocols, six hours in a seated position, supine position, or immersion (35 degrees C water). The last two protocols were preceded and followed by 1 h of seated position. After 10 h of fasting, 0.5% body wt of water was drunk. One hour later the trained groups had higher urine osmolalities (P less than 0.05) and urinary excretion rates of ADH (P less than 0.05) and lower urine flow rates (P less than 0.05) than untrained subjects. Throughout the sitting protocol, urinary ADH was also higher in both trained groups (P less than 0.05). Both supine posture and immersion resulted in significant decreases in urinary ADH in the untrained subjects (P less than 0.05) but no changes wer noted in swimmers and only during the second hour of immersion in the runners (P less than 0.05). The natriuresis and kaliuresis were greater during immersion than in the supine position but plasma renin activity, measured only in trained groups, and plasma aldosterone, measured in the untrained group, were decreased similarly with both protocols. The increases in urinary sodium excretion and urine flow rate were lower in trained than untrained subjects during the supine and immersion protocols (P less than 0.05). The data are compatible with an increased osmotic but decreased volume sensitivity of ADH control in trained men.  相似文献   

17.
The purpose of this study was to examine whether and how cycle time duration affects energy expenditure and substrate utilization during whole-body vibration (WBV). Nine men performed 3 squatting exercises in execution frequency cycles of 6, 4, and 2 seconds to 90 degrees knee flexion with vibration (Vb+) (frequency was set at 30 Hz and the amplitude of vibration was 4 mm) and without vibration (Vb-) during 3 minutes, each with an additional load of 30% of the subject's body weight. A 2-way analysis of variance for VO2 revealed a significant vibration condition main effect (p < 0.001) and a cycle time duration effect (p < 0.001). When differences were analyzed by Fisher's LSD test, cycle time duration of 2 seconds was significantly different from 4 and 6 seconds, both in Vb+ and Vb-. Total energy expenditure (EE(tot)), carbohydrate oxidation rate (EE(cho)), and fat oxidation rate (EE(fat)) demonstrated a significant vibration condition main effect (EE(tot): p < 0.01; EE(cho): p < 0.001; EE(fat): p < 0.001) and cycle time duration main effect (EE(tot) and EE(cho): p < 0.001; EE(fat): p < 0.01). EE(tot), EE(cho), and EE(fat) post hoc comparisons indicated that values for the 2-second test significantly differed from 4 and 6 seconds when compared in the same vibration condition. VO2 and EE values were greater in Vb+ than in Vb- conditions with the same cycle time duration. Our study confirms that squatting at a greater frequency helps to maximize energy expenditure during exercise with or without vibration. Therefore, cycle time duration must be controlled when vibration exercise is prescribed.  相似文献   

18.
Several studies have investigated the transmission of vibration from the vibrating plate of a whole-body vibration training machine (WBVTM) to different locations on the human body. No known work has investigated the interface force between the vibrating plate of the machine and the human body. This paper investigates the effect of bending the knees and the vibration frequency on the interface force (presented as apparent mass (AM)) between the vibrating plate and the body. Twelve male subjects stood with four different knee angles (180, 165, 150 and 135°) and were exposed to sinusoidal vertical vibration at eight frequencies in the range of 17–42 Hz. The vertical acceleration and the interface force between the body and the vibrating plate were measured and used to calculate the AM. The acceleration and force depended on the frequency and were found to vary with both the adopted posture and subject. The AM generally decreased with increasing the frequency but showed a peak at 24 Hz which was clearer when the knees were bent. Bending the knees showed an effect similar to increasing the damping of a system with base excitation; increasing the damping reduced the AM in the resonance region but increased the AM at higher frequencies. Users of WBVTMs have to be careful when choosing the training posture: although, as shown in previous studies, bending the knees reduces the transmission of vibration to the spine, it increases the interface forces which might indicate increased stresses on the lower legs and joints.  相似文献   

19.
Rollover crashes are dynamic and complex events in which head impacts with the roof can cause catastrophic neck injuries. Ex vivo and computational models are valuable in understanding, and ultimately preventing, these injuries. Although neck posture and muscle activity influence the resulting injury, there is currently no in vivo data describing these parameters immediately prior to a head-first impact. The specific objectives of this study were to determine the in vivo neck vertebral alignment and muscle activation levels when upside down, a condition that occurs during a rollover. Eleven human subjects (6F, 5M) were tested while seated upright and inverted in a custom-built apparatus. Vertebral alignment was measured using fluoroscopy and muscle activity was recorded using surface and indwelling electrodes in eight superficial and deep neck muscles. In vivo vertebral alignment and muscle activation levels differed between the upright and inverted conditions. When inverted and relaxed, the neck was more lordotic, C1 was aligned posterior to C7, the Frankfort plane was extended, and the activity of six muscles increased compared to upright and relaxed. When inverted subjects were asked to look forward to eliminate head extension, flexor muscle activity increased, C7 was more flexed, and C1 was aligned anterior to C7 versus upright and relaxed. Combined with the large inter-subject variability observed, these findings indicate that cadaveric or computational models designed to study injuries and prevention devices while inverted need to consider a variety of postures and muscle conditions to be relevant to the in vivo situation.  相似文献   

20.
The air pollutant ozone induces both airway inflammation and restrictions in lung function. These responses have been proposed to arise as a consequence of the oxidizing nature of ozone, depleting endogenous antioxidant defenses with ensuing tissue injury. In this study we examined the impact of an environmentally relevant ozone challenge on the antioxidant defenses present at the surface of the lung in two groups known to have profound differences in their antioxidant defense network: healthy control (HC) and mild asthmatic (MA) subjects. We hypothesized that baseline differences in antioxidant concentrations within the respiratory tract lining fluid (RTLF), as well as induced responses, would predict the magnitude of individual responsiveness. We observed a significant loss of ascorbate (ASC) from proximal (-45.1%, p <.01) and distal RTLFs (-11.7%, p <.05) in healthy subjects 6 h after the end of the ozone challenge. This was associated (Rs, -0.71, p <.01) with increased glutathione disulphide (GSSG) in these compartments (p =.01 and p <.05). Corresponding responses were not seen in asthmatics, where basal ASC concentrations were significantly lower (p <.01) and associated with elevated concentrations of GSSG (p <.05). In neither group was any evidence of lipid oxidation seen following ozone. Despite differences in antioxidant levels and response, the magnitude of ozone-induced neutrophilia (+20.6%, p <.01 [HC] vs. +15.2%, p =.01 [MA]) and decrements in FEV(1) (-8.0%, p <.01 [HC] vs. -3.2%, p <.05 [MA]) did not differ between the two groups. These data demonstrate significant differences between the interaction of ozone with RTLF antioxidants in MA and HC subjects. These responses and variations in basal antioxidant defense were not, however, useful predictive markers of group or individual responsiveness to ozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号