共查询到20条相似文献,搜索用时 0 毫秒
1.
Amy Davidson Krystyna Patora-Komisarska John A. Robinson Gabriele Varani 《Nucleic acids research》2011,39(1):248-256
The pharmacological disruption of the interaction between the HIV Tat protein and its cognate transactivation response RNA (TAR) would generate novel anti-viral drugs with a low susceptibility to drug resistance, but efforts to discover ligands with sufficient potency to warrant pharmaceutical development have been unsuccessful. We have previously described a family of structurally constrained β-hairpin peptides that potently inhibits viral growth in HIV-infected cells. The nuclear magnetic resonance (NMR) structure of an inhibitory complex revealed that the peptide makes intimate contacts with the 3-nt bulge and the upper helix of the RNA hairpin, but that a single residue contacts the apical loop where recruitment of the essential cellular co-factor cyclin T1 occurs. Attempting to extend the peptide to form more interactions with the RNA loop, we examined a library of longer peptides and achieved >6-fold improvement in affinity. The structure of TAR bound to one of the extended peptides reveals that the peptide slides down the major groove of the RNA, relative to our design, in order to maintain critical interactions with TAR. These conserved contacts involve three amino acid side chains and identify critical interaction points required for potent and specific binding to TAR RNA. They constitute a template of essential interactions required for inhibition of this RNA. 相似文献
2.
3.
4.
5.
The binding of polyamidoamine (PAMAM) dendrimer or Tat peptide to trans-acting responsive element (TAR) RNA has been studied using microgravimetric quartz crystal microbalance (QCM). Experimental results showed that PAMAM dendrimer could form complexes with TAR RNA. Especially, PAMAM dendrimer could disrupt the interaction of Tat peptide with TAR RNA, which is essential for HIV-1 virus replication, suggesting that QCM is a powerful tool for studying the binding processes of Tat peptide-TAR RNA and drug-TAR RNA and has great significance for the design of new drugs. An equation to measure the binding ability between TAR RNA and other species has been proposed. 相似文献
6.
7.
Rotational symmetry in ribonucleotide strand requirements for binding of HIV-1 Tat protein to TAR RNA. 总被引:1,自引:0,他引:1 下载免费PDF全文
R W Barnett U Delling R Kuperman N Sonenberg M Sumner-Smith 《Nucleic acids research》1993,21(1):151-154
Transactivation of human immunodeficiency virus (HIV) gene expression requires binding of the viral Tat protein to a RNA hairpin-loop structure (TAR) which contains a two or three-nucleotide bulge. Tat binds in the vicinity of the bulge and the two adjacent duplex stems, recognising both specific sequence and structural features of TAR. Binding is mediated by an arginine-rich domain, placing Tat in the family of arginine-rich RNA binding proteins that includes other transactivators, virus capsid proteins and ribosome binding proteins. In order to determine what features of TAR allow Tat to bind efficiently to RNA but not DNA forms, we examined Tat binding to a series of RNA-DNA hybrids. We found that only one specific strand in each duplex stem region needs to be RNA, implying that interaction between Tat and a given stem may be solely or predominantly with one of the two strands. However, the essential strand is not the same one for each stem, suggesting a switch in the bound strand on opposing sides of the bulge. 相似文献
8.
9.
Trans-activation by HIV-1 Tat via a heterologous RNA binding protein 总被引:57,自引:0,他引:57
10.
11.
The ability of RNA structures to adopt diverse yet complex tertiary structures has resulted in numerous fascinating RNA-protein recognition events. It was recently reported that a close relative of the HIV Rev peptide, namely a 17 residue Tat peptide from bovine immuno-deficiency virus (BIV), is able to bind to the 28 nucleotide BIV TAR RNA construct. Here we report that by simply converting the 17 residue beta-ribbon peptide structure to a 19 residue cyclopeptide, the binding affinity (Kd) of the resulting cyclopeptide to the TAR RNA target, observed by fluorescence binding study, was enhanced approximately 5-fold. 相似文献
12.
13.
Quantitative study of HIV-1 Tat peptide and TAR RNA interaction inhibited by poly(allylamine hydrochloride) 总被引:1,自引:0,他引:1
Zhao H Dai D Li J Chen Y Jiang L 《Biochemical and biophysical research communications》2003,312(2):351-354
The interaction of poly(allylamine hydrochloride) (PAH) with TAR RNA has been studied by quartz crystal microbalance (QCM) cooperating with capillary electrophoresis (CE). Experimental results showed that PAH had high affinity for TAR RNA. In particular, PAH could disrupt the interaction of Tat peptide with TAR RNA, which is critical for HIV-1 virus replication. The approaches described here indicate that they are powerful for studying the binding processes of Tat peptide-TAR RNA and drug-TAR RNA, having great significance for the design of new drug. 相似文献
14.
Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. 总被引:22,自引:4,他引:18
Human cyclin T1 (hCycT1), a major subunit of the essential elongation factor P-TEFb, has been proposed to act as a cofactor for human immunodeficiency virus type 1 (HIV-1) Tat. Here, we show that murine cyclin T1 (mCycT1) binds the activation domain of HIV-1 Tat but, unlike hCycT1, cannot mediate Tat function because it cannot be recruited efficiently to TAR. In fact, overexpression of mCycT1, but not hCycT1, specifically inhibits Tat-TAR function in human cells. This discordant phenotype results from a single amino acid difference between hCycT1 and mCycT1, a tyrosine in place of a cysteine at residue 261. These data indicate that the ability of Tat to recruit CycT1/P-TEFb to TAR determines the species restriction of HIV-1 Tat function in murine cells and therefore demonstrate that this recruitment is a critical function of the Tat protein. 相似文献
15.
Oligonucleotide inhibition of the interaction of HIV-1 Tat protein with the trans-activation responsive region (TAR) of HIV RNA 总被引:1,自引:0,他引:1
Mestre B Arzumanov A Singh M Boulmé F Litvak S Gait MJ 《Biochimica et biophysica acta》1999,1445(1):86-98
The interaction of HIV-1 Tat protein with its recognition sequence, the trans-activation responsive region TAR is a potential target for drug discovery against HIV infection. We show by use of an in vitro competition filter binding interference assay that synthetic oligodeoxyribonucleotides complementary to the HIV-1 TAR RNA apical stem-loop and bulge region inhibit the binding of Tat protein or a Tat peptide (residues 37-72) better than two small molecules that have been shown to bind TAR RNA, Hoechst 33258 and neomycin B. The inhibition is not sensitive to length between 13 and 16 residues or precise positioning but shorter oligonucleotides are less effective. Enhanced inhibition was obtained for a 16-mer 2'-O-methyl oligoribonucleotide but not for C5-propyne pyrimidine-substituted oligonucleotides. Control non-antisense oligonucleotides were occasionally also effective in filter binding interference but only the complementary antisense 2'-O-methyl oligoribonucleotide was effective in gel mobility shift assays in direct TAR binding or in interference with Tat peptide binding to the TAR stem-loop. This is the first demonstration of effective inhibition of the Tat-TAR interaction by nuclease-stabilized oligonucleotide analogues. 相似文献
16.
17.
Molecular basis of HIV-1 TAR RNA specific recognition by an acridine tat-antagonist. 总被引:1,自引:0,他引:1
We investigated the interaction of a highly potent acridine-based tat-antagonist with the TAR RNA of HIV-1. The wild type TAR RNA and three mutants with U-->C23, G x C-->C x G26-39 or G x C-->A x U26-39 substitutions were used as substrates to study the molecular basis of drug-TAR RNA complex formation. Melting temperature and RNase protection experiments reveal that the G x C26-39 pair is a critical element for specific major groove recognition of TAR at the pyrimidine bulge. The results provide a rational basis for future design of optimized tat/TAR inhibitors. 相似文献
18.
TAR RNA-binding protein, TRBP, was recently discovered to be an essential partner for Dicer and a crucial component of the RNA-induced silencing complex (RISC), a critical element of the RNA interference (RNAi) of the cell apparatus. Human TRBP was originally characterized and cloned 15 years ago based on its high affinity for binding the HIV-1 encoded leader RNA, TAR. RNAi is used, in part, by cells to defend against infection by viruses. Here, we report that transfected TAR RNA can attenuate the RNAi machinery in human cells. Our data suggest that TAR RNA sequesters TRBP rendering it unavailable for downstream Dicer-RISC complexes. TAR-induced inhibition of Dicer-RISC activity in transfected cells was partially relieved by exogenous expression of TRBP. 相似文献
19.
Lise Pascale Alejandro López González Audrey Di Giorgio Marc Gaysinski Jordi Teixido Closa Roger Estrada Tejedor 《Journal of biomolecular structure & dynamics》2016,34(11):2327-2338
A series of pentameric “Polyamide Amino Acids” (PAAs) compounds derived from the same trimeric precursor have been synthesized and investigated as HIV TAR RNA ligands, in the absence and in the presence of a Tat fragment. All PAAs bind TAR with similar sub-micromolar affinities but their ability to compete efficiently with the Tat fragment strongly differs, IC50 ranging from 35 nM to >2 μM. While NMR and CD studies reveal that all PAA interact with TAR at the same site and induce globally the same RNA conformational change upon binding, a comparative thermodynamic study of PAA/TAR equilibria highlights distinct TAR binding modes for Tat competitor and non-competitor PAAs. This led us to suggest two distinct interaction modes that have been further validated by molecular modeling studies. While the binding of Tat competitor PAAs induces a contraction at the TAR bulge region, the binding of non-competitor ones widens it. This could account for the distinct PAA ability to compete with Tat fragment. Our work illustrates how comparative thermodynamic studies of a series of RNA ligands of same chemical family are of value for understanding their binding modes and for rationalizing structure-activity relationships. 相似文献
20.
B Baker M Muckenthaler E Vives A Blanchard M Braddock W Nacken A J Kingsman S M Kingsman 《Nucleic acids research》1994,22(16):3365-3372
The Tat protein binds to TAR RNA to stimulate the expression of the human immunodeficiency virus type 1 (HIV-1) genome. Tat is an 86 amino acid protein that contains a short region of basic residues (aa49-aa57) that are required for RNA binding and TAR is a 59 nucleotide stem-loop with a tripyrimidine bulge in the upper stem. TAR is located at the 5' end of all viral RNAs. In vitro, Tat specifically interacts with TAR by recognising the sequence of the bulge and upper stem, with no requirement for the loop. However, in vivo the loop sequence is critical for activation, implying a requirement for accessory cellular TAR RNA binding factors. A number of TAR binding cellular factors have been identified in cell extracts and various models for the function of these factors have been suggested, including roles as coactivators and inhibitors. We have now identified a novel 38 kD cellular factor that has little general, single-stranded or double-stranded RNA binding activity, but that specifically recognises the bulge and upper stem region of TAR. The protein, referred to as BBP (bulge binding protein), is conserved in mammalian and amphibian cells and in Schizosaccharomyces pombe but is not found in Saccharomyces cerevisiae. BBP is an effective competitive inhibitor of Tat binding to TAR in vitro. Our data suggest that the bulge-stem recognition motif in TAR is used to mediate cellular factor/RNA interactions and indicates that Tat action might be inhibited by such competing reactions in vivo. 相似文献