首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differentiation stage of the caulonema in Funaria hygrometrica protonema is distinguished from the chloronema stage by three additional protein bands (CSP) in the soluble protein fraction. During the change of caulonema to chloronema, which is induced by isolation of single filaments (regeneration), the CSP disappear. This is not the consequence of an accelerated degradation or turnover but of a gradual termination in the de novo synthesis of CSP during regeneration as demonstrated by pulse-chase experiments with l -[4,5–3H] leucine. Cytokinin inhibits the termination of the synthesis of CSP. The decrease in synthesis parallels the decrease in ability of the isolated caulonema cells to respond to cytokinin via bud formation. It is therefore concluded that the CSP are involved in the competence of caulonema cells to respond to cytokinins.  相似文献   

2.
As in higher plants, the development of the moss Physcomitrella patens is regulated by environmental signals and phytohormones. At the protonema level transition from chloronema to caulonema cells is under auxin control. The formation on second sub-apical caulonema cells of buds that will give rise to the leafy gametophore requires cytokinins. Using [3H]azidoCPPU (1-(2-azido-6-chloropyrid-4-yl)-3-(4-[3H])phenylurea), a photoactivatable cytokinin agonist, we have specifically photolabelled a soluble 34 kDa protein of P. patens. Urea derivatives were very efficient competitors of photolabelling while purine-type cytokinins were poor competitors. The protein UBP34 was purified by affinity chromatography and the sequences of six internal peptides obtained. A cDNA encoding UBP34 was cloned by screening a P. patens protonema cDNA library with a probe amplified by PCR using degenerate primers designed from the peptide sequences. The UBP34 amino acid sequence shows an average sequence identity of 42% with both intracellular PR proteins and the BetV1-related family of plant allergens. Recombinant UBP34 expressed in Escherichia coli was confirmed to bind azidoCPPU.  相似文献   

3.
J. Erichsen  B. Knoop  M. Bopp 《Planta》1977,135(2):161-168
Soluble proteins extracted with Tris-buffer pH 8.8 from both differentiation stages of the protonema of Funaria hygrometrica (chloronema and caulonema) were separated by microgel electrophoresis. 4x10-3 mg protein/gel was applied. The caulonema, which is the only part of the protonema able to form buds following cytokinin treatment, contained 3 protein bands, which were absent in chloronema. We designate them as caulonema specific proteins (CSP, approximate molecular weight 500,000). The CSP disappear when the caulonema is isolated and its cells regenerate to chloronema. The CSP bind kinetin (6 Furfurylamino [8-14C]purine) or BAP (6-benzylamino[8-14C]purine) about 10 times stronger than the remaining protein bands in the gel. The greatest part of the cytokinin is metabolized in a short time and consequently a part of the activity in the gel is incorporated into RNA and removable with RNase. Simultaneous application of adenosine and cytokinin reduced the incorporation of radioactivity into RNA and enhanced the specific activity in one of the CSP bands. In all other bands it remained unchanged.From the results it can be suggested that the CSP are probably involved in the early reactions to cytokinin of the target cells.Abbreviations CSP Caulonema specific proteins - BAP 6-benzylaminopurine - GA1 gibberellin A1  相似文献   

4.
The spore germination, protonemal development, and gametophyte differentiation of Hypnum pacleseens were observed in cultivation. Photomicrographs showed that spore germination of Hypnum pacleseens occured within the exospore. Its protonema is massive with filamentous chloronema formed inside. The terminal part of the chloronema differentiated into filamentous caulonema and its rhizoid was derived from the apical cell of the filamentous chloronema. The initial cell of gametophyte differentiated from chloronema and caulonema. Sporeling-type of Hypnum pacleseens is developmentally similar to Glyphmitrium-type.  相似文献   

5.
Uptake, transport and metabolism of cytokinin in the protonemaof Funaria hygrometrica were studied using labelled kinetin(6-furfurylamino [8-14C]-purine). All cells of the protonema,chloronema and caulonema, were able to take up kinetin, whichwas carried in the symplastic transport system from cell tocell. Radioactivity was especially accumulated in growing cellsof the protonema. Kinetin was metabolized immediately afteruptake. While only very little kinetin (less than 1%) remainedas free kinetin and one part was immobilized in chromatographicseparation [e.g. attached to proteins and incorporated intonucleic acids (17)], most of the remaining kinetin was metabolizedto adenine derivatives. Exogenously supplied adenosine changedthe metabolism of kinetin. In the caulonema, adenosine reducedthe turnover of kinetin to other adenine derivatives and enhancedthe content of labelling in the start fraction. Thus adenosinecan stimulate cytokinin-dependent bud formation in moss protonema. (Received November 24, 1977; )  相似文献   

6.
The spore germination,protonemal development,and gametophyte differentiation of Hypnum pacleseens were observed in cultivation.Photomicrographs showed that spore germination of Hypnum pacleseens occured within the exospore.Its protonema is massive with filamentous chloronema formed inside.The terminal part of the chloronema differentiated into filamentous caulonema and its rhizoid was derived from the apical cell of the filamentous chloronema.The initial cell of gametophyte differentiated from chloronema and caulonema.Sporeling type of Hypnum pacleseens is developmentally similar to Glyphmitrium-type.  相似文献   

7.
8.
9.
尖叶拟船叶藓原丝体发育特征研究   总被引:3,自引:0,他引:3  
将尖叶拟船叶藓[Dolichomitriopsis diversiformis(Mitt.)Nog.]孢子接种于Knop培养基上,置于恒温培养箱中培养,在光学显微镜下对其原丝体(protonema)发育特征进行了详细观察和记录。结果表明:孢子第2天就开始萌发,第6天时其萌发率达90%以上;原丝体系统由绿丝体(chloronema)和轴丝体(caulonema)构成,假根(rhizoides)产生于芽体基部,由轴丝体退化而成;配子枝原始细胞产生于绿丝体分枝的基部或轴丝体上的斜壁细胞;配子枝(game tophore)形成后其上各部位都可形成假根;孢子萌发类型为真藓型(Bryum-type)。  相似文献   

10.
Studies on cytokinin-controlled bud formation in moss protonemata   总被引:9,自引:6,他引:3       下载免费PDF全文
Application of cytokinins to moss protonemata of the proper physiological age causes bud formation on specific cells (caulonema). During the early stages of their development, buds revert to protonemal filaments if the cytokinin has been removed by washing the protonemata. This indicates that the hormone is not acting as a “trigger” but has to be present during a critical period of time until differentiation is stabilized. Autoradiographs of protonemata treated with a labeled cytokinin, benzyladenine-benzyl-7-14C, show a striking accumulation of the radioactivity in caulonema cells which are in the stage of bud formation, and in the buds themselves. Cells which did not react to the hormone contained very little radioactivity. The accumulation of benzyladenine in the “target cells” may be due to the presence of binding sites which, in turn, may distinguish responding cells from non-responding ones.  相似文献   

11.
The position of the gametophytic bud was examined in relationto the development of protonema in the moss, Physcomitrium sphaericum. Positions of protrusion formation, of the development of protrusionsinto lateral filaments, and of the differentiation of protrusionsinto buds are restricted within the narrow regions of the filaments.The number of cells from the apical cell of the filament tothese positions are constant in any size filament. The growth pattern of the protonema is shown as follow. As afilament grows one-dimensionally through divisions of the apicalcell, new protrusions are produced successively on the 5th cellfrom the apical cell or on its vicinity. The cells which intervenebetween the apical cell and this protrusion increase in numberas the apical cell divides. When this protrusion is positionedat the 8th or 9th cell from the apex, it differentiates intoa bud or a lateral filament. This growth pattern is common toboth the main and lateral filaments. Buds are differentiated not only on caulonema cells in the mainand lateral filament, but also on chloronema cells at the baseof the lateral filaments. (Received December 14, 1981; Accepted April 24, 1982)  相似文献   

12.
S H Hahm  M J Saunders 《Cell calcium》1991,12(10):675-681
Changes in intracellular [Ca2+] ([Ca2+]i) after cytokinin-treatment in protonema cells of the moss Funaria hygrometrica have been measured using the pentapotassium salt of Indo-1. The extent of dye loading strongly depended on lowering the pH of the incubation medium to 5.0. Exposing dye-loaded cells briefly with Mn2+ did not quench fluorescence suggesting that the source of fluorescence is from the cytoplasm and not from the cell wall. Indo-1 remains responsive to changes in [Ca2+]i in Funaria cells. The [Ca2+]i in quiescent cells (with and without extracellular Ca2+) is 250 nM, which is within the range of reported [Ca2+]i of other plant cells. Treatment of cells with extracellular cytokinin in 4 mM Ca2+ induced a three-fold increase in [Ca2+]i to 750 nM in target caulonema cells. This increase was not observed in Ca(2+)-free medium. These target cells respond to cytokinin treatment by an asymmetrical division, while non-target chloronema cells do not divide. Cytokinin appears to increase [Ca2+]i by extracellular Ca2+ uptake. However, non-target chloronema cells and tip cells also respond to cytokinin treatment by increasing [Ca2+]i. The differential physiological response of these cell types to hormonal stimulation must lie further down the signal transduction chain.  相似文献   

13.
Auxin (indole-3-acetic acid) regulates caulonema differentiation as a result of gradual transitional events in the chloronema tip cells in moss protonema. This auxin action in the moss Funaria hygrometrica involves a rapid influx of calcium ions from the extracellular medium. This investigation demonstrates spatial and temporal changes in calmodulin (CaM) activation (formation of Ca(2+)-CaM complex) in the chloronema tip cells subjected to auxin treatment. Photomicroscopic localisation of the fluorescence (excitation at 365 nm and emission of 397 nm) from the tricomplex of Ca(2+)-CaM with trifluoperazine (TFP, a blocker of Ca(2+)-CaM action) shows a tip to base (tip high) gradient of Ca(2+)-CaM in the chloronema tip cells. Comparison of Ca(2+)-CaM-TFP fluorescence over time in the chloronema tip cells of wild type Funaria with the response in an auxin overproducer mutant (86.1) and an auxin deficient mutant (87.13) reveals the involvement of auxin in calmodulin activation as a rapid response prior to cell differentiation.  相似文献   

14.
15.
We have investigated the presence of auxin and the ability of chloronema cells to synthesize indole-3-acetic acid (IAA) in axenic protonema cell cultures of the moss Funaria hygrometrica. The endogenous level of auxin activity was 4 and 7μg-IAA equivalents/kg in caulonema and chloronema cell types, respectively. Based on an indole-α-pyrone fluorometric assay, the level of putative IAA was observed to be 5.0 and 1.9.μg/kg in caulonema and chloronema cells, respectively. [3H]Tryptophan was metabolized into IAA via the indole-pyruvate pathway by intact chloronema cells and also by the cell free homogenates. More [3H]IAA accumulated when homogenates from cells pre-grown at low cell densities (< 0.5 mg/ml) as compared to those at high cell densities ( > 0.5 mg/ml) were used. Since the activities of peroxidase and IAA-oxidase are known to be high at high cell densities, the lack of accumulation of radioactivity in IAA at high densities can be attributed to a high level of IAA-oxidizing enzymes. Our results suggest a possible relationship between IAA accumulation and caulonema differentiation.  相似文献   

16.
In the present study, the mode of formation of the protonema ofDrummondia sinensis is recorded and the relationship between the sporeling type as a response to ecological adaptation is discussed. A spore germinates inside the stretched exospore, and later forms a massive protonema consisting of 8–20 cells. Soon after, the stretched spore coat ruptures and a mass of 5–6 cells protrdes from the broken exospore. In this species neither chloronema nor caulonema could be observed, although such is often seen in other species of Bryales. An initial cell of the leafy shoot is formed from the apical cell of the massive protonema.  相似文献   

17.
The induction of shoot buds in the moss Funaria hygrometrica is a classic and quantitative bioassay for cytokinin. This cytokinin-stimulated response can be inhibited by the plant hormone abscisic acid, ABA; the inhibition is concentration dependent and was proposed for use as a bioassay for ABA. This paper characterizes the ABA inhibition of the cytokinin-stimulated formation of shoot buds. Experiments transferring protonema between cytokinin and cytokinin plus ABA show that ABA does not interfere with the initial perception of cytokinin. Other experiments compare the results of transferring protonema from cytokinin to cytokinin-free medium or to medium with cytokinin plus ABA and reveal that ABA acts by blocking the cytokinin-mediated stable commitment of nascent buds. Extension of the technique of double-reciprocal plots to this whole-organism bioassay finds that ABA is not a competitive inhibitor of cytokinin. Analysis of the ABA inhibition of bud formation identifies a new regulatory step in the developmental process of bud formation in mosses.  相似文献   

18.
19.
通过对采自河北雾灵山海拔1500m的仙鹤藓(Atrichum undulatum)的孢子萌发以及原丝体发育的观察,发现仙鹤藓孢子无休眠现象,孢子接种3天左右萌发:其原丝体发育分为绿丝体和轴丝体两个阶段。扩大培养实验结果表明。仙鹤藓茎叶体在添加2%葡萄糖的MS培养基上,置于25℃/20℃、14小时光照/10小时黑暗、36μmol·m^-2·s^-1条件下培养.产生新生茎叶体最多,且茎叶体长势最好,可以获得大量无菌材料。仙鹤藓愈伤组织诱导实验显示,形成愈伤组织的最佳培养基为添加2%葡萄糖和1.0mg·L^-16-BA的MS培养基。  相似文献   

20.
Unique Tissue-Specific Cell Cycle in Physcomitrella   总被引:1,自引:0,他引:1  
Abstract: The moss Physcomitrella patens (Hedw.) B.S.G. is a novel tool in plant functional genomics as it has an inimitable high gene targeting efficiency facilitating the establishment of gene/function relationships.
Here we report, based on flow cytrometric (FCM) data, that the basic nuclear DNA content per cell of Physcomitrella is 0.53 pg, equating to a genome size of 1 C = 511 Mbp. Furthermore, we describe a unique tissue-specific cell cycle change in this plant. Young plants consisting of only one cell type (chloronema) displayed one single peak of fluorescence in FCM analyses. As soon as the second cell type (caulonema) developed from chloronema, a second peak of fluorescence at half the intensity of the previous one became detectable, indicating that caulonema cells were predominantly at the G1/S transition, whereas chloronema cells were mainly accumulating at the G2/M transition. This conclusion was validated by further evidence: i) The addition of ammonium tartrate arrested Physcomitrella in the chloronema state and in G2/M. ii) Two different developmental mutants, known to be arrested in the chloronema/caulonema transition, remained in G2/M, regardless of age and treatment. iii) The addition of auxin or cytokinin induced the formation of caulonema, as well as decreasing the amount of cells in G2/M phase. Additionally, plant growth regulators promoted endopolyploidisation.
Thus, cell cycle and cell differentiation are closely linked in Physcomitrella and effects of plant hormones and environmental factors on both processes can be analysed in a straight forward way. We speculate that this unique tissue-specific cell cycle arrest may be the reason for the uniquely high rate of homologous recombination found in the Physcomitrella nuclear DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号