首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetradecylthioacetic acid (TTA) is a non-beta-oxidizable fatty acid analog, which potently regulates lipid homeostasis. Here we evaluate the ability of TTA to prevent diet-induced and genetically determined adiposity and insulin resistance. In Wistar rats fed a high fat diet, TTA administration completely prevented diet-induced insulin resistance and adiposity. In genetically obese Zucker (fa/fa) rats TTA treatment reduced the epididymal adipose tissue mass and improved insulin sensitivity. All three rodent peroxisome proliferator-activated receptor (PPAR) subtypes were activated by TTA in the ranking order PPARalpha > PPARdelta > PPARgamma. Expression of PPARgamma target genes in adipose tissue was unaffected by TTA treatment, whereas the hepatic expression of PPARalpha-responsive genes encoding enzymes involved in fatty acid uptake, transport, and oxidation was induced. This was accompanied by increased hepatic mitochondrial beta-oxidation and a decreased fatty acid/ketone body ratio in plasma. These findings indicate that PPARalpha-dependent mechanisms play a pivotal role, but additionally, the involvement of PPARalpha-independent pathways is conceivable. Taken together, our results suggest that a TTA-induced increase in hepatic fatty acid oxidation and ketogenesis drains fatty acids from blood and extrahepatic tissues and that this contributes significantly to the beneficial effects of TTA on fat mass accumulation and peripheral insulin sensitivity.  相似文献   

2.
Lowering of plasma triglyceride levels by hypolipidemic agents is caused by a shift in the liver cellular metabolism, which become poised toward peroxisome proliferator-activated receptor (PPAR) alpha-regulated fatty acid catabolism in mitochondria. After dietary treatment of rats with the hypolipidemic, modified fatty acid, tetradecylthioacetic acid (TTA), the energy state parameters of the liver were altered at the tissue, cell, and mitochondrial levels. Thus, the hepatic phosphate potential, energy charge, and respiratory control coefficients were lowered, whereas rates of oxygen uptake, oxidation of pyridine nucleotide redox pairs, beta-oxidation, and ketogenesis were elevated. Moderate uncoupling of mitochondria from TTA-treated rats was confirmed, as the proton electrochemical potential (Delta(p)) was 15% lower than controls. The change affected the Delta(Psi) component only, leaving the (Delta)pH component unaltered, suggesting that TTA causes induction of electrogenic ion transport rather than electrophoretic fatty acid activity. TTA treatment induced expression of hepatic uncoupling protein 2 (UCP-2) in rats as well as in wild type and PPARalpha-deficient mice, accompanied by a decreased double bond index of the mitochondrial membrane lipids. However, changes of mitochondrial fatty acid composition did not seem to be related to the effects on mitochondrial energy conductance. As TTA activates PPARdelta, we discuss how this subtype might compensate for deficiency of PPARalpha. The overall changes recorded were moderate, making it likely that liver metabolism can maintain its function within the confines of its physiological regulatory framework where challenged by a hypolipemic agent such as TTA, as well as others.  相似文献   

3.
Peroxisome proliferator-activated receptor-alpha (PPARα) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPARα agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPARα agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPARα. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P<0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPARα via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.  相似文献   

4.
Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors which are activated by fatty acids and derivatives. The PPAR alpha form has been shown to mediate the action of the hypolipidemic drugs of the fibrate class on lipid and lipoprotein metabolism. PPAR alpha activators furthermore improve glucose homeostasis and influence body weight and energy homeostasis. It is likely that these actions of PPAR alpha activators on lipid, glucose and energy metabolism are, at least in part, due to the increase of hepatic fatty acid beta-oxidation resulting in an enhanced fatty acid flux and degradation in the liver. Moreover, PPARs are expressed in different immunological and vascular wall cell types where they exert anti-inflammatory and proapoptotic activities. The observation that these receptors are also expressed in atherosclerotic lesions suggests a role in atherogenesis. Finally, PPAR alpha activators correct age-related dysregulations in redox balance. Taken together, these data indicate a modulatory role for PPAR alpha in the pathogenesis of age-related disorders, such as dyslipidemia, insulin resistance and chronic inflammation, predisposing to atherosclerosis.  相似文献   

5.
Hwang B  Wu P  Harris RA 《The FEBS journal》2012,279(10):1883-1893
Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) may prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it may have detrimental effects by inhibiting fatty acid oxidation. Peroxisome proliferator-activated receptor α (PPARα) agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment using a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild-type and PDK4 knockout mice fed a high-fat diet. As expected, treatment of wild-type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, reduced blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid, and a reduction in the capacity for fatty acid synthesis as a result of PDK4 deficiency.  相似文献   

6.
Tetradecylthioacetic acid (TTA) is a novel peroxisome proliferator-activated receptor (PPAR) ligand with marked hypolipidemic and insulin-sensitizing effects in obese models. TTA has recently been shown to attenuate dyslipidemia in patients with type 2 diabetes, corroborating the potential for TTA in antidiabetic therapy. In a recent study on normal mice, we showed that TTA increased myocardial fatty acid (FA) oxidation, which was associated with decreased cardiac efficiency and impaired postischemic functional recovery. The aim of the present study was, therefore, to elucidate the effects of TTA treatment (0.5%, 8 days) on cardiac metabolism and function in a hyperlipidemic type 2 diabetic model. We found that TTA treatment increased myocardial FA oxidation, not only in nondiabetic (db/+) mice but also in diabetic (db/db) mice, despite a clear lipid-lowering effect. Although TTA had deleterious effects in hearts from nondiabetic mice (decreased efficiency and impaired mitochondrial respiratory capacity), these effects were not observed in db/db hearts. In db/db hearts, TTA improved ischemic tolerance, an effect that is most likely related to the antioxidant property of TTA. The present study strongly advocates the need for investigation of the cardiac effects of PPAR ligands used in antidiabetic/hypolipidemic therapy, because of their pleiotropic properties.  相似文献   

7.
Tetradecylthioacetic acid (TTA) is a hypolipidemic modified fatty acid and a peroxisome proliferator-activated receptor (PPAR) ligand. The mechanisms of TTA-mediated effects seem to involve the PPARs, but the effects have not been assigned to any specific PPAR subtype. PPARα−/− mice were employed to study the role of PPARα after TTA treatment. We also performed in vitro transfection assays to obtain mechanistic knowledge of how TTA affected PPAR activation in the presence of PPARγ coactivator (PGC)-1 and steroid receptor coactivators (SRC)-1 and SRC-2, which are associated with energy balance and mitochondrial biogenesis. We show that TTA increases hepatic fatty acid β-oxidation in PPARα−/− mice. TTA acts as a pan-PPAR ligand in vitro, and PGC-1, SRC-1 and SRC-2 have cell type and PPAR-specific effects together with TTA. In the absence of exogenous ligands, SRC-1 did not induce PPAR activity, while PGC-1 was the most potent PPAR coactivator. When the coactivators were overexpressed, pronounced effects of TTA were observed especially for PPARδ and PPARγ. We conclude that PPARα is involved in, but not required for, the hypolipidemic mechanisms of TTA. It appears that the activity of PPARδ, with substantial contribution of nuclear receptor coactivators, PGC-1 in special, is conducive to TTA's mechanism of action.  相似文献   

8.
9.
Li H  Song Y  Zhang LJ  Gu Y  Li FF  Pan SY  Jiang LN  Liu F  Ye J  Li Q 《PloS one》2012,7(6):e36712
Lipid storage droplet protein 5 (LSDP5) is a lipid droplet-associated protein of the PAT (perilipin, adipophilin, and TIP47) family that is expressed in the liver in a peroxisome proliferator-activated receptor alpha (PPARα)-dependent manner; however, its exact function has not been elucidated. We noticed that LSDP5 was localized to the surface of lipid droplets in hepatocytes. Overexpression of LSDP5 enhanced lipid accumulation in the hepatic cell line AML12 and in primary hepatocytes. Knock-down of LSDP5 significantly decreased the triglyceride content of lipid droplets, stimulated lipolysis, and modestly increased the mitochondrial content and level of fatty-acid β-oxidation in the mitochondria. The expression of PPARα was increased in LSDP5-deficient cells and required for the increase in the level of fatty acid β-oxidation in LSDP5-deficient cells. Using serial deletions of LSDP5, we determined that the lipid droplet-targeting domain and the domain directing lipid droplet clustering overlapped and were localized to the 188 amino acid residues at the N-terminus of LSDP5. Our findings suggest that LSDP5, a novel lipid droplet protein, may contribute to triglyceride accumulation by negatively regulating lipolysis and fatty acid oxidation in hepatocytes.  相似文献   

10.
Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a nuclear receptor that mediates the antidiabetic effects of thiazolidinediones. PPAR gamma is present in adipose tissue and becomes elevated in fatty livers, but the roles of specific tissues in thiazolidinedione actions are unclear. We studied the function of liver PPAR gamma in both lipoatrophic A-ZIP/F-1 (AZIP) and wild type mice. In AZIP mice, ablation of liver PPAR gamma reduced the hepatic steatosis but worsened the hyperlipidemia, triglyceride clearance, and muscle insulin resistance. Inactivation of AZIP liver PPAR gamma also abolished the hypoglycemic and hypolipidemic effects of rosiglitazone, demonstrating that, in the absence of adipose tissue, the liver is a primary and major site of thiazolidinedione action. In contrast, rosiglitazone remained effective in non-lipoatrophic mice lacking liver PPAR gamma, suggesting that adipose tissue is the major site of thiazolidinedione action in typical mice with adipose tissue. Interestingly, mice without liver PPAR gamma, but with adipose tissue, developed relative fat intolerance, increased adiposity, hyperlipidemia, and insulin resistance. Thus, liver PPAR gamma regulates triglyceride homeostasis, contributing to hepatic steatosis, but protecting other tissues from triglyceride accumulation and insulin resistance.  相似文献   

11.
Nonalcoholic fatty liver disease (NAFLD) is a major contributing factor to hepatic insulin resistance in type 2 diabetes. Diacylglycerol acyltransferase (Dgat), of which there are two isoforms (Dgat1 and Dgat2), catalyzes the final step in triglyceride synthesis. We evaluated the metabolic impact of pharmacological reduction of DGAT1 and -2 expression in liver and fat using antisense oligonucleotides (ASOs) in rats with diet-induced NAFLD. Dgat1 and Dgat2 ASO treatment selectively reduced DGAT1 and DGAT2 mRNA levels in liver and fat, but only Dgat2 ASO treatment significantly reduced hepatic lipids (diacylglycerol and triglyceride but not long chain acyl CoAs) and improved hepatic insulin sensitivity. Because Dgat catalyzes triglyceride synthesis from diacylglycerol, and because we have hypothesized that diacylglycerol accumulation triggers fat-induced hepatic insulin resistance through protein kinase C epsilon activation, we next sought to understand the paradoxical reduction in diacylglycerol in Dgat2 ASO-treated rats. Within 3 days of starting Dgat2 ASO therapy in high fat-fed rats, plasma fatty acids increased, whereas hepatic lysophosphatidic acid and diacylglycerol levels were similar to those of control rats. These changes were associated with reduced expression of lipogenic genes (SREBP1c, ACC1, SCD1, and mtGPAT) and increased expression of oxidative/thermogenic genes (CPT1 and UCP2). Taken together, these data suggest that knocking down Dgat2 protects against fat-induced hepatic insulin resistance by paradoxically lowering hepatic diacylglycerol content and protein kinase C epsilon activation through decreased SREBP1c-mediated lipogenesis and increased hepatic fatty acid oxidation.  相似文献   

12.
Diets rich in mono or polyunsaturated fats have been associated with a healthy phenotype, but there is controversial evidence about coconut oil (CO), which is rich in saturated medium-chain fatty acids. Therefore, the purpose of the present work was to study whether different types of oils rich in polyunsaturated (soybean oil, SO), monounsaturated (olive oil, OO), or saturated fatty acids (coconut oil, CO) can regulate the gut microbiota, insulin sensitivity, inflammation, mitochondrial function in wild type and PPARα KO mice. The group that received SO showed the highest microbial diversity, increase in Akkermansia muciniphila, high insulin sensitivity and low grade inflammation, The OO group showed similar insulin sensitivity and insulin signaling than SO, increase in Bifidobacterium, increase in fatty acid oxidation and low grade inflammation. The CO consumption led to the lowest bacterial diversity, a 9-fold increase in the LPS concentration leading to metabolic endotoxemia, hepatic steatosis, increased lipogenesis, highest LDL-cholesterol concentration and the lowest respiratory capacity and fatty acid oxidation in the mitochondria. The absence of PPARα decreased alpha diversity and increased LPS concentration particularly in the CO group, and increased insulin sensitivity in the groups fed SO or OO. These results indicate that consuming mono or polyunsaturated fatty acids produced health benefits at the recommended intake but a high concentration of oils (three times the recommended oil intake in rodents) significantly decreased the microbial alpha-diversity independent of the type of oil.  相似文献   

13.
Objective: Preclinical evaluation of DRF 2655, a peroxisome proliferator‐activated receptor alpha (PPARα) and PPARγ agonist, as a body‐weight lowering, hypolipidemic and euglycemic agent. Research Methods and Procedures: DRF 2655 was studied in different genetic, normal, and hyperlipidemic animal models. HEK 293 cells were used to conduct the reporter‐based transactivation of PPARα and PPARγ. To understand the biochemical mechanism of lipid‐, body‐weight‐, and glucose‐lowering effects, activities of key β‐oxidation and lipid catabolism enzymes and gluconeogenic enzymes were studied in db/db mice treated with DRF 2655. 3T3L1 cells were used for adipogenesis study, and HepG2 cells were used to study the effect of DRF 2655 on total cholesterol and triglyceride synthesis using [14C]acetate and [3H]glycerol. Results: DRF 2655 showed concentration‐dependent transactivation of PPARα and PPARγ. In the 3T3L1 cell‐differentiation study, DRF 2655 and rosiglitazone showed 369% and 471% increases, respectively, in triglyceride accumulation. DRF 2655 showed body‐weight lowering and euglycemic and hypolipidemic effects in various animal models. db/db mice treated with DRF 2655 showed 5‐ and 3.6‐fold inhibition in phosphoenolpyruvate carboxykinase and glucose 6‐phosphatase activity and 651% and 77% increases in the β‐oxidation enzymes carnitine palmitoyltransferase and carnitine acetyltransferase, respectively. HepG2 cells treated with DRF 2655 showed significant reduction in lipid synthesis. Discussion: DRF 2655 showed excellent euglycemic and hypolipidemic activities in different animal models. An exciting finding is its body‐weight lowering effect in these models, which might be mediated by the induction of target enzymes involved in hepatic lipid catabolism through PPARα activation.  相似文献   

14.
A selection of amphipatic hyper- and hypolipidemic fatty acid derivatives (fibrates, thia- and branched chain fatty acids) are reviewed. They are probably all ligands for the peroxisome proliferation activation receptor (PPARalpha) which has a low selectivity for its ligands. These compounds give hyper- or hypolipidemic responses depending on their ability to inhibit or stimulate mitochondrial fatty acid oxidation in the liver. The hypolipidemic response is explained by the following metabolic effects: Lipoprotein lipase is induced in liver where it is normally not expressed. Apolipoprotein CIII is downregulated. These two effects in liver lead to a facilitated (re)uptake of chylomicrons and VLDL, thus creating a direct transport of fatty acids from the gut to the liver. Fatty acid metabolizing enzymes in the liver (CPT-I and II, peroxisomal and mitochondrial beta-oxidation enzymes, enzymes of ketogenesis, and omega-oxidation enzymes) are induced and create an increased capacity for fatty acid oxidation. The increased oxidation of fatty acids "drains" fatty acids from the body, reduces VLDL formation, and ultimately explains the antiadiposity and improved insulin sensitivity observed after administration of peroxisome proliferators.  相似文献   

15.
Hypertriglyceridemia is a common lipid abnormality in persons with visceral obesity, metabolic syndrome and type 2 diabetes. Hypertriglyceridemia typically occurs in conjunction with low HDL levels and atherogenic small dense LDL particles and is associated with increased cardiovascular risk. Insulin resistance is often an underlying feature and results in increased free fatty acid (FFA) delivery to the liver due to increased peripheral lipolysis. Increased hepatic VLDL production occurs due to increased substrate availability via FFAs, decreased apolipoprotein B100 degradation and increased lipogenesis. Postprandial hypertriglyceridemia also is a common feature of insulin resistance. Small dense LDL that coexist with decreased HDL particles in hypertriglyceridemic states are highly pro-atherogenic due to their enhanced endothelial permeability, proteoglycan binding abilities and susceptibility to oxidation. Hypertriglyceridemia also occurs in undertreated individuals with type 1 diabetes but intensive glucose control normalizes lipid abnormalities. However, development of visceral obesity in these patients unravels a similar metabolic profile as in patients with insulin resistance. Modest hypertriglyceridemia increases cardiovascular risk, while marked hypertriglyceridemia should be considered a risk for pancreatitis. Lifestyle modification is an important therapeutic strategy. Drug therapy is primarily focused on lowering LDL levels with statins, since efforts at triglyceride lowering and HDL raising with fibrates and/or niacin have not yet been shown to be beneficial in improving cardiovascular risk. Fibrates, however, are first-line agents when marked hypertriglyceridemia is present. This article is part of a Special Issue entitled Triglyceride Metabolism and Disease.  相似文献   

16.
1. When livers from fed rats were perfused with blood containing elevated concentrations of rat insulin or blood to which fructose was added, the oxidation of free fatty acids was depressed and their esterification was increased. 2. Raised concentrations of insulin or addition of fructose increased secretion of triglyceride in very-low-density lipoproteins, but only insulin caused more of the free fatty acids taken up by the liver to be incorporated into very-low-density lipoproteins. 3. When insulin and fructose were added together the combined effect on oxidation and esterification of free fatty acids and on secretion of very-low-density lipoproteins was equal to the sum of the effects of either alone. No statistically significant interaction between the effects of fructose and insulin was found for any of the parameters investigated. 4. Bovine insulin had similar effects, in most respects, to comparable studies with raised concentrations of rat insulin. 5. Lipogenesis was increased in the livers treated with fructose plus bovine insulin. 6. A significant proportion of the fatty acids in very-low-density lipoproteins were derived either from the liver triglyceride pool or from lipogenesis. This fraction was increased both by treatment with insulin or fructose, and was augmented further when both insulin and fructose were present together. 7. The uptake of fructose by the perfused liver was similar to that found in vivo. It was unaffected by the presence of insulin. 8. Addition of fructose to the perfused liver caused perfusate lactate concentrations to increase, as a result of diminished hepatic uptake of lactate. 9. The uptake of free fatty acids by the perfused liver was unaffected by the addition of either insulin or fructose. 10. The distribution among the various lipid classes in plasma lipoproteins of label arising from the hepatic uptake of [(14)C]oleate was unaltered by the addition of either fructose or insulin. 11. It is suggested that the effects described are due principally to control of the balance between esterification of fatty acids and lipolysis of the ensuing triglyceride, fructose enhancing esterification and insulin inhibiting lipolysis.  相似文献   

17.
To assess the possible role of altered hepatic processing of free fatty acids in dietary sucrose-induced accumulation of triglyceride in the liver and blood plasma, livers from rats fed commercial laboratory stock and high sucrose diets were perfused both with and without oleic acid substrate. Consumption of the sucrose diet exerted a multiplicity of effects on oleic acid metabolism, characterized by decreased conversion to both ketone bodies and carbon dioxide, increased esterification into liver triglyceride, and increased secretion in triglyceride-rich lipoproteins. During the infusion of oleic acid, livers from sucrose-fed rats also exhibited decreased ketogenesis, and increased secretion of triglyceride from endogenous sources. Since oleic acid uptake from the perfusion medium was identical in both groups, the observed effects of sucrose feeding are ascribed to altered rates of intracellular metabolic processes. Mass and radiochemical analyses of perfusate ketone bodies and triglycerides were indicative of greater mobilization of triglycerides from hepatocellular lipid droplets in the livers from sucrose-fed rats. These livers contained more triglyceride and secreted more triglyceride even in the absence of infused oleic acid. In summary, the sucrose-rich diet increased the esterification:oxidation ratio of intracellular free fatty acids derived from both the circulation and endogenous sources within the hepatocyte. In response, secretion of triglyceride-rich lipoproteins by the liver and deposition of triglyceride within the liver were promoted. It is concluded that alterations in the processing of free fatty acids by the liver contribute significantly to the liver and plasma triglyceride accumulation following sucrose consumption.  相似文献   

18.
19.
20.
Rats with carnitine deficiency due to trimethylhydrazinium propionate (mildronate) administered at 80 mg/100 g body weight per day for 10 days developed liver steatosis only upon fasting. This study aimed to determine whether the transient steatosis resulted from triglyceride accumulation due to the amount of fatty acids preserved through impaired fatty acid oxidation and/or from up-regulation of lipid exchange between liver and adipose tissue. In liver, mildronate decreased the carnitine content by approximately 13-fold and, in fasted rats, lowered the palmitate oxidation rate by 50% in the perfused organ, increased 9-fold the triglyceride content, and doubled the hepatic very low density lipoprotein secretion rate. Concomitantly, triglyceridemia was 13-fold greater than in controls. Hepatic carnitine palmitoyltransferase I activity and palmitate oxidation capacities measured in vitro were increased after treatment. Gene expression of hepatic proteins involved in fatty acid oxidation, triglyceride formation, and lipid uptake were all increased and were associated with increased hepatic free fatty acid content in treated rats. In periepididymal adipose tissue, mildronate markedly increased lipoprotein lipase and hormone-sensitive lipase activities in fed and fasted rats, respectively. On refeeding, carnitine-depleted rats exhibited a rapid decrease in blood triglycerides and free fatty acids, then after approximately 2 h, a marked drop of liver triglycerides and a progressive decrease in liver free fatty acids. Data show that up-regulation of liver activities, peripheral lipolysis, and lipoprotein lipase activity were likely essential factors for excess fat deposit and release alternately occurring in liver and adipose tissue of carnitine-depleted rats during the fed/fasted transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号