首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 542 毫秒
1.
M Wei  D Ye  D Dunaway-Mariano 《Biochemistry》2001,40(45):13466-13473
Pyruvate phosphate dikinase (PPDK) catalyzes the reversible reaction: ATP + P(i) + pyruvate <--> AMP + PP(i) + PEP using Mg2+ and NH4+ ions as cofactors. The reaction takes place in three steps, each mediated by a carrier histidine residue located on the surface of the central domain of this three-domain enzyme: (1) E-His + ATP <--> E-His-PP.AMP, (2) E-His-PP.AMP + P(i) <--> E-His-P + AMP + PP(i), (3) E-His-P + pyruvate <--> E-His + PEP. The first two partial reactions are catalyzed at an active site located on the N-terminal domain, and the third partial reaction is catalyzed at an active site located on the C-terminal domain. For catalytic turnover, the central domain travels from one terminal domain to the other. The goal of this work is to determine whether the two connecting linkers direct the movement of the central domain between active sites during catalytic turnover. The X-ray crystal structure of the enzyme suggests interaction between the two linkers that may result in their coordinated movement. Mutations were made at the linkers for the purpose of disrupting the linker-linker interaction and, hence, synchronized linker movement. Five linker mutants were analyzed. Two of these contain 4-Ala insertions within the solvated region of the linker, and three have 3-residue deletions in this region. The efficiencies of the mutants for catalysis of the complete reaction as well as the E-His + ATP <--> E-His-PP.AMP partial reaction at the N-terminal domain and the E-His + PEP <--> E-His-P + pyruvate reaction at the C-terminal domain were measured to assess linker function. Three linker mutants are highly active catalysts at both active sites, and the fourth is highly active at one site but not the other. These results are interpreted as evidence against coordinated linker movement, and suggest instead that the linkers move independently as the central domain travels between active sites. It is hypothesized that while the linkers play a passive role in central domain-terminal domain docking, their structural design minimizes the conformational space searched in the diffusion process.  相似文献   

2.
The central phosphatase domain of Clostridium thermocellum polynucleotide kinase/phosphatase (CthPnkp) belongs to the dinuclear metallophosphoesterase superfamily. Prior mutational studies of CthPnkp identified 7 individual active site side chains (Asp-187, His-189, Asp-233, Asn-263, His-323, His-376, and Asp-392) required for Ni2+-dependent hydrolysis of p-nitrophenyl phosphate. Here we find that Mn2+-dependent phosphomonoesterase activity requires two additional residues, Arg-237 and His-264. We report that CthPnkp also converts bis-p-nitrophenyl phosphate to p-nitrophenol and inorganic phosphate via a processive two-step mechanism. The Ni2+-dependent phosphodiesterase activity of CthPnkp requires the same seven side chains as the Ni2+-dependent phosphomonoesterase. However, the Mn2+-dependent phosphodiesterase activity does not require His-189, Arg-237, or His-264, each of which is critical for the Mn2+-dependent phosphomonoesterase. Mutations H189A, H189D, and D392N transform the metal and substrate specificity of CthPnkp such that it becomes a Mn2+-dependent phosphodiesterase. The H189E change results in a Mn2+/Ni2+-dependent phosphodiesterase. Mutations H376N, H376D, and D392E convert the enzyme into a Mn2+-dependent phosphodiesterase-monoesterase. The phosphodiesterase activity is strongly stimulated compared with wild-type CthPnkp when His-189 is changed to Asp, Arg-237 is replaced by Ala or Gln, and His-264 is replaced by Ala, Asn, or Gln. Steady-state kinetic analysis of wild-type and mutated enzymes illuminates the structural features that affect substrate affinity and kcat. Our results highlight CthPnkp as an "undifferentiated" diesterase-monoesterase that can evolve toward narrower metal and substrate specificities via alterations of the active site milieu.  相似文献   

3.
DNA ligase D (LigD) catalyzes end-healing and end-sealing steps during nonhomologous end joining in bacteria. Pseudomonas aeruginosa LigD consists of a central ATP-dependent ligase domain fused to a C-terminal polymerase domain and an N-terminal 3'-phosphoesterase (PE) module. The PE domain catalyzes manganese-dependent phosphodiesterase and phosphomonoesterase reactions at a duplex primer-template with a short 3'-ribonucleotide tract. The phosphodiesterase, which cleaves a 3'-terminal diribonucleotide to yield a primer strand with a ribonucleoside 3'-PO4 terminus, requires the vicinal 2'-OH of the penultimate ribose. The phosphomonoesterase converts the terminal ribonucleoside 3'-PO4 to a 3'-OH. Here we show that the PE domain has a 3'-phosphatase activity on an all-DNA primer-template, signifying that the phosphomonoesterase reaction does not depend on a 2'-OH. The distinctions between the phosphodiesterase and phosphomonoesterase activities are underscored by the results of alanine-scanning, limited proteolysis, and deletion analysis, which show that the two reactions depend on overlapping but nonidentical ensembles of protein functional groups, including: (i) side chains essential for both ribonuclease and phosphatase activity (His-42, His-48, Asp-50, Arg-52, His-84, and Tyr-88); (ii) side chains important for 3'-phosphatase activity but not for 3' ribonucleoside removal (Arg-14, Asp-15, Glu-21, Gln-40, and Glu-82); and (iii) side chains required selectively for the 3'-ribonuclease (Lys-66 and Arg-76). These constellations of critical residues are unique to LigD-like proteins, which we propose comprise a new bifunctional phosphoesterase family.  相似文献   

4.
As defined by hydropathy analysis, the membrane-spanning segments of the yeast plasma membrane H(+)-ATPase contain seven negatively charged amino acids (Asp and Glu) and four positively charged amino acids (Arg and His). To explore the functional role of these residues, site-directed mutants at all 11 positions and at Glu-288, located near the cytoplasmic end of M3, have been constructed and expressed in yeast secretory vesicles. Substitutions at four of the positions (Glu-129, Glu-288, Asp-833, and Arg-857) had no significant effect on ATP hydrolysis or ATP-dependent proton pumping, substitutions at five additional positions (Arg-695, His-701, Asp-730, Asp-739, and Arg-811) led to misfolding of the ATPase and blockage at an early stage of biogenesis, and substitutions of Asp-143 allowed measurable biogenesis but nearly abolished ATP hydrolysis and proton transport. Of greatest interest were mutations of Glu-703 in M5 and Glu-803 in M8, which altered the apparent coupling between hydrolysis and transport. Three Glu-703 mutants (E703Q, E703L, E703D) showed significantly reduced pumping over a wide range of hydrolysis values and thus appeared to be partially uncoupled. At Glu-803, by contrast, one mutant (E803N) was almost completely uncoupled, while another (E803Q) pumped protons at an enhanced rate relative to the rate of ATP hydrolysis. Both Glu-703 and Glu-803 occupy positions at which amino acid substitutions have been shown to affect transport by mammalian P-ATPases. Taken together, the results provide growing evidence that residues in membrane segments 5 and 8 of the P-ATPases contribute to the cation transport pathway and that the fundamental mechanism of transport has been conserved throughout the group.  相似文献   

5.
Strictly conserved charged residues among polygalacturonases (Asp-180, Asp-201, Asp-202, His-223, Arg-256, and Lys-258) were subjected to site-directed mutagenesis in Aspergillus niger endopolygalacturonase II. Specific activity, product progression, and kinetic parameters (K(m) and V(max)) were determined on polygalacturonic acid for the purified mutated enzymes, and bond cleavage frequencies on oligogalacturonates were calculated. Depending on their specific activity, the mutated endopolygalacturonases II were grouped into three classes. The mutant enzymes displayed bond cleavage frequencies on penta- and/or hexagalacturonate different from the wild type endopolygalacturonase II. Based on the biochemical characterization of endopolygalacturonase II mutants together with the three-dimensional structure of the wild type enzyme, we suggest that the mutated residues are involved in either primarily substrate binding (Arg-256 and Lys-258) or maintaining the proper ionization state of a catalytic residue (His-223). The individual roles of Asp-180, Asp-201, and Asp-202 in catalysis are discussed. The active site topology is different from the one commonly found in inverting glycosyl hydrolases.  相似文献   

6.
Tai CL  Pan WC  Liaw SH  Yang UC  Hwang LH  Chen DS 《Journal of virology》2001,75(17):8289-8297
The carboxyl terminus of the hepatitis C virus (HCV) nonstructural protein 3 (NS3) possesses ATP-dependent RNA helicase activity. Based on the conserved sequence motifs and the crystal structures of the helicase domain, 17 mutants of the HCV NS3 helicase were generated. The ATP hydrolysis, RNA binding, and RNA unwinding activities of the mutant proteins were examined in vitro to determine the functional role of the mutated residues. The data revealed that Lys-210 in the Walker A motif and Asp-290, Glu-291, and His-293 in the Walker B motif were crucial to ATPase activity and that Thr-322 and Thr-324 in motif III and Arg-461 in motif VI significantly influenced ATPase activity. When the pairing between His-293 and Gln-460, referred to as gatekeepers, was replaced with the Asp-293/His-460 pair, which makes the NS3 helicase more like the DEAD helicase subgroup, ATPase activity was not restored. It thus indicated that the whole microenvironment surrounding the gatekeepers, rather than the residues per se, was important to the enzymatic activities. Arg-461 and Trp-501 are important residues for RNA binding, while Val-432 may only play a coadjutant role. The data demonstrated that RNA helicase activity was possibly abolished by the loss of ATPase activity or by reduced RNA binding activity. Nevertheless, a low threshold level of ATPase activity was found sufficient for helicase activity. Results in this study provide a valuable reference for efforts under way to develop anti-HCV therapeutic drugs targeting NS3.  相似文献   

7.
Here we report that bacteriophage T4 RNA ligase 2 (Rnl2) is an efficient catalyst of RNA ligation at a 3'-OH/5'-PO(4) nick in a double-stranded RNA or an RNA.DNA hybrid. The critical role of the template strand in approximating the reactive 3'-OH and 5'-PO(4) termini is underscored by the drastic reductions in the RNA-sealing activity of Rnl2 when the duplex substrates contain gaps or flaps instead of nicks. RNA nick joining requires ATP and a divalent cation cofactor (either Mg or Mn). Neither dATP, GTP, CTP, nor UTP can substitute for ATP. We identify by alanine scanning seven functionally important amino acids (Tyr-5, Arg-33, Lys-54, Gln-106, Asp-135, Arg-155, and Ser-170) within the N-terminal nucleotidyl-transferase domain of Rnl2 and impute specific roles for these residues based on the crystal structure of the AMP-bound enzyme. Mutational analysis of 14 conserved residues in the C-terminal domain of Rnl2 identifies 3 amino acids (Arg-266, Asp-292, and Glu-296) as essential for ligase activity. Our findings consolidate the evolutionary connections between bacteriophage Rnl2 and the RNA-editing ligases of kinetoplastid protozoa.  相似文献   

8.
Histidine-containing protein, HPr, of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system has an active site that involves His-15, which is phosphorylated to form a N delta 1-P-histidine, Arg-17, and the carboxy-terminal residue Glu-85. Mutant HPrs with alterations to the three C-terminal residues, Glu-85, Leu-84, and Glu-83, were produced by site-directed mutagenesis. The properties of these mutants were assessed by kinetic analysis of enzyme I, enzyme IImannose, enzyme IIN-acetylglucosamine, and enzyme IImannitol, and the phosphohydrolysis properties of the HPr mutants. The results show that it is the C-terminal alpha-carboxyl of Glu-85 that is involved in the active site, and this involvement may be restricted to the phosphoryl donor action of HPr. The contribution of this alpha-carboxyl group is modest as the deletion of Glu-85 resulted in the reduction of the enzyme II activity (kcat/Km) to about 33%. Removal of both Glu-85 and Leu-84 yields an HPr that is an impaired substrate of both the enzyme I and enzyme II reactions. Glu-83 appears to have no role in the active site.  相似文献   

9.
Protection of the Ca2+ATPase (SERCA) from proteinase K digestion has been observed following the addition of Ca2+, Mg2+, and nucleotide and interpreted as a substrate-dependent conformational change (1). The protected digestion site is located on the loop connecting the A domain and the M3 transmembrane helix. We studied by mutational analysis the protective effect of AMP-PCP, an ATP analog that is not utilized for enzyme phosphorylation. We found that the nucleotide protective effect is interfered with by single mutations of Arg-560 and Glu-439 in the N domain and Lys-352, Lys-684, Thr-353, Asp-703, and Asp-707 in the P domain. This is consistent with a transition from the open to the compact configuration of the ATPase headpiece and approximation of the N and P domains by interactions with the nucleotide adenosine and phosphate moieties, respectively. The A domain-M3 loop is consequently involved. Protection by nucleotide substrate increased following the mutations of Asp-351 (the residue undergoing phosphorylation by ATP) and neighboring Asn-706 to Ala, underlying the importance of side chain specificity in positioning the nucleotide terminal phosphate and limiting the stability of the substrate-enzyme complex. Protection is not observed when AMP-PCP is added in the absence of Ca2+ or following mutations (E771Q or N796A) that interfere with Ca2+ binding. Therefore, nucleotide binds to the Ca2+-activated enzyme in the open headpiece conformation and the consequent approximation of the N and P domains occurs while the transmembrane domain is still in the Ca2+-bound conformation. Mg2+ is not required for the protective effect of nucleotide, even though it is specifically required for the subsequent catalytic reactions.  相似文献   

10.
NAD+-dependent DNA ligase (LigA) is essential for bacterial growth and a potential target for antimicrobial drug discovery. Here we queried the role of 14 conserved amino acids of Escherichia coli LigA by alanine scanning and thereby identified five new residues within the nucleotidyltransferase domain as being essential for LigA function in vitro and in vivo. Structure activity relationships were determined by conservative mutagenesis for the Glu-173, Arg-200, Arg-208, and Arg-277 side chains, as well as four other essential side chains that had been identified previously (Lys-115, Asp-117, Asp-285, and Lys-314). In addition, we identified Lys-290 as important for LigA activity. Reference to the structure of Enterococcus faecalis LigA allowed us to discriminate three classes of essential/important side chains that: (i) contact NAD+ directly (Lys-115, Glu-173, Lys-290, and Lys-314); (ii) comprise the interface between the NMN-binding domain (domain Ia) and the nucleotidyltransferase domain or comprise part of a nick-binding site on the surface of the nucleotidyltransferase domain (Arg-200 and Arg-208); or (iii) stabilize the active site fold of the nucleotidyltransferase domain (Arg-277). Analysis of mutational effects on the isolated ligase adenylylation and phosphodiester formation reactions revealed different functions for essential side chains at different steps of the DNA ligase pathway, consistent with the proposal that the active site is serially remodeled as the reaction proceeds.  相似文献   

11.
The roles of the Escherichia coli H(+)-ATPase (FoFl) delta subunit (177 amino acid residues) was studied by analyzing mutants. The membranes of nonsense (Gln-23----end, Gln-29----end, Gln-74----end) and missense (Gly-150----Asp) mutants had very low ATPase activities, indicating that the delta subunit is essential for the binding of the Fl portion to Fo. The Gln-176----end mutant had essentially the same membrane-bound activity as the wild type, whereas in the Val-174----end mutant most of the ATPase activity was in the cytoplasm. Thus Val-174 (and possibly Leu-175 also) was essential for maintaining the structure of the subunit, whereas the two carboxyl terminal residues Gln-176 and Ser-177 were dispensable. Substitutions were introduced at various residues (Thr-11, Glu-26, Asp-30, Glu-42, Glu-82, Arg-85, Asp-144, Arg-154, Asp-161, Ser-163), including apparently conserved hydrophilic ones. The resulting mutants had essentially the same phenotypes as the wild type, indicating that these residues do not have any significant functional role(s). Analysis of mutations (Gly-150----Asp, Pro, or Ala) indicated that Gly-150 itself was not essential, but that the mutations might affect the structure of the subunit. These results suggest that the overall structure of the delta subunit is necessary, but that individual residues may not have strict functional roles.  相似文献   

12.
Galactose mutarotase catalyzes the conversion of beta-d-galactose to alpha-d-galactose during normal galactose metabolism. The enzyme has been isolated from bacteria, plants, and animals and is present in the cytoplasm of most cells. Here we report the x-ray crystallographic analysis of human galactose mutarotase both in the apoform and complexed with its substrate, beta-d-galactose. The polypeptide chain folds into an intricate array of 29 beta-strands, 25 classical reverse turns, and 2 small alpha-helices. There are two cis-peptide bonds at Arg-78 and Pro-103. The sugar ligand sits in a shallow cleft and is surrounded by Asn-81, Arg-82, His-107, His-176, Asp-243, Gln-279, and Glu-307. Both the side chains of Glu-307 and His-176 are in the proper location to act as a catalytic base and a catalytic acid, respectively. These residues are absolutely conserved among galactose mutarotases. To date, x-ray models for three mutarotases have now been reported, namely that described here and those from Lactococcus lactis and Caenorhabditis elegans. The molecular architectures of these enzymes differ primarily in the loop regions connecting the first two beta-strands. In the human protein, there are six extra residues in the loop compared with the bacterial protein for an approximate longer length of 9 A. In the C. elegans protein, the first 17 residues are missing, thereby reducing the total number of beta-strands by one.  相似文献   

13.
Chondroitinase B from Flavobacterium heparinum is the only known lyase that cleaves the glycosaminoglycan, dermatan sulfate (DS), as its sole substrate. A recent co-crystal structure of chondroitinase B with a disaccharide product of DS depolymerization has provided some insight into the location of the active site and suggested potential roles of some active site residues in substrate binding and catalysis. However, this co-crystal structure was not representative of the actual enzyme-substrate complex, because the disaccharide product did not have the right length or the chemical structure of the minimal substrate (tetrasaccharide) involved in catalysis. Therefore, only a limited picture of the functional role of active site residues in DS depolymerization was presented in previous structural studies. In this study, by docking a DS tetrasaccharide into the proposed active site of the enzyme, we have identified novel roles of specific active site amino acids in the catalytic function of chondroitinase B. Our conformational analysis also revealed a unique, symmetrical arrangement of active site amino acids that may impinge on the catalytic mechanism of action of chondroitinase B. The catalytic residues Lys-250, Arg-271, His-272, and Glu-333 along with the substrate binding residues Arg-363 and Arg-364 were mutated using site-directed mutagenesis, and the kinetics and product profile of each mutant were compared with recombinant chondroitinase B. Mutating Lys-250 to alanine resulted in inactivation of the enzyme, potentially attributable to the role of the residue in stabilizing the carbanion intermediate formed during enzymatic catalysis. The His-272 and Glu-333 mutants showed diminished enzymatic activity that could be indicative of a possible role for one or both residues in the abstraction of the C-5 proton from the galactosamine. In addition, the Arg-364 mutant had an altered product profile after exhaustive digestion of DS, suggesting a role for this residue in defining the substrate specificity of chondroitinase B.  相似文献   

14.
The α-kinases are a widely expressed family of serine/threonine protein kinases that exhibit no sequence identity with conventional eukaryotic protein kinases. In this report, we provide new information on the catalytic properties of the α-kinase domain of Dictyostelium myosin-II heavy chain kinase-A (termed A-CAT). Crystallization of A-CAT in the presence of MgATP yielded structures with AMP or adenosine in the catalytic cleft together with a phosphorylated Asp-766 residue. The results show that the β- and α-phosphoryl groups are transferred either directly or indirectly to the catalytically essential Asp-766. Biochemical assays confirmed that A-CAT hydrolyzed ATP, ADP, and AMP with kcat values of 1.9, 0.6, and 0.32 min−1, respectively, and showed that A-CAT can use ADP to phosphorylate peptides and proteins. Binding assays using fluorescent 2′/3′-O-(N-methylanthraniloyl) analogs of ATP and ADP yielded Kd values for ATP, ADP, AMP, and adenosine of 20 ± 3, 60 ± 20, 160 ± 60, and 45 ± 15 μm, respectively. Site-directed mutagenesis showed that Glu-713, Leu-716, and Lys-645, all of which interact with the adenine base, were critical for nucleotide binding. Mutation of the highly conserved Gln-758, which chelates a nucleotide-associated Mg2+ ion, eliminated catalytic activity, whereas loss of the highly conserved Lys-722 and Arg-592 decreased kcat values for kinase and ATPase activities by 3–6-fold. Mutation of Asp-663 impaired kinase activity to a much greater extent than ATPase, indicating a specific role in peptide substrate binding, whereas mutation of Gln-768 doubled ATPase activity, suggesting that it may act to exclude water from the active site.  相似文献   

15.
Several residues lining the ATP-binding site of Methanobacterium thermoautotrophicum nicotinamide mononucleotide adenylyltransferase (NMNATase) were mutated in an effort to better characterize their roles in substrate binding and catalysis. Residues selected were Arg-11 and Arg-136, both of which had previously been implicated as substrate binding residues, as well as His-16 and His-19, part of the HXGH active site motif and postulated to be of importance in catalysis. Kinetic studies revealed that both Arg-11 and Arg-136 contributed to the binding of the substrate, ATP. When these amino acids were replaced by lysines, the apparent Km values of the respective mutants for ATP decreased by factors of 1.3 and 2.9 and by factors of 1.9 and 8.8 when the same residues were changed to alanines. All four Arg mutants displayed unaltered Km values for NMN. The apparent kcat values of the R11K and R136K mutants were the same as those of WT NMNATase but the apparent kcat values of the alanine mutants had decreased. Crystal structures of the Arg mutants revealed NAD+ and SO42- molecules trapped at their active sites. The binding interactions of NAD+ were unchanged but the binding of SO42- was altered in these mutants compared with wild type. The alanine mutants at positions His-16 and His-19 retained approximately 6 and 1.3%, respectively, of WT NMNATase activity indicating that His-19 is a key catalytic group. Surprisingly, this H19A mutant displayed a novel and distinct mode of NAD+ binding when co-crystallized in the presence of NAD+ and SO42-.  相似文献   

16.
Imidazolonepropionase (EC 3.5.2.7) catalyzes the third step in the universal histidine degradation pathway, hydrolyzing the carbon-nitrogen bonds in 4-imidazolone-5-propionic acid to yield N-formimino-l-glutamic acid. Here we report the crystal structures of the Bacillus subtilis imidazolonepropionase and its complex at 2.0-A resolution with substrate analog imidazole-4-acetic acid sodium (I4AA). The structure of the native enzyme contains two domains, a TIM (triose-phosphate isomerase) barrel domain with two insertions and a small beta-sandwich domain. The TIM barrel domain is quite similar to the members of the alpha/beta barrel metallo-dependent hydrolase superfamily, especially to Escherichia coli cytosine deaminase. A metal ion was found in the central cavity of the TIM barrel and was tightly coordinated to residues His-80, His-82, His-249, Asp-324, and a water molecule. X-ray fluorescence scan analysis confirmed that the bound metal ion was a zinc ion. An acetate ion, 6 A away from the zinc ion, was also found in the potential active site. In the complex structure with I4AA, a substrate analog, I4AA replaced the acetate ion and contacted with Arg-89, Try-102, Tyr-152, His-185, and Glu-252, further defining and confirming the active site. The detailed structural studies allowed us to propose a zinc-activated nucleophilic attack mechanism for the hydrolysis reaction catalyzed by the enzyme.  相似文献   

17.
The singnificance of the zinc hydroxide–Thr-199–Glu-106 hydrogen-bond network in the active site of human carbonic anhydrase II has been examined by X-ray crystallographic analyses of site-specific mutants. Mutants with Ala-199 and Ala-106 or Gln-106 have low catalytic activities, while a mutant with Asp-106 has almost full CO2 hydration activity. The structures of these four mutants, as well as that of the bicarbonate complex of the mutant with Ala-199, have been determined at 1.7 to 2.2 Å resolution. Removal of the γ atoms of residue 199 leads to distorted tetrahedral geometry at the zine ion, and a catalytically important zinc-bound water molecule has moved towards Glu-106. In the bicarbonate complex of the mutant with Ala-199 one oxygen atom from bicarbonate binds to zinc without displacing this water molecule. Tetrahedral coordination geometries are retained in the mutants at position 106. The mutants with Ala-106 and Gln-106 have a zinc-bound sulfate ion, whereas this sulfate site is only partially occupied in the mutant with Asp-106. The hydrogen-bond network seems to be “reversed” in the mutants with Ala-106 and Gln-106. The network is preserved as in native enzyme in the mutant with Asp-106 but the side chain of Asp-106 is more extended than that of Glu-106 in the native enzyme. These results illustrate the importance of Glu-106 and Thr-199 for controlling the precise coordination geometry of the zinc ion and its ligand preferences with results in an optimal orientation of a zine-bound hydroxide ion for an attack on the CO2 substrate. © 1993 Wiley-Liss, Inc.  相似文献   

18.
NagA catalyzes the hydrolysis of N-acetyl-d-glucosamine-6-phosphate to d-glucosamine-6-phosphate and acetate. X-ray crystal structures of NagA from Escherichia coli were determined to establish the number and ligation scheme for the binding of zinc to the active site and to elucidate the molecular interactions between the protein and substrate. The three-dimensional structures of the apo-NagA, Zn-NagA, and the D273N mutant enzyme in the presence of a tight-binding N-methylhydroxyphosphinyl-d-glucosamine-6-phosphate inhibitor were determined. The structure of the Zn-NagA confirms that this enzyme binds a single divalent cation at the beta-position in the active site via ligation to Glu-131, His-195, and His-216. A water molecule completes the ligation shell, which is also in position to be hydrogen bonded to Asp-273. In the structure of NagA bound to the tight binding inhibitor that mimics the tetrahedral intermediate, the methyl phosphonate moiety has displaced the hydrolytic water molecule and is directly coordinated to the zinc within the active site. The side chain of Asp-273 is positioned to activate the hydrolytic water molecule via general base catalysis and to deliver this proton to the amino group upon cleavage of the amide bond of the substrate. His-143 is positioned to help polarize the carbonyl group of the substrate in conjunction with Lewis acid catalysis by the bound zinc. The inhibitor is bound in the alpha-configuration at the anomeric carbon through a hydrogen bonding interaction of the hydroxyl group at C-1 with the side chain of His-251. The phosphate group of the inhibitor attached to the hydroxyl at C-6 is ion paired with Arg-227 from the adjacent subunit. NagA from Thermotoga maritima was shown to require a single divalent cation for full catalytic activity.  相似文献   

19.
This study was undertaken to examine the mechanistic significance of two highly conserved residues positioned in the active site of pyruvate dehydrogenase kinase, Glu-243 and His-239. We used site-directed mutagenesis to convert Glu-243 to Ala, Asp, or Gln and His-239 to Ala. The resulting mutant kinases demonstrated a greatly reduced capacity for phosphorylation of pyruvate dehydrogenase. The Glu-243 to Asp mutant had approximately 2% residual activity, whereas the Glu-243 to Ala or Gln mutants exhibited less than 0.5 and 0.1% residual activity, respectively. Activity of the His-239 to Ala mutant was decreased by approximately 90%. Active-site titration with [alpha-(32)P]ATP revealed that neither Glu-243 nor His-239 mutations affected nucleotide binding. All mutant kinases showed similar or even somewhat greater affinity than the wild-type kinase toward the protein substrate, pyruvate dehydrogenase complex. Furthermore, neither of the mutations affected the inter-subunit interactions. Finally, pyruvate dehydrogenase kinase was found to possess a weak ATP hydrolytic activity, which required Glu-243 and His-239 similar to the kinase activity. Based on these observations, we propose a mechanism according to which the invariant glutamate residue (Glu-243) acts as a general base catalyst, which activates the hydroxyl group on a serine residue of the protein substrate for direct attack on the gamma phosphate. The glutamate residue in turn might be further polarized through interaction with the neighboring histidine residue (His-239).  相似文献   

20.
A cross-linked complex between bovine NADPH-adrenodoxin reductase (AR) and adrenodoxin (AD) was prepared with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and purified, as described previously [Hara, T. & Kimura, T. (1989) J. Biochem. 105, 594-600]. The covalent complex was S-pyridylethylated and digested with lysylendopeptidase, and the resulting peptides were separated by reversed-phase HPLC to identify the cross-linked peptide. Comparison of the HPLC chromatograms of the peptides showed that (i) two tandem peptides (K-4 and K-5) from AD and a peptide (K-1) from AR were missing in the chromatogram of the peptides of the covalent complex and (ii) a single new peak was observed in the chromatogram of the peptides from the covalent complex. Amino acid composition and sequence analyses showed that the newly observed peptide was a covalently cross-linked peptide formed between a peptide K-4-K-5 (Ile-25-Lys-98) derived from AD and a peptide K-1 (Ser-1-Lys-27) derived from AR, in which an amide bond had been formed between the epsilon-amino group of Lys-66 in AD and the gamma-carboxyl group of Glu-4 in AR. These results indicate that the binding site of AR with AD is localized in the amino-terminal part of AR and that of AD with AR is localized around Lys-66 of AD. The six clustered basic amino acid residues (His-24, Lys-27, His-28, His-29, Arg-31, and His-33) present in the amino-terminal portion of AR and the eight clustered acidic amino acid residues (Glu-65, Glu-68, Asp-72, Glu-73, Glu-74, Asp-76, Asp-79, and Asp-86) present in the middle part of AD may play an important role in the complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号