首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RFLP haplotypes at the phenylalanine hydroxylase (PAH) locus were determined in 45 nuclear Caucasian families from Switzerland and Scotland. The RFLPs at the PAH locus are highly informative, and prenatal diagnosis is possible in 85% of the families studied. The data were combined with the profiles previously observed in the Danish population, in order to study the variation in RFLP haplotype distribution among European populations. A total of 22 different haplotypes were observed in Denmark, Switzerland, and Scotland. Fifteen and 19 haplotypes are associated with the normal (non-PKU) and with the mutant chromosomes, respectively. The haplotype distribution and the allele frequency of normal chromosomes remain constant between Denmark, Switzerland, and Scotland. However, both the haplotype distribution and allele frequencies of mutant chromosomes show significant variation between the three countries. Our results suggest there may be additional mutations in the PAH gene that cause PKU.  相似文献   

2.
DNA polymorphisms at the phenylalanine hydroxylase (PAH) locus have proved highly effective in linkage diagnosis of phenylketonuria (PKU) in Caucasian families. More than 10 RFLP sites have been reported within the PAH structural locus in Caucasians. With information from affected and unaffected offspring in PKU families it is often possible to reconstruct complete RFLP haplotypes in parents and to use these haplotypes to follow the segregation of PKU within families and to determine the distribution of PKU chromosomes within populations. To establish the utility of these RFLPs in characterizing Asian families with PKU, we typed eight DNA sites in 21 Chinese families and 12 Japanese families with classical PKU. The eight RFLPs were chosen for their informativeness in Caucasians. From these families we reconstructed a total of 91 complete PAH haplotypes, 44 from non-PKU chromosomes and 47 from PKU-bearing chromosomes. Although all eight marker sites are polymorphic in both Chinese and Japanese, there is much less haplotypic variation in Asians than in Caucasians. In particular, one haplotype alone, haplotype 4, accounts for more than 77% of non-PKU chromosomes and for more than 80% of PKU-bearing chromosomes. Haplotype 4 is also relatively common in Caucasians. The next most common Asian haplotype is 10 times less frequent than haplotype 4. By contrast, in many Caucasian populations the sum of the frequencies of the five most common haplotypes is still less than 80%, and several of the most common haplotypes are equally frequent. Even though the extent of haplotypic variation in Asians is severely limited, the few haplotypes that are found often differ at a number of RFLP sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Summary The incidence of phenylketonuria (PKU) in the western part of Poland is 1 in 5000 live births. Restriction fragment length polymorphism (RFLP) haplotypes at the phenylalanine hydroxylase locus have been analysed in 46 Polish families with PKU. Among 43 fully-informative families 16 RFLP haplotypes were identified. Haplotype 2 is the most frequently (62%) associated with Polish PKU alleles, and the codon 408 mutation is in complete linkage disequilibrium with this haplotype in Poland. This finding is in agreement with observations in other eastern European countries (German Democratic Republic, Czechoslovakia, and Hungary) and in contrast to the genotype distribution observed in western European countries. The present observation suggests the spread of classical PKU, due to the codon 408 mutation associated with haplotype 2, from east to west in European populations. Perhaps more important for genetic counselling, 62% of all PKU chromosomes in the Polish population can now be detected using only one mutantspecific oligonucleotide probe.  相似文献   

4.
Summary Restriction fragment length polymorphism (RFLP) haplotypes at the phenylalanine hydroxylase (PAH) locus have been determined in 60 German families with PAH deficiency. Similar to the Danish population, about 90% of the mutant alleles are confined to four distinct haplotypes. There are however, differences in the frequency distributiion of these haplotypes among the mutant alleles between the two populations. Using an oligonucleotide probe for the splicing mutation associated with mutant haplotype 3 in the Danish population, a tight association between the mutation and the RFLP haplotype has also been observed in Germany. The results provide strong evidence that the splicing mutation occurred on a haplotype 3 chromosome and that the mutant allele has spread into different populations smong Caucasians.  相似文献   

5.
In order to investigate the molecular basis of phenylketonuria (PKU) in Spain, we analyzed the restriction fragment length polymorphism (RFLP) haplotypes and common mutations in the phenylalanine hydroxylase (PAH) gene in 32 unrelated Spanish PKU families. The distribution of RFLP haplotypes differs from that of northern Europe. Mutant haplotypes 2 and 3 were completely absent in our sample. Approximately 65% of the mutant alleles are confined to three RFLP haplotypes, namely haplotypes 1, 6 and 9, also frequently found in other Mediterranean populations. We screened for previously described PKU mutations using the polymerase chain reaction and allele-specific oligonucleotides, and found IVS10,165T, E280K and P281L as the major mutations, representing 41% of the PKU alleles. Other mutations found were Y414C, and a new one, P244L. Mutations R408W and IVS12, prevalent in northern Europe, as well as others present in southern European populations (R252W, R261Q, L249F) were not detected in our sample. Our results reveal the genetic heterogeneity present in the Spanish PKU population, which shows similarities to others of Mediterranean origin.  相似文献   

6.
DNA haplotype data from the phenylalanine hydroxylase (PAH) locus are available from a number of European populations as a result of RFLP testing for genetic counseling in families with phenylketonuria (PKU). We have analyzed data from Hungary and Czechoslovakia together with published data from five additional countries--Denmark, Switzerland, Scotland, Germany, and France--representing a broad geographic and ethnographic range. The data include 686 complete chromosomal haplotypes for eight RFLP sites assayed in 202 unrelated Caucasian families with PKU. Forty-six distinct RFLP haplotypes have been observed to date, 10 unique to PKU-bearing chromosomes, 12 unique to non-PKU chromosomes, and the remainder found in association with both types. Despite the large number of haplotypes observed (still much less than the theoretical maximum of 384), five haplotypes alone account for more than 76% of normal European chromosomes and four haplotypes alone account for more than 80% of PKU-bearing chromosomes. We evaluated the distribution of haplotypes and alleles within these populations and calculated pairwise disequilibrium values between RFLP sites and between these sites and a hypothetical PKU "locus." These are statistically significant differences between European populations in the frequencies of non-PKU chromosomal haplotypes (P = .025) and PKU chromosomal haplotypes (P much less than .001). Haplotype frequencies of the PKU and non-PKU chromosomes also differ significantly (P much less than .001. Disequilibrium values are consistent with the PAH physical map and support the molecular evidence for multiple, independent PKU mutations in Caucasians. However, the data do not support a single geographic origin for these mutations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Summary Restriction fragment length polymorphism (RFLP) haplotypes and mutations at the phenylalanine hydroxylase (PAH) locus have been studied in 25 unrelated families from Croatia. The results of RFLP analysis demonstrated that 80% of the mutant alleles were associated with three haplotypes (1, 2 and 4). Eight mutations were detected on the background of six mutant haplotypes, comprising 68% of phenylketonuria (PKU) alleles in Croatia. The mutation in codon 408 was most frequent, as was the haplotype 2 allele with which it was associated. These data are in accordance with formerly published population genetic analyses at the PAH locus, and with studies revealing the molecular basis of the phenotypic heterogeneity of PKU. The codon 281 mutation was more frequent in Croatia than previously observed in other populations.  相似文献   

8.
Summary Eight polymorphic restriction enzyme sites at the phenylalanine hydroxylase (PAH) locus were analyzed from the parental chromosomes in 33 Danish nuclear families with at least one phenylketonuric (PKU) child. Determination of haplotypes of 66 normal chromosomes and 66 chromosomes bearing mutant allele (S) demonstrated that there are at least two haplotypes which occur predominantly on PKU chromosomes and rarely otherwise. Overall, the relative frequencies of the various haplotypes are significantly different on PKU-and normal-allele bearing chromosomes, even though there is no predominantly occurring unique haplotype which can characterize the PKU chromosomes. In addition, no significant association (linkage disequilibrium) between any single polymorphic site and the mutant allele (s) was observed. The results suggest that either the phenylketonuric mutation was very ancient so that the polymorphic sites and the mutation have reached linkage equilibrium or the mutant allele (s) are the results of multiple mutations in the phenylalanine hydroxylase gene in man. Furthermore, a crude relationship between standardized linkage disequilibria and physical map distances of the polymorphic sites indicates that there is no apparent recombination hot-spot in the human phenylalanine hydroxylase gene, since the recombination rate within the locus apears to be uniform and likely to be occurring at a rate similar to that within the HLA gene cluster. The limitations of this later analysis are discussed in view of the sampling errors of disequilibrium measure used, and the potential untility of the PAH haplotypes for prenatal diagnosis and detection of PKU carriers is established.  相似文献   

9.
Summary The genetic heterogeneity at the phenylalanine hydroxylase (PAH) locus was studied in 88 families including 93 of the 105 children with phenylketonuria (PKU) or hyperphenylalaninemia (HPA) detected through the Swedish neonatal screening program from 1966 to the end of 1986. Haplotypes based on eight restriction fragment length polymorphisms (RFLPs) at the PAH locus could be constructed for 132 normal and 136 mutant alleles. The normal alleles were of 27 different RFLP haplotypes, 9 of which have not been described previously, but there was a dominance of a few haplotypes common to many European populations. The distribution of mutant alleles was significantly different from that in neighboring countries, even though over 90% of all mutant alleles were confined to six RFLP haplotypes, also prevalent in other European populations. Allele-specific oligonucleotide hybridization analysis for the Arg408 to Trp408 mutation and for the G to A splicing mutation in intron 12 showed exceptions to the previously reported linkage of these mutations to mutant haplotypes 2 and 3, respectively. Correlation of mutant alleles with clinical phenotypes pointed to the presence of at least two different mutations associated with each of six haplotypes. We argue that PKU/HPA in the Swedish population may be caused by at least 13 different mutations in addition to the 4 already identified. The theoretical informativity of RFLP analysis in heterozygote detection and prenatal diagnosis in PKU/HPA families was estimated at approximately 85%. Carrier detection could, in effect, be accomplished for 88% of the 56 healthy siblings in the families studied.  相似文献   

10.
Hyperphenylalaninemia (HPA) results from defective hydroxylation of phenylalanine in the liver, in most cases because of defective phenylalanine hydroxylase. HPA is highly variable, ranging from moderate elevation of plasma phenylalanine with no clinical consequences to a severe disease, classical phenylketonuria (PKU). Non-PKU HPA was found in excess of PKU in Israel, while the opposite is true in Europe. To study the genetic basis of non-PKU HPA, we performed haplotype analysis at the phenylalanine hydroxylase locus in 27 families with non-PKU HPA. All individuals with this condition were compound heterozygotes. In six of these families, in which both PKU and non-PKU HPA were segregating, haplotype analysis showed that non-PKU HPA resulted from compound heterozygosity for a PKU mutation and a second mutation, with milder effect, which is probably expressed only when it interacts with the severe mutation. The involvement of PKU mutations in non-PKU HPA was further demonstrated in Jewish Yemenite families with non-PKU HPA, in which the individuals with this condition were carriers of the single PKU allele which exists in this community. In addition, two previously known PKU point mutations (R261Q and R408W) were found in individuals with non-PKU HPA. These mutations are associated, in our population, with the same haplotypes as those with which it is associated in Europe. Based on the above-mentioned genetic model for non-PKU HPA, successful prenatal diagnosis of this condition was performed in one family.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Restriction fragment length polymorphism haplotyping of mutated and normal phenylalanine hydroxylase (PAH) alleles in 49 Dutch phenylketonuria (PKU) families was performed. All mutant PAH chromosomes identified by haplotyping (n = 98) were screened for eight of the most predominant mutations. Compound heterozygosity was proven in 40 kindreds. Homozygosity was found for the IVS12nt1 mutation in 5 families, and for the R158Q and IVS10nt546 mutations in one family each. All patients from these families suffer from severe PKU, providing additional proof that these mutations are deleterious for the PAH gene. Genotypical heterogeneity was evident for mutant haplotype 1 (n = 27) carrying the mutations R261Q (n = 12), E280K (n = 4), P281L (n = 1) and unknown (n = 10), and likewise for mutant haplotype 4 (n = 30) carrying the mutations R158Q (n = 13), Y414C (n = 1) and unknown (n = 16). Mutant haplotype 3 (n = 20), in tight association with mutation IVS12nt1, appeared to be in strong linkage disequilibrium (LDE) with its normal counterpart allele (n = 4). Mutant haplotype 6 (n = 4), in tight association with the IVS10nt546 mutation, showed moderate LDE with its counterpart allele (n = I). The distribution of the mutant PAH haplotypes 1, 3 and 4 among the Dutch PKU population resembles that in other Northern and Western European countries, but it is striking that mutant haplotype 2 and its associated mutation R408W is nearly absent in The Netherlands, in strong contrast to its neighbouring countries.  相似文献   

12.
Summary Out of a population of 138598 infants born in southern Poland between 1987 and 1989, and screened for phenylketonuria (PKU), 28 cases were ascertained giving an incidence of 1 in 5000. DNA from 22 of these probands and their parents was isolated and eight polymorphic restriction sites were analyzed within the phenylalanine hydroxylase gene region. Twenty-one different haplotypes (HT) were revealed, five of them representing new categories. The most common haplotypes among those carrying normal alleles were: HT1 (27.3%) and HT4 (11.4%). Within the group of haplotypes with mutant alleles the most frequent was HT2 (56.8%), whereas the frequency of this haplotype in other European populations, such as French, Danish and German, ranged from 12% to 24%. HT3, being the most common in Danish (38%), and relatively frequent in the other western European (13–14%) populations, appeared to be very rare in our sample (2.3%). The mutation of codon 408 (exon 12, CT, ArgTrp), which has been described to be tightly linked to HT2, was tested on amplified DNA by dot-blot hybridization. This mutation was found in 25 out of 44 proband chromosomes. In one case it was linked to HT5, in the remaining 24 to HT2. Our results confirm molecular heterogeneity of PKU haplotypes, as well as their significant interpopulation variation.  相似文献   

13.
Recent genome scans have established the presence of a major psoriasis-susceptibility locus in the human leukocyte antigen (HLA) complex on chromosome 6p21.3. To narrow the interval for candidate gene testing, we performed a linkage-disequilibrium analysis of 339 families, with the use of 62 physically mapped microsatellite markers spanning the major histocompatibility complex (MHC). As detected by use of the transmission/disequilibrium test (TDT), individual markers yielded significant linkage disequilibrium across most of the MHC. However, the strongest evidence for marker-trait disequilibrium was found in an approximately 300-kb region extending from the MICA gene to the corneodesmosin gene. Maximum-likelihood haplotypes were constructed across the entire MHC in the original sample and across a 1.2-Mb region of the central MHC in an expanded sample containing 139 additional families. Short (two- to five-marker) haplotypes were subjected to the TDT using a "moving-window" strategy that reduced the variability of TDT P values relative to the single-locus results. Furthermore, the expanded sample yielded a sharp peak of evidence for linkage disequilibrium that spanned approximately 170 kb and that was centered 100 kb telomeric to HLA-C. The 1.2-Mb interval was further dissected by means of recombinant ancestral haplotype analysis. This analysis identified risk haplotype 1 (RH1), which is a 60-kb fragment of ancestral haplotype 57.1, on all identifiable HLA risk haplotypes. One of these haplotypes exhibits significant linkage disequilibrium with psoriasis but does not carry Cw6, which is the HLA allele most strongly associated with the disease. These results demonstrate that RH1 is highly likely to carry the disease allele at PSORS1, and they exclude HLA-C and corneodesmosin with a high degree of confidence.  相似文献   

14.
Phenylketonuria: distribution of DNA diagnostic patterns in German families   总被引:11,自引:0,他引:11  
Summary The distribution of DNA haplotype constellations within the phenylalanine hydroxylase (PAH) gene was investigated in 44 German families affected with phenylketonuria (PKU). The haplotype frequencies differed significantly from those observed in a Danish population. Furthermore, ten haplotypes were identified in addition to the 12 previously described. In one of ten PKU alleles linked to haplotype 3, the G to A transition at the 5 splice donor site of intron 12 could not be confirmed with the use of synthetic DNA probes. According to these data, which are still limited, carrier testing and prenatal diagnosis should be possible in 70% of individuals at risk in the German population.  相似文献   

15.
Summary In order to investigate the molecular basis of phenylketonuria (PKU) in Italy, we characterized the RFLP haplotypes at the phenylalanine hydroxylase gene in 38 unrelated Italian PKU families. The distribution of haplotypes associated with PKU alleles differs from that of other European populations. In particular, haplotypes 1 and 6 are present in 39.7% and 17.6% of the PKU chromosomes, whereas the frequencies of haplotypes 2 and 3 are 5.9% and 2.9%, respectively. The characterization of PKU mutations using the polymerase chain reaction and allele-specific oligonucleotides shows that 1 out of 2 haplotypes 3 carries the splicing mutation and that 2 out of 4 haplotypes 2 carry the missense mutation associated with these haplotypes in North European populations. Our results indicate that the two molecular defects most frequent in Northern Europe represent a minority of PKU mutations in Italy.  相似文献   

16.
The HindIII RFLP in the human phenylalanine hydroxylase (PAH) gene is caused by the presence of an AT-rich (70%) minisatellite region. This region contains various multiple of 30-bp tandem repeats and is located 3 kb downstream of the final exon of the gene. PCR-mediated amplification of this region from haplotyped PAH chromosomes indicates that the previously reported 4.0-kb HindIII allele contains three of these repeats, while the 4.4-kb HindIII allele contains 12 of these repeats. The 4.2-kb HindIII fragment can contain six, seven, eight, or nine copies of this repeat. These variations permit more detailed analysis of mutant haplotypes 1, 5, 6, and, possibly, others. Kindred analysis in phenylketonuria families demonstrates Mendelian segregation of these VNTR alleles, as well as associations between these alleles and certain PAH mutations. The R261Q mutation, associated with haplotype 1, is associated almost exclusively with an allele containing eight repeats; the R408W mutation, when occurring on a haplotype 1 background, may also be associated with the eight-repeat VNTR allele. Other PAH mutations associated with haplotype 1, R252W and P281L, do not appear to segregate with specific VNTR alleles. The IVS-10 mutation, when associated with haplotype 6, is associated exclusively with an allele containing seven repeats. The combined use of this VNTR system and the existing RFLP haplotype system will increase the performance of prenatal diagnostic tests based on haplotype analysis. In addition, this VNTR may prove useful in studies concerning the origins and distributions of PAH mutations in different human populations.  相似文献   

17.
beta-Thalassemia minor occurs at approximately 1% frequency in French-Canadians--in families residing in Portneuf County (population approximately 40,000) of Quebec province. We found eight different RFLP haplotypes at the beta-globin gene cluster in 37 normal persons and in 12 beta-thalassemia heterozygotes from six families. beta-Thalassemia genes in these families associated with two haplotypes only: Mediterranean I and Mediterranean II. There were two different beta-thalassemia mutations segregating in the Portneuf population: an RNA processing mutation (beta(+)IVS-1,nt110) on haplotype I (five families) and a point mutation leading to chain termination (beta(0) nonsense codon 39) on haplotype II (one family). The distribution of 5' haplotypes on normal beta A Portneuf chromosomes compared with other European populations was most similar to that in British subjects (data for French subjects have not yet been reported). Genealogical reconstructions traced the ancestry of carrier couples to settlers emigrating from several different regions of France to New France in the 17th century. These findings indicate genetic diversity of a greater degree among French-Canadians than recognized heretofore.  相似文献   

18.
RFLPs in the phenylalanine hydroxylase (PAH) gene locus were determined in 47 Norwegian nuclear families that had at least one child with phenylketonuria (PKU). The PKU haplotype distribution differed somewhat from that of other European populations. Mutant haplotype 7 is relatively rare in other populations but constituted 20% of all mutant haplotypes in Norway. In 14 of the 17 mutant haplotypes 7, a previously unreported deletion of the BamHI restriction site in exon 7 of the PAH gene was observed. The abrogation of the BamHI site was shown to be due to a G-to-T transversion, changing Gly 272 to Ter 272 in exon 7 of the gene, thus directly identifying the PKU mutation. Unlike the families of the other PKU patients, the families with this mutation clustered along the southeastern coast of Norway, suggesting a founder effect for this mutation.  相似文献   

19.
Nonphenylketonuria hyperphenylalaninemia (non-PKU HPA) is defined as phenylalanine hydroxylase (PAH) deficiency with blood phenylalanine levels below 600 mumol/liter (i.e., within the therapeutic range) on a normal dietary intake. Haplotype analysis at the PAH locus was performed in 17 Danish families with non-PKU HPA, revealing compound heterozygosity in all individuals. By allele-specific oligonucleotide (ASO) probing for common PKU mutations we found 12 of 17 non-PKU HPA children with a PKU allele on one chromosome. To identify molecular lesions in the second allele, individual exons were amplified by polymerase chain reaction and screened for mutations by single-strand conformation polymorphism. Two new missense mutations were identified. Three children had inherited a G-to-A transition at codon 415 in exon 12 of the PAH gene, resulting in the substitution of asparagine for aspartate, whereas one child possessed an A-to-G transition at codon 306 in exon 9, causing the replacement of an isoleucine by a valine in the enzyme. It is further demonstrated that the identified mutations have less impact on the heterozygote's ability to hydroxylate phenylalanine to tyrosine compared to the parents carrying a PKU mutation. The combined effect on PAH activity explains the non-PKU HPA phenotype of the child. The present observations that PKU mutations in combination with other mutations result in the non-PKU HPA phenotype and that particular mutation-restriction fragment length polymorphism haplotype combinations are associated with this phenotype offer the possibility of distinguishing PKU patients from non-PKU individuals by means of molecular analysis of the hyperphenylalaninemic neonate and, consequently, of determining whether a newborn child requires dietary treatment.  相似文献   

20.
A detailed study of the mutant phenylalanine hydroxylase (PAH) gene from the eastern part of the Czech Republic (Moravia) is reported. A total of 190 mutant alleles from 95 phenylketonuria (PKU) families were analyzed for 21 prevalent Caucasian mutations and restriction fragment length polymorphism /variable number of tandem repeats (RFLP/VNTR) haplotypes. Eighty per cent of all mutant alleles were found to carry 11 mutations. The most common molecular defect was the mutation R408W (55.3%), with a very high degree of homozygosity (34.6%). Each of four other mutations (R158Q, R243X, G272X, IVS12nt1) accounted for more than 3% of PKU alleles. Rarely present were mutations IVS10nt546 (2.6%), R252W (2.6%), L48S (2.1%), R261Q (1.6%), Y414C (1.0%) and I65T (0.5%). Mutations that have been predominantly described in southern Europe (IVS7nt1, A259V, Y277D, R241H, T278N) were not detected. A total of 14 different mutant haplotypes were observed. Three unusual genotype-haplotype associations were identified (R158Q on haplotypes 2.3 and 7.8 and R252W on haplotype 69.3). There was a strong association between the mutation R408W and haplotype 2.3 (54.7%). Heterogeneity was found at mutations R408W (haplotypes 2.3 and 5.9), R158Q (haplotypes 4.3, 2.3 and 7.8) and IVS10nt546 (haplotypes 6.7 and 34.7). The molecular basis of PKU in the Moravian area appears to be relatively homogeneous in comparison with other southern and western European populations, thus providing a good starting point for prenatal diagnosis and early clinical classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号