首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A protein of apparent Mr = 15,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is the major plasma membrane substrate for cAMP-dependent protein kinase (PK-A) and protein kinase C (PK-C) in several different tissues. In the work described here, we purified, cloned, and sequenced the canine cardiac sarcolemmal "15-kDa protein." The amino terminus of the purified protein was not blocked, allowing determination of 50 consecutive residues by standard Edman degradation. Overlapping proteolytic phosphopeptides yielded 22 additional residues at the carboxyl terminus. Dideoxy sequencing of the full-length cDNA confirmed that the 15-kDa protein contains 72 amino acids, plus a 20-residue signal sequence. The mature protein has a calculated Mr = 8409. There is one hydrophobic membrane-spanning segment composed of residues 18-37. The acidic amino-terminal end (residues 1-17) of the protein is oriented extracellularly, whereas the basic carboxyl-terminal end (residues 38-72) projects into the cytoplasm. The positively charged carboxyl terminus contains the phosphorylation sites for PK-A and PK-C. In the transmembrane region, the 15-kDa protein exhibits 52% amino acid identity with the "gamma" subunit of Na,K-ATPase. High stringency Northern blot analysis revealed that 15-kDa mRNA is present in heart, skeletal muscle, smooth muscle, and liver but absent from brain and kidney. We propose the name "phospholemman" for the 15-kDa protein, which denotes the protein's location within the plasma membrane and its characteristic multisite phosphorylation.  相似文献   

2.
Incubation of rat liver plasma membrane produced histone phosphorylating activity at 75 mM Mg2+ in the soluble fraction. The release of the kinase activity was inhibited by leupeptin and bovine pancreatic trypsin inhibitor, suggesting the involvement of membrane-bound protease. When partially purified protein kinase C from rat liver cytosol was treated with the trypsin-like protease purified from rat liver plasma membrane, histone phosphorylating kinase which was independent of Ca2+ and phospholipids, produced with a molecular weight of about 5 X 10(4). These results suggest that membrane-bound, trypsin-like protease activates protein kinase C in plasma membrane and the activated kinase is released from the membrane to the soluble fraction.  相似文献   

3.
Band 3 protein of human erythrocyte membrane is phosphorylated on a tyrosine residue located near the NH2 terminal by an endogenous tyrosine kinase activity (Dekowski, S., Rybicki, A. and Drickamer, K. (1983) J. Biol. Chem. 258, 2750-2753). A tyrosine kinase phosphorylating the band 3 protein in situ has been extracted from ghosts by non-ionic detergent and partially characterized (Phan-Dinh-Tuy, F., Henry, J. and Kahn, A. (1985) Biochem. Biophys. Res. Commun. 126, 304-312). We have studied the properties of the tyrosine kinase activity which remains bound to the ghosts after detergent extraction using the 43 kDa fragment of protein 3 as substrate. This activity, solubilized from the detergent-resistant material at 0.25 M NaCl and concentrated by phosphocellulose and tyrosine-agarose chromatographies, remains linked to high molecular weight complexes. It is specific for tyrosine. Assayed with the purified 43 kDa fragment it requires the presence of Mn2+ which cannot be replaced by Mg2+. Its affinity for 43 kDa fragment is very high with a Km of 3.3 microM. ATP acts as a phosphoryl donor with a Km of 0.55 microM. The tyrosine kinase activity was not modified by insulin, DMSO, phorbol ester and epidermal growth factor, vanadate and xanthine derivatives. Polyamines spermidine and the polylysine are inhibitors in the presence of Mn2+ but not in the presence of Mg2+. Heparin is a competitive inhibitor of ATP. 2,3-Diphosphoglycerate is an inhibitor at physiological concentrations (Ki = 2 mM). Purified red cell actin is not phosphorylated by the tyrosine kinase. These properties distinguish the red cell membrane-bound tyrosine kinase from other tyrosine kinases extracted from normal cells.  相似文献   

4.
The plasma membrane of 3T3 cells contains at least two different endogenous cyclic AMP-dependent protein kinase systems. One catalyzes the phosphorylation of endogenous protein substrates, i.e., PP24 and PP14, whereas the other catalyzes the phosphorylation of exogenous substrates. In this paper the topography of these cyclic AMP-dependent phosphorylation systems is described. The results show that the kinases which phosphorylate only exogenous substrates are primarily localized to the outer plasma membrane surface whereas the endogenous cyclic AMP-dependent protein kinase and its two endogenous substrates are localized to the cytoplasmic plasma membrane surface. The data also establish that neither the cytoplasmically orientated kinase nor its substrates has a transmembrane orientation even though factors acting on the outer plasma membrane can affect these proteins. This suggests that functional modulation of the cytoplasmically localized cyclic AMP-dependent phosphorylation system can be mediated by a transmembrane regulatory mechanism. The importance of determining the topography of such plasma membrane phosphorylation systems is emphasized by recent studies which show that neoplastic transformation can be mediated at least in part by protein kinases and/or phosphoproteins which are localized on the cytoplasmic surface of the plasma membrane.  相似文献   

5.
Extracellular calcium-deprivation inhibited the proliferation of BALB/c 3T3 cells and this inhibition correlated with a loss of protein kinase C activity from the particulate fraction. Addition of calcium induced proliferation of the cells with the DNA synthetic activity returning to the control rate at 18 hours following calcium addition. The level of protein kinase C activity in the particulate fraction was monitored at various times after calcium addition and increased in parallel with the DNA synthetic activity.  相似文献   

6.
Renal cortical plasms membranes were separated by free flow electrophoresis into luminal (brush border microvilli) and contraluminal (basal-lateral membrane) fractions. These membranes were found to contain an intrinsic, self-phosphorylating system which consists of a cyclic AMP-dependent protein kinase, a phosphorprotein phosphatase and the substrate(s) of these enzymes. The kinase, but not the phosphatase, was stimulated by cyclic AMP; maximal (1.7-fold) stimulation was effected at a cyclic AMP concentration of 0.1 muM. The degree of phosphorylation of the brush borders was six times greater than that of the basal-lateral membranes in the absence of cyclic AMP and 2.3-fold greater in the presence of cyclic AMP. This preferential phosphorylation of the luminal membrane by membrane-associated protein kinase(s) may play a role in the parathyroid hormone-mediated alterations of solute reabsorption in the proximal tubule.  相似文献   

7.
A flat revertant, R1, was isolated from human activated c-Ha-ras-1 (hu-ac-Ha-ras) gene-transformed NIH 3T3 cells (EJ-NIH 3T3) treated with mutagens. R1 contained unchanged transfected hu-ac-Ha-ras DNA and expressed high levels of hu-ac-Ha-ras-specific mRNA and p21 protein. Transfection experiments revealed that NIH 3T3 cells could be transformed by DNA from R1 cells but R1 cells could not be retransformed by Kirsten sarcoma virus, DNA from EJ-NIH 3T3 cells, hu-ac-Ha-ras, v-src, v-mos, simian virus 40 large T antigen, or polyomavirus middle T antigen. Somatic cell hybridization studies showed that R1 was not retransformed by fusion with NIH 3T3 cells and suppressed anchorage independence of EJ-NIH 3T3 and hu-ac-Ha-ras gene-transformed rat W31 cells in soft agar. These results suggest that the reversion and resistance to several oncogenes in R1 is due not to cellular defects in the production of the transformed phenotype but rather to enhancement of cellular mechanisms that suppress oncogenic transformation.  相似文献   

8.
T cell activation is associated with active clustering of relevant molecules in membrane microdomains defined as the supramolecular activation cluster. The contact area between these regions on the surface of T cells and APC is defined as the immunological synapse. It has been recently shown that preclustering of MHC-peptide complexes in membrane microdomains on the APC surface affects the efficiency of immune synapse formation and the related T cell activation. Disruption of such clusters may reduce the efficiency of stimulation. We describe here an entirely artificial system for Ag-specific, ex vivo stimulation of human polyclonal T cells (artificial APC (aAPC)). aAPC are based on artificial membrane bilayers containing discrete membrane microdomains encompassing T cell ligands (i.e., appropriate MHC-peptide complexes in association with costimulatory molecules). We show here that preclustering of T cell ligands triggered a degree of T cell activation significantly higher than the one achieved when we used either soluble tetramers or aAPC in which MHC-peptide complexes were uniformly distributed within artificial bilayer membranes. This increased efficiency in stimulation was mirrored by increased translocation from the cytoplasm to the membrane of protein kinase theta, a T cell signaling molecule that colocalizes with the TCR within the supramolecular activation cluster, thus indicating efficient engagement of T cell activation pathways. Engineered aAPC may have immediate application for basic and clinical immunology studies pertaining to modulation of T cells ex vivo.  相似文献   

9.
The cell line TNR9 (E. Butler-Gralla and H. R. Herschman, J. Cell. Physiol. 107:59-67, 1981) in a Swiss 3T3 cell variant that expresses protein kinase C (PKC) but is mitogenically nonresponsive to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA). We have found that PKCs purified from variant and parental cells are identical as judged by kinase activity, protease mapping, and column chromatography. We analyzed cellular levels and subcellular location of PKC in TPA-treated 3T3 and TNR9 cells via immunoprecipitation of [35S]methionine-labeled protein and assay of immune-complex PKC kinase activity. TNR9 cells grew to higher densities than parental 3T3 cells. TNR9 cells at maximal density did not down regulate PKC in response to long-term TPA treatment. We compared the 80-kilodalton (kDa) PKC substrate phosphorylation in 3T3 and TNR9 cells by using two-dimensional gels and found that TNR9 cells treated with TPA for 30 min contained only 10 to 15% as much 32Pi associated with the 80-kDa as did parental cells. The TNR9 80-kDa substrate was present at reduced levels compared with the parental-cell 80-kDa substrate as judged by immunoblot and silver staining. Thus, the loss of mitogenic responsiveness to TPA in TNR9 cells is accompanied by resistance to TPA-mediated down regulation of PKC and reduced phosphosubstrate levels.  相似文献   

10.
C3H 10T1/2 cells were synchronized by a modified mitotic shake-off procedure. X irradiation of cells at various intervals after mitotic harvest indicated a single narrow window (about 2 h) of sensitivity to the induction of oncogenic transformation. It is not possible to delineate precisely the time in the cycle at which this sensitivity is expressed. The most likely candidate is G2 phase, though we cannot eliminate the possibility that the sensitive period begins in late S phase. In the same synchronized cells, cell lethality showed the conventional pattern, i.e., sensitivity in mitosis and resistance in late S and in G1 phase.  相似文献   

11.
12.
The mechanism by which nonsteroidal antiestrogen inhibits Ca(2+)- and phospholipid-dependent protein kinase (PKC) activity was investigated. Antiestrogenic agents, clomiphene and tamoxifen, inhibited the PKC-dependent phosphorylation of histone and r-annexin I in a dose-dependent manner. Ki values for the agents were different for two substrate proteins. The inhibitory action of the agents depended on the membrane-substrate protein interaction. Phosphorylation of cytoplasmic proteins obtained from rat uterus and mammary gland, including annexin I, by endogenous PKC was also inhibited by low concentrations of these agents. These results suggest that the inhibitory action of nonsteroidal antiestrogens occurs through their inhibitory effect on the membrane-substrate protein interaction.  相似文献   

13.
Summary Renal cortical plasma membranes were separated by free flow electrophoresis into luminal (brush border microvilli) and contraluminal (basal-lateral membrane) fractions. These membranes were found to contain an intrinsic, self-phosphorylating system which consists of a cyclic AMP-dependent protein kinase, a phosphoprotein phosphatase and the substrate(s) of these enzymes. The kinase, but not the phosphatase, was stimulated by cyclic AMP; maximal (1.7-fold) stimulation was effected at a cyclic AMP concentration of 0.1 m. The degree of phosphorylation of the brush borders was six times greater than that of the basal-lateral membranes in the absence of cyclic AMP and 2.3-fold greater in the presence of cyclic AMP. This preferential phosphorylation of the luminal membrane by membrane-associated protein kinase(s) may play a role in the parathyroid hormone-mediated alterations of solute reabsorption in the proximal tubule.  相似文献   

14.
The passive K+ permeability of 3T3 and SV40-3T3 cells was evaluated from experiments on passive K+ efflux and electrical transmembrane potential measurements at different cell growth densities, external calcium concentrations and temperatures. Passive K+ permeability was shown to decrease markedly with increasing cell growth density, to increase with the lowering of external calcium concentration, and at low cell densities to be higher at low temperature (25 °C) than at physiological temperature (37 °C). These and further results taken from the literature are fully consistent with the notion of regulation of proliferation being effected by control of intracellular K+ concentrations. The phenomenon of high temperature inactivation of passive K+ permeabilities observed at low cell densities is discussed in analogy to recent results on model systems from phospholipid/cholesterol doted with channel-forming antibiotics.  相似文献   

15.
The c-Raf-1 kinase is activated by different mitogenic stimuli and has been shown to be an important mediator of growth factor responses. Fusion of the catalytic domain of the c-Raf-1 kinase with the hormone binding domain of the estrogen receptor (deltaRaf-ER) provides a hormone-regulated form of oncogenic activated c-Raf-1. We have established NIH 3T3 cells stably expressing a c-Raf-1 deletion mutant-estrogen receptor fusion protein (c-Raf-1-BxB-ER) (N-BxB-ER cells). The transformed morphology of these cells is dependent on the presence of the estrogen antagonist 4-hydroxytamoxifen. Addition of 4-hydroxytamoxifen to N-BxB-ER cells arrested by density or serum starvation causes reentry of these cells into cell proliferation. Increases in the cell number are obvious by 24 h after activation of the oncogenic c-Raf-1 protein in confluent cells. The onset of proliferation in serum-starved cells is further delayed and takes about 48 h. In both cases, the proliferative response of the oncogenic c-Raf-1-induced cell proliferation is weaker than the one mediated by serum and does not lead to exponential growth. This is reflected in a markedly lower expression of the late-S- and G2/M-phase-specific cyclin B protein and a slightly lower expression of the cyclin A protein being induced at the G1/S transition. Oncogenic activation of c-Raf-1 induces the expression of the heparin binding epidermal growth factor. The Jnk1 kinase is putatively activated by the action of the autocrine growth factor. The kinetics of Jnk1 kinase activity is delayed and occurs by a time when we also detect DNA synthesis and the expression of the S-phase-specific cyclin A protein. This finding indicates that oncogenic activation of the c-Raf-1 protein can trigger the entry into the cell cycle without the action of the autocrine growth factor loop. The activation of the c-Raf-1-BxB-ER protein leads to an accumulation of high levels of cyclin D1 protein and a repression of the p27Kip1 cyclin-dependent kinase inhibitor under all culture conditions tested.  相似文献   

16.
17.
A decrease in the activity of the (Na,K)-ATPase is an early and essential step in commitment of Friend virus-infected murine erythroleukemia cells to terminal erythroid differentiation. Plasma membranes from these cells were purified and shown to contain ouabain-inhibitable (Na,K)-ATPase present as approximately 0.4% of the total membrane protein. Protein kinase activity also co-purified with the plasma membrane and preferentially phosphorylated a Nonidet P-40 detergent-extractable 100,000-Da peptide. The 100,000-Da phosphopeptide migrated with the alpha subunit of dog kidney (Na,K)-ATPase when electrophoresis was carried out in the presence of sodium dodecyl sulfate in either 5 or 10% polyacrylamide gels. In two-dimensional gel electrophoresis, it separated into a series of spots between pH 5.1 and 5.4, while dog kidney alpha subunit appeared as a doublet at pH 5.3-5.4. When Nonidet P-40-solubilized plasma membranes were passed through a ouabain affinity column in the presence of Mg2+, Na+, and ATP, the 100,000-Da phosphopeptide was retained and could be eluted by ouabain. This peptide was also phosphorylated in living murine erythroleukemia cells, and proteolysis patterns of the peptide labeled in vitro, the peptide labeled in vivo, and the purified dog kidney alpha subunit using V8 protease were nearly identical. Phosphothreonine was detected in both the peptides labeled in vivo and in vitro.  相似文献   

18.
Transmembrane adaptor molecule LAT (linker for activation of T cells) forms a central scaffold for signaling protein complexes that accumulate in the vicinity of activated T cell antigen receptors (TCR). Here we used biochemical analysis of immunoisolated plasma membrane domains and fluorescence imaging of green fluorescence protein-tagged signaling proteins to investigate the contributions of different tyrosine-based signaling protein docking sites of LAT to the formation of LAT signaling protein assemblies in TCR membrane domains. We found that the phospholipase C gamma docking site of LAT and different Grb2/Gads docking sites function in an interdependent fashion and synergize to accumulate LAT, Grb2, and phospholipase C gamma in TCR signaling assemblies. Two-dimensional gels showed that Grb2 is a predominant cytoplasmic adaptor in the isolated LAT signaling complexes, whereas Gads, Crk-1, and Grap are present in lower amounts. Taken together our data suggest a synergistic assembly of multimolecular TCR.LAT signal transduction complexes in T cell plasma membrane domains.  相似文献   

19.
The lipid composition of Balb/c3T3, SV3T3, and the concanavalin A-selected SV3T3 revertant cells has been analyzed at the whole cell and plasma membrane levels. In comparison to untransformed 3T3 whole cells, SV3T3 cells showed an unchanged content of triacylglycerols, free fatty acids, and glycerylether diesters but a lower concentration of total phospholipids, while no significant difference was found in the phospholipid composition. Whole SV3T3 revertant cells exhibited a lipid composition similar to that in untransformed 3T3 cells with the exception of a higher proportion of sphingomyelin. Analysis of isolated plasma membranes did not reveal any significant differences in the cholesterol to phospholipid molar ratio between 3T3 and SV3T3 or SV3T3 revertant cells. The major changes in the acyl chain pattern SV3T3 compared with whole 3T3 cells consisted of an increase of oleic and palmitoleic acids coupled with a decrease of C20 and C22 polyunsaturated acids in phosphatidylethanolamine and phosphatidylcholine; an increase of oleic acid was also evident in SV3T3 phosphatidylinositol plus phosphatidylserine. An increase of palmitoleic and oleic acids together with a decrease of arachidonic acid was also found in phosphatidylethanolamine of SV3T3 plasma membranes; the only change in SV3T3 plasma membrane phosphatidylcholine was an increase of oleic acid. An increase of monoenoic acids together with a decrease of arachidonic acid was also found in phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol plus phosphatidylserine of SV3T3 revertant cells at the level of both whole cells and plasma membranes.  相似文献   

20.
In order to determine the effects of cigarette smoke (CS) exposure on the physical properties of cells, NMR water-proton relaxation time (which measures the intracellular water organization) and ESR spin labeling (which measures membrane order) measurements were performed on cultured Jurkat T cells exposed to CS. NMR spin-lattice relaxation time (T1) decreased with CS exposure in a dose-dependent fashion. A significantly depressed T1 value was obtained even when CS was delivered through a filter. Cell viability was not affected in this condition. Superoxide dismutase (SOD) prevented the depression of T1 value. These results suggest that superoxide radicals or subsequently generated species contained in the gas phase of CS increase the intracellular water organization in viable cells. CS exposure also increased the ESR membrane order parameter of nitroxide spin label. These physical characteristic changes may be important in CS-induced cell responses and cytopathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号