首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Results are presented from numerical simulations of the breakdown of a dense noble gas by the electrons of a boundary layer that forms during the irradiation of a metal target by a high-power picosecond laser pulse. It is shown that, when the electric field of the boundary layer is taken into account, the density of the seed electrons near the target surface increases substantially, so that the ionization process occurs much faster. The dependence of the time of the onset of breakdown on the electric field of the incident wave and on the concentration of gas atoms is calculated.  相似文献   

2.
Nonlinear inverse bremsstrahlung absorption is investigated for a plasma photoionized in the Bethe regime of suppression of the ionization barrier, in which case the electron velocity distribution coincides with the distribution of atomic electrons. A comparison is made between the characteristic features of absorption in the cases where atomic electrons before ionization are in the ns and np states. It is established that, in the case of np states, the effective high-frequency conductivity is always nonlinear; in particular, for weak pump fields, it is proportional to the square of the pump field strength. The maximum plasma conductivity associated with p electrons is one order of magnitude lower than the maximum effective conductivity associated with s electrons, which creates conditions for less efficient plasma heating through inverse bremsstrahlung absorption.  相似文献   

3.
The initiation of exothermic chemical reactions in powder (metal-dielectric) mixtures by irradiating them with a high-power microwave beam is investigated. The initial stage of microwave breakdown is accompanied by the emission in the atomic lines of the metal component of the mixture (Ti, Mo, Sn, Al, etc.). The subsequent microwave discharge generates a continuous optical spectrum, the temperature of the effective Planckian radiator being 2000–3000 K. A prolonged radiation of the mixture after the end of the microwave pulse is caused by the energy release in chemical reactions.  相似文献   

4.
Results are presented from experimental studies on the unique beam-plasma generator of microwave radiation with a stochastically jumping phase (MWRSJP). To interpret the experimental results, a computer code was developed that allows one to simulate the process of gas ionization by electrons heated in the MWRSJP field and the behavior of plasma particles in such a field. The conditions for ignition and maintenance of a microwave discharge in air by MWRSJP are found both experimentally and theoretically, and the pressure range in which the power required for discharge ignition and maintenance is minimum are determined.  相似文献   

5.
A study is made of the generation of electron Bernstein waves in the interaction of a microwave field with a magnetized plasma during electron cyclotron heating. Parametric resonance accompanied by simultaneous conversion of microwave-field energy into the energy of numerous waves is analyzed. The relevant dispersion relation is investigated using the Hill method, which has recently been applied for the first time to examine the parametric interaction between high-power microwave radiation and plasmas. It is shown that the dispersion relation can be used to describe the onset of modulational instability at multimode parametric resonance. The growth rate of the modulational instability is obtained. Efficient energy transfer from the microwave field into Bernstein modes and, accordingly, into plasma electrons may be one of the main mechanisms for electron cyclotron resonance plasma heating.  相似文献   

6.
Low-pressure hydrogen is an important component of the working medium in extreme ultraviolet (EUV) projection lithography. Under the action of EUV photons and fast secondary electrons on the gas medium, plasma and atomic hydrogen, actively interacting with the surface, are produced. This interaction is very important, because it largely determines the lifetime of the multilayered EUV optics. In this study, the loss of atomic hydrogen under the conditions of a low pressure (<10 Torr) RF plasma discharge on the surfaces of materials used in EUV lithography is investigated. The surface loss probabilities of H atoms on these materials are measured. It is shown that surface recombination of atomic hydrogen goes according to the Eley-Rideal mechanism via direct recombination of H atoms from the gas phase with chemically and physically adsorbed atoms. In this case, the surface recombination probability is mainly determined by the density of chemical adsorption sites. The density of adsorption sites and the desorption energy of H atoms are estimated. The desorption energy of physically adsorbed H atoms on pure metal surfaces (or surfaces exposed to plasma) is about 0.5 eV, and the density of sorption sites is close to the surface density of atoms. This results in a high loss probability of H atoms on metals (∼0.1). Therefore, to provide efficient transportation of hydrogen atoms, it is necessary to use materials with the lowest loss probability of H atoms, i.e., dielectrics.  相似文献   

7.
The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures—the hot resonance component and the cold nonresonance component—were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T e of the main (cold) electron component on the energy fraction β lost for radiation was obtained.  相似文献   

8.
Emission of xenon excited by a 120-keV electron beam at gas pressures of 100, 200, 500, and 760 Torr nm was studied experimentally and theoretically. More than 30 spectral lines were identified in the wavelength range of 750–1000 nm. A self-consistent kinetic model is developed to calculate the emission intensity of xenon atoms in the near IR range. The model includes balance equations for the number densities of electrons, ions and excimer molecules; equations for the populations of electron levels; and the Boltzmann equation for the low-energy part of the electron energy distribution function with a source of slow electrons. Excitation and ionization rates of xenon by the beam electrons and the energy spectrum of slow electrons are calculated by the Monte Carlo method. It is shown that, under these conditions, the main mechanism of xenon atom excitation is dissociative recombination of Xe3 + ions.  相似文献   

9.
A study is made of the combined action of the losses associated with overcoming the ionization potential barrier and those associated with the residual energy acquired by the electrons on a laser pulse propagating in a gas and ionizing it. It is shown that, depending on the laser and gas parameters, the losses due to overcoming the ionization potential barrier may be either larger or smaller than those associated with the residual electron energy. However, for pulses that penetrate sufficiently deeply into the gas, the residual energy-related losses are always larger than the ionization potential-related losses because of the steepening of the laser pulse profile during ionization.  相似文献   

10.
The electron energy distribution function in an afterglow molecular nitrogen plasma is studied both experimentally and theoretically under the conditions of weak electric fields such that the electron gas is heated by superelastic collisions of electrons with vibrationally excited molecules. Based on the mean electron energy balance, it is established that, depending on the degree of plasma ionization and the vibrational temperature of nitrogen molecules, an afterglow plasma may evolve into two states, differing in electron temperature. This kind of bistability is found to stem from the difference in the main mechanisms for electron energy losses in the two stable states. The prediction that the shape of the electron energy distribution function should change in a jumplike manner when a weak electric field is imposed has been confirmed experimentally.  相似文献   

11.
Results are presented from optical measurements of the atomic hydrogen density and the gas temperature in a reactor for depositing diamond films from the plasmas of pulsed and continuous microwave discharges at a fixed mean microwave power. The results obtained make it possible to explain the fact that the growth rate of diamond films in the plasma of a pulsed microwave discharge is larger than that in a continuous microwave discharge.  相似文献   

12.
A conceptual design of a microwave gas-discharge plasma source is described. The possibility is considered of creating conditions under which microwave energy in the plasma resonance region would be efficiently converted into the energy of thermal and accelerated (fast) electrons. Results are presented from interferometric and probe measurements of the plasma density in a coaxial microwave plasmatron, as well as the data from probe measurements of the plasma potential and electron temperature. The dynamics of plasma radiation was recorded using a streak camera and a collimated photomultiplier. The experimental results indicate that, at relatively low pressures of the working gas, the nonlinear interaction between the microwave field and the inhomogeneous plasma in the resonance region of the plasmatron substantially affects the parameters of the ionized gas in the reactor volume.  相似文献   

13.
The energy and spatial degradation of the primary beam electrons and the production of high-energy secondary electrons in ionizing collisions are analyzed by solving the Boltzmann integral equation for the electron distribution function. The effect of the primary and secondary electrons on the direct ionization of an Ar-SiH4 mixture, the production of metastable argon atoms, and the dissociation of monosilane molecules is investigated over a wide range of the beam electron energies, argon pressures, and monosilane concentrations. The influence of metastable Ar* atoms on the dissociation of SiH4 is studied by using the balance equation for metastable argon atoms and the equation for the ambipolar diffusion of ions and low-energy secondary (plasma) electrons in the beam plasma. It is shown that the main contribution to the activation of an Ar-SiH4 mixture in an electron-beam plasma is provided by secondary electrons with energies higher than the excitation threshold for argon and the dissociation threshold for monosilane, whereas the contribution from metastable argon atoms, though potentially being comparable with that from secondary electrons, is less than in gas-discharge plasmas.  相似文献   

14.
15.
The ionization of sputtered aluminum atoms in the plasma of a microwave ECR discharge intended for metal coating of submicron-size structures in microelectronics is studied. The spatial distributions of xenon plasma parameters and their variations under the action of metal atoms are investigated using probe and optical emission spectroscopy techniques.  相似文献   

16.
The critical electric field at which the ionization rate is equal to the rate of electron attachment to neutral particles in heated sulfur hexafluoride (SF6) is calculated by numerically solving the Boltzmann equation for electrons. It is shown that the main causes of a decrease in the critical field with increasing gas temperature are the change in the electron energy distribution due to gas dissociation and the reduction in the rate of electron attachment to neutral particles. The calculated results are in qualitative agreement with the available experimental data.  相似文献   

17.
For a plasma produced by the photoionization of hydrogen-like atoms with electrons in the np states, a theory is developed that describes the nonlinear plasma polarizability due to electron-ion collisions, which governs the bremsstrahlung-induced coherent harmonic generation. The effective partial collision frequencies are obtained as functions of the pump field intensity for the first four p states of hydrogen-like atoms and for the third, fifth, seventh, ninth, and eleventh harmonics. These analytic results make it possible to establish the scalings of the collision frequencies with pump field intensity, the principal quantum number, and the number of the generated harmonic. In the case of pump fields of comparatively low intensities, some qualitative differences are revealed between these scalings and the corresponding scalings obtained for the Bethe regime of suppression of the photoionization barrier in a gas of hydrogen-like atoms with electrons in the ns states.  相似文献   

18.
Ignition of a stoichiometric CH4: O2 mixture by a laser spark excited in the reactor volume is studied experimentally. It is found that the spark initiates a feebly radiating incomplete-combustion wave, which is much faster than the combustion wave, but is substantially slower than the detonation wave. With a time delay of 500–700 μs, a bright optical flash occupying the entire chamber volume is observed, which indicates fast (involving branching chain reactions) ignition of the gas mixture. A conclusion is drawn regarding the common nature of the process of ignition of a combustible gas mixture by a laser spark excited in the reactor volume and the previously investigated initiation of combustion by laser sparks excited at solid targets, high-power microwave discharges, and high-current gliding discharges.  相似文献   

19.
Results are presented from theoretical studies of high-pressure (~100 Torr) dc discharges in neon. The diffuse and constricted discharge modes are studied using a model including the equation of balance for charged and excited particles, heat conduction equations for the neutral gas and plasma electrons, and Poisson’s equation for the radial electric field at a fixed total discharge current. A specific feature of the constricted mode in the investigated range of low fields and high degrees of ionization is that the excitation and ionization rates in the center of the discharge tube and at the periphery differ by several orders of magnitude. This implies that, in the constricted mode, the region where the electron energy distribution function is Maxwellian due to electron-electron collisions may adjoin the region (beyond the constriction zone) where the high-energy part of the distribution function is depleted. The hysteresis transition between the diffuse and constricted modes is analyzed. A transition from the constricted to the diffuse mode can be regarded as a manifestation of the nonlocal character of the formation of the electron distribution function, specifically, the diffusion of high-energy electrons capable of producing gas ionization from the central (constricted) region toward the periphery. The nonlocal formation of the distribution function is described by a nonlocal kinetic equation accounting for electron-electron collisions and electron transport along the radius of the discharge tube. Since only high-energy electrons produce gas ionization, the effect of the nonlocal formation of the electron distribution function is taken into account by introducing the effective temperature of the high-energy part of the distribution function and solving the equation for the radial profile of the high-energy part of the distribution function. This approach allows one to approximately take into account the nonlocal character of the electron distribution function without substantial expenditure of computer resources. The nonlocal model makes it possible to numerically simulate the hysteresis transition between the diffuse and constricted modes, which is impossible in the local approximation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号