首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the first genetic linkage maps of Sinapis alba (white mustard) and a rigorous analysis of sex effects on the frequency and distribution of crossovers at meiosis in this species. Sex-averaged maps representing recombination in two highly heterozygous parents were aligned to give a consensus map consisting of 382 loci defined by restriction fragment length polymorphisms and arranged in 12 linkage groups with no unlinked markers. The loci were distributed in a near-random manner across the genome, and there was little evidence of segregation distortion. From these dense maps, a subset of spaced informative markers was used to establish recombination frequencies assayed separately in male and female gametes and derived from two distinct genetic backgrounds. Analyses of 746 gametes indicated that recombination frequencies were greater in male gametes, with the greatest differences near the ends of linkage groups. Genetic background had a lesser effect on recombination frequencies, with no discernible pattern in the distribution of such differences. The possible causes of sex differences in recombination frequency and the implications for plant breeding are discussed.  相似文献   

2.
A microsatellite linkage map of the blacklip abalone, Haliotis rubra   总被引:2,自引:0,他引:2  
There is considerable scope for genetic improvement of cultured blacklip abalone Haliotis rubra in Australia using molecular marker-assisted, selective-breeding practices. Such improvement is dependent on the availability of primary genetic resources, such as a genetic linkage map. This study presents a first-generation linkage map of H. rubra, containing 122 microsatellite markers typed in a single full-sib family. These loci mapped to 17 and 20 linkage groups for the male and female respectively, and when aligned, the consensus map represented 18 linkage groups. The male linkage map contained 102 markers (one unlinked) covering 621 cM with an average intermarker spacing of 7.3 cM, and the female map contained 98 markers (eight unlinked) covering 766 cM with an average intermarker spacing of 9.8 cM. Analysis of markers informative in both parents showed a significantly higher recombination rate in the female parent, with an average male-to-female recombination ratio of 1:1.45 between linked pairs of markers. This linkage map represents a significant advancement in the genetic resource available for H. rubra and provides a framework for future quantitative trait loci mapping and eventual implementation of marker-assisted selection.  相似文献   

3.
A genetic linkage map of the Atlantic salmon (Salmo salar) was constructed, using 54 microsatellites and 473 amplified fragment length polymorphism (AFLP) markers. The mapping population consisted of two full-sib families within one paternal half-sib family from the Norwegian breeding population. A mapping strategy was developed that facilitated the construction of separate male and female maps, while retaining all the information contributed by the dominant AFLP markers. By using this strategy, we were able to map a significant number of the AFLP markers for which all informative offspring had two heterozygous parents; these markers then served as bridges between the male and female maps. The female map spanned 901 cM and had 33 linkage groups, while the male spanned 103 cM and had 31 linkage groups. Twenty-five linkage groups were common between the two maps. The construction of the genetic map revealed a large difference in recombination rate between females and males. The ratio of female recombination rate vs. male recombination rate was 8.26, the highest ratio reported for any vertebrate. This map constitutes the first linkage map of Atlantic salmon, one of the most important aquaculture species worldwide.  相似文献   

4.
Common carp (Cyprinus carpio L.) is cultured worldwide and is a major contributor to the world’s aquaculture production. The common carp has a complex tetraploidized genome, which may historically experience additional whole genome duplication than most other Cyprinids. Fine maps for female and male carp were constructed using a mapping panel containing one F1 family with 190 progeny. A total of 1,025 polymorphic markers were used to construct genetic maps. For the female map, 559 microsatellite markers in 50 linkage groups cover 3,468 cM of the genome. For the male map, 383 markers in 49 linkage groups cover 1,811 cM of the genome. The consensus map was constructed by integrating the new map with two published linkage maps, containing 732 markers and spanning 3,278 cM in 50 linkage groups. The number of consensus linkage groups corresponds to the number of common carp chromosomes. A significant difference on sex recombinant rate was observed that the ratio of female and male recombination rates was 4.2:1. Comparative analysis was performed between linkage map of common carp and genome of zebrafish (Danio rerio), which revealed clear 2:1 relationship of common carp linkage groups and zebrafish chromosomes. The results provided evidence that common carp did experienced a specific whole genome duplication event comparing with most other Cyprinids. The consensus linkage map provides an important tool for genetic and genome study of common carp and facilitates genetic selection and breeding for common carp industry.  相似文献   

5.
RAPD和SSR两种标记构建的中国对虾遗传连锁图谱   总被引:10,自引:0,他引:10  
利用RAPD和SSR分子标记结合拟测交策略,对中国对虾(Fenneropenaeuschinensis)“黄海1号”雌虾与野生雄虾作为亲本进行单对杂交产生的F1代,采用RAPD和SSR两种分子标记技术初步构建了中国对虾雌、雄遗传连锁图谱。对460个RAPD引物和44对SSR引物进行筛选,共选出61个RAPD引物和20对SSR引物,用于对父母本和82个F1个体进行遗传分析。共得到母本分离标记146个(RAPD标记128个,微卫星标记18个)和父本分离标记127个(RAPD标记109个,微卫星标记18个)。雌性图谱包括8个连锁群、9个三联体和14个连锁对,标记间平均间隔为11·28cM,图谱共覆盖1173cM,覆盖率为59·36%;雄性图谱包括10个连锁群、12个三联体和7个连锁对,标记间平均间隔为12·05cM,图谱共覆盖1144·6cM,覆盖率为62·01%。中国对虾遗传图谱的构建为其分子标记辅助育种、比较基因组作图及数量性状位点的定位与克隆奠定了基础。  相似文献   

6.
在鳞坡目昆虫中,雌性个体的减数分裂细胞不发生遗传重组。这类物种的杂效F2群体中杂合子基因型的与一般物种中雌雄个体的减数分裂细胞都发生遗传重组的F2群体杂合子表型不同,由于这个原因,作用这类物种的遗传连锁图谱通常中使用回交群体。但是,用回效群体傻所得的图谱是不完整的,因为图谱上所有的标记都是百轮回亲本提供的,因此 不会超过杂交F2各体的一半。另外,目前还没有任何方法和软件可以用杂效F2群体来作图鳞翅  相似文献   

7.
A single cross between two clones of passion fruit (Passiflora edulis Sims. f. flavicarpa Deg., 2n = 18) was selected for genetic mapping. The mapping population was composed of 90 F1 plants derived from a cross between 'IAPAR 123' (female parent) and 'IAPAR 06' (male parent). A total of 380 RAPD primers were analyzed according to two-way pseudo-testcross mapping design. The linkage analysis was performed using Mapmaker version 3.0 with LOD 4.0 and a maximum recombination fraction (theta) of 0.30. Map distances were estimated using the Kosambi mapping function. Linkage maps were constructed with 269 loci (2.38 markers/primer), of which 255 segregated 1:1, corresponding to a heterozygous state in one parent and null in the other. The linkage map for 'IAPAR123' consisted of 135 markers. A total of nine linkage groups were assembled covering 727.7 cM, with an average distance of 11.20 cM between framework loci. The sizes of the linkage groups ranged from 56 to 144.6 cM. The linkage map for 'IAPAR 06' consisted of 96 markers, covering 783.5 cM. The average distance between framework loci was 12.2 cM. The length of the nine linkage groups ranged from 20.6 to 144.2 cM. On average, both maps provided 61% genome coverage. Twenty-four loci (8.9%) remained unlinked. Among their many applications, these maps are a starting point for the identification of quantitative trait loci for resistance to the main bacterial disease affecting passion fruit orchards in Brazil, caused by Xanthomonas campestris pv. passiflorae, because parental genotypes exhibit diverse responses to bacterial inoculation.  相似文献   

8.
We have constructed nearly complete linkage maps of Pinus sylvestris (L.) using AFLP markers based on a two-way pseudo-testcross strategy in a full-sib family founded in an advanced breeding program. With 39 primer combinations, a total of 737 markers (320 from the mother and 417 from the father) segregated in a 1:1 ratio, corresponding to DNA polymorphism: heterozygous in one parent and null in the other. In the maternal parent, 188 framework markers were mapped in 12 linkage groups, equivalent to the Pinus haploid chromosome number, with a total coverage of 1,695.5 cM. In the paternal parent, 245 framework markers established a map with 15 linkage groups, spanning a genome length of 1,718.5 cM. The estimated total map length was L(F) = 1,681 cM for the female and L(M) = 1,645 cM for the male using a modified method-of-moment estimator. Combining these values with those estimated from the observed map lengths in both parents, we estimated the genome length in Scots pine to be between 1,600 and 2,100 cM. Our genome coverage was estimated to be more than 98% with a framework marker interval of 20 cM for both parents. Most of the female and male linkage groups were associated through the analysis of the intercross markers.  相似文献   

9.
Amplified fragment length polymorphisms (AFLPs) were used for genome mapping in the Pacific oyster Crassostrea gigas Thunberg. Seventeen selected primer combinations produced 1106 peaks, of which 384 (34.7%) were polymorphic in a backcross family. Among the polymorphic markers, 349 were segregating through either the female or the male parent. Chi-square analysis indicated that 255 (73.1%) of the markers segregated in a Mendelian ratio, and 94 (26.9%) showed significant (P < 0.05) segregation distortion. Separate genetic linkage maps were constructed for the female and male parents. The female framework map consisted of 119 markers in 11 linkage groups, spanning 1030.7 cM, with an average interval of 9.5 cM per marker. The male map contained 96 markers in 10 linkage groups, covering 758.4 cM, with 8.8 cM per marker. The estimated genome length of the Pacific oyster was 1258 cM for the female and 933 cM for the male, and the observed coverage was 82.0% for the female map and 81.3% for the male map. Most distorted markers were deficient for homozygotes and closely linked to each other on the genetic map, suggesting the presence of major recessive deleterious genes in the Pacific oyster.  相似文献   

10.
A framework genetic map based on genomic DNA-derived SSR, EST-derived SSR, EST-STS and EST-RFLP markers was developed using 181 genotypes generated from D8909-15 (female) × F8909-17 (male), the ‘9621’ population. Both parents are half siblings with a common female parent, Vitis rupestris ‘A. de Serres’, and different male parents (forms of V. arizonica). A total of 542 markers were tested, and 237 of them were polymorphic for the female and male parents. The female map was developed with 159 mapped markers covering 865.0 cM with an average marker distance of 5.4 cM in 18 linkage groups. The male map was constructed with 158 mapped molecular markers covering 1055.0 cM with an average distance of 6.7 cM in 19 linkage groups. The consensus ‘9621’ map covered 1154.0 cM with 210 mapped molecular markers in 19 linkage groups, with average distance of 5.5 cM. Ninety-four of the 210 markers on the consensus map were new. The ‘Sex’ expression locus segregated as single major gene was mapped to linkage group 2 on the consensus and the male map. PdR1, a major gene for resistance to Pierce’s disease, caused by the bacterium Xylella fastidiosa, was mapped to the linkage group 14 between markers VMCNg3h8 and VVIN64, located 4.3 and 2.7 cM away from PdR1, respectively. Differences in segregation distortion of markers were also compared between parents, and three clusters of skewed markers were observed on linkage groups 6, 7 and 14.  相似文献   

11.
Genetic linkage maps of Fenneropenaeus chinensis were constructed using a “double pseudo-testcross” strategy with 200 single nucleotide polymorphisms (SNPs) markers. This study represents the first SNP genetic linkage map for F. chinensis. The parents and F 1 progeny of 100 individuals were used as mapping populations. 21 genetic linkage groups in the male and female maps were identified. The male linkage map was composed of 115 loci and spanned 879.7 cM, with an average intermarker spacing of 9.4 cM, while the female map was composed of 119 loci and spanned 876.2 cM, with an average intermarker spacing of 8.9 cM. The estimated coverage of the linkage maps was 51.94% for the male and 53.77% for the female, based on two estimates of genome length. The integrated map contains 180 markers distributed in 16 linkage groups, and spans 899.3 cM with an average marker interval of 5.2 cM. This SNP genetic map lays the foundation for future shrimp genomics and genetic breeding studies, especially the discovery of gene or regions for economically important traits in Chinese shrimp.  相似文献   

12.
An improved linkage map for human chromosome 19 containing 35 short tandem repeat polymorphisms (STRPs) and one VNTR (D19S20) was constructed. The map included 12 new (GATA)n tetranucleotide STRPs. Although total lengths of the male (114 cM) and female (128 cM) maps were similar, at both ends of the chromosome male recombination exceeded female recombination, while in the interior portion of the map female recombination was in excess. Cosmid clones containing the STRP sequences were identified and were positioned along the chromosome by fluorescent in situ hybridization. Four rounds of careful checking and removal of genotyping errors allowed biologically relevant conclusions to be made concerning the numbers and distributions of recombination events on chromosome 19. The average numbers of recombinations per chromosome matched closely the lengths of the genetic maps computed by using the program CRIMAP. Significant numbers of chromosomes with zero, one, two, or three recombinations were detected as products of both female and male meioses. On the basis of the total number of observed pairs of recombination events in which only a single informative marker was situated between the two recombinations, a maximal estimate for the rate of meiotic STRP “gene” conversion without recombination was calculated as 3 × 10−4/meiosis. For distances up to 30 cM between recombinations, many fewer chromosomes which had undergone exactly two recombinations were observed than were expected on the basis of the assumption of independent recombination locations. This strong new evidence for human meiotic interference will help to improve the accuracy of interpretation of clinical DNA test results involving polymorphisms flanking a genetic abnormality.  相似文献   

13.
An integrated genetic linkage map, comprised of 219 RFLP and 33 microsatellite loci in 13 linkage groups, was constructed using two outbred pedigrees of Acacia mangium Willd. The linkage groups ranged in size from 23 to 103 cM and the total map length was 966 cM. Individual maps were made for each pedigree and the ordering of loci was consistent with the integrated map. The use of two independent pedigrees allowed a comparison of recombination rates between linked loci in male and female meioses as well as between parents. Differences were confined to specific regions and were not uniform across the male and female genomes or between genotypes. The heterogeneity in recombination frequencies did not result in major differences in the ordering of loci between pedigrees; hence, the integrated map provides a sound basis for QTL detection, leading to marker-assisted selection in A. mangium. It also provides a reference map for comparative genome analysis in acacias. The co-dominant markers used for mapping provide a useful resource in population studies and for quality control in acacia breeding programs. Detection of a relatively high proportion of selfs in pods derived from flowers which were not emasculated (30%), compared with emasculated flowers (0.01%), indicates that emasculation is desirable for efficient delivery of control-crossed seed in acacia breeding programs. Received: 25 March 2000 / Accepted: 30 April 2000  相似文献   

14.
Sex-specific recombination rates in zebrafish (Danio rerio)   总被引:7,自引:0,他引:7  
In many organisms, the rate of genetic recombination is not uniform along the length of chromosomes or between sexes. To compare the relative recombination rates during meiosis in male and female zebrafish, we constructed a genetic map based on male meiosis. We developed a meiotic mapping panel of 94 androgenetic haploid embryos that were scored for genetic polymorphisms. The resulting male map was compared to female and sex-average maps. We found that the recombination rate in male meiosis is dramatically suppressed relative to that of female meiosis, especially near the centromere. These findings have practical applications for experimental design. The use of exclusively female meiosis in a positional cloning project maximizes the ratio of genetic map distance to physical distance. Alternatively, the use of exclusively male meiosis to localize a mutation initially to a linkage group or to maintain relationships of linked alleles minimizes recombination, thereby facilitating some types of analysis.  相似文献   

15.
AFLP-based genetic linkage maps of the blue mussel (Mytilus edulis)   总被引:4,自引:0,他引:4  
We report the construction of the first genetic linkage map in the blue mussel, Mytilus edulis. AFLP markers were used in 86 full-sib progeny from a controlled pair mating, applying a double pseudo-test cross strategy. Thirty-six primer pairs generated 2354 peaks, of which 791 (33.6%) were polymorphic in the mapping family. Among those, 341 segregated through the female parent, 296 through the male parent (type 1:1) and 154 through both parents (type 3:1). Chi-square goodness-of-fit tests revealed that 71% and 73% of type 1:1 and 3:1 markers respectively segregated according to Mendelian inheritance. Sex-specific linkage maps were built with mapmaker 3.0 software. The female framework map consisted of 121 markers ordered into 14 linkage groups, spanning 862.8 cM, with an average marker spacing of 8.0 cM. The male framework map consisted of 116 markers ordered into 14 linkage groups, spanning 825.2 cM, with an average marker spacing of 8.09 cM. Genome coverage was estimated to be 76.7% and 75.9% for the female and male framework maps respectively, rising to 85.8% (female) and 86.2% (male) when associated markers were included. Twelve probable homologous linkage group pairs were identified and a consensus map was built for nine of these homologous pairs based on multiple and parallel linkages of 3:1 markers, spanning 816 cM, with joinmap 4.0 software.  相似文献   

16.
The primary genetic linkage maps of Fenneropenaeus chinensis (Osbeck) were constructed by using the “two-way pseudo-testcross” strategy with RAPD and SSR markers. Parents and F1 progeny were used as segregating populations. Sixty-one RAPD primers and 20 pairs of SSR primers were screened from 460 RAPD primers and 44 pairs of SSR primers. These primers were used to analyze the parents and 82 progeny of the mapping family. About 146 primers (128 RAPDs, 18 microsatellites) in the female and 127 primers (109 RAPDs, 18 microsatellites) in the male were segregating markers. The female linkage map included eight linkage groups, nine triplets and 14 doublets, spanning 1,173 cM with the average marker density of 11.28 cM, and the observed coverage was 59.36%. The male linkage map included 10 linkage groups, 12 triplets and seven doublets, spanning 1,144.6 cM with the average marker density of 12.05 cM, and the observed coverage was 62.01%. The construction of the F. chinensis genetic linkage maps here opened a new prospect for marker-assisted selection program, comparative genomics and quantitative trait loci (QTL) gene location and cloning.  相似文献   

17.
Sekino M  Hara M 《Genetics》2007,175(2):945-958
This study presents linkage maps for the Pacific abalone (Haliotis discus hannai) based on 180 microsatellite DNA markers. Linkage mapping was performed using three F1 outbred families, and a composite linkage map for each sex was generated by incorporating map information from the multiple families. A total of 160 markers are placed on the consolidated female map and 167 markers on the male map. The numbers of linkage groups in the composite female and male maps are 19 and 18, respectively; however, by aligning the two maps, 18 linkage groups are formed, which are consistent with the haploid chromosome number of H. discus hannai. The female map spans 888.1 cM (Kosambi) with an average spacing of 6.3 cM; the male map spans 702.4 cM with an average spacing of 4.7 cM. However, we encountered several linkage groups that show a high level of heterogeneity in recombination rate between families even within the same sex, which reduces the precision of the consolidated maps. Nevertheless, we suggest that the composite maps are of significant potential use as a scaffold to further extend the coverage of the H. discus hannai genome with additional markers.  相似文献   

18.
A Genetic linkage map of Atlantic halibut (Hippoglossus hippoglossus L.)   总被引:2,自引:0,他引:2  
A genetic linkage map has been constructed for Atlantic halibut on the basis of 258 microsatellites and 346 AFLPs. Twenty-four linkage groups were identified, consistent with the 24 chromosomes seen in chromosome spreads. The total map distance is 1562.2 cM in the female and 1459.6 cM in the male with an average resolution of 4.3 and 3.5 cM, respectively. Using diploid gynogens, we estimated centromere locations in 19 of 24 linkage groups. Overall recombination in the female was approximately twice that of the male; however, this trend was not consistent along the linkage groups. In the centromeric regions, females had 11-17.5 times the recombination of the males, whereas this trend reversed toward the distal end with males having three times the recombination of the females. Correspondingly, in the male, markers clustered toward the centromeric region with 50% of markers within 20 cM of the putative centromere, whereas 35% of markers in the female were found between 60 and 80 cM from the putative centromere. Limited interspecies comparisons within Japanese flounder and Tetraodon nigroviridis revealed blocks of conservation in sequence and marker order, although regions of chromosomal rearrangement were also apparent.  相似文献   

19.
A centromere-based genetic map of the short arm of human chromosome 6   总被引:2,自引:0,他引:2  
A genetic map of the short arm of chromosomes 6 (6p) has been constructed with 20 genetic markers that define 16 loci, including a locus at the centromere. The 40 CEPH families and, for 4 loci, 13 additional Utah families were genotyped. All 16 loci form a single linkage group extending from near the telomeric region to the centromere, covering 159 cM (Haldane) on the female map and 94 cM on the male map. Sex differences in recombination frequencies are noted for the 6p map, with an excess occurring in males at the distal end. The genetic order of loci is consistent with their physical localization on 6p. Proximal to the three most distal loci on the map, markers are especially dense, providing an extended region on 6p useful for localizing genes of interest.  相似文献   

20.
We constructed a genetic linkage map for Arctic char (Salvelinus alpinus) using two backcrosses between genetically divergent strains. Forty-six linkage groups (expected = 39-41) and 19 homeologous affinities (expected = 25) were identified using 184 microsatellites, 129 amplified fragment length polymorphisms (AFLPs), 13 type I gene markers, and one phenotypic marker, SEX. Twenty-six markers remain unlinked. Female map distance (9.92 Morgans) was substantially higher than male map distance (3.90 Morgans) based on the most complete parental information (i.e., the F1 hybrids). Female recombination rates were often significantly higher than those of males across all pairwise comparisons within homologous chromosomal segments (average female to male ratios within families was 1.69:1). The female hybrid parent had significantly higher recombination rates than the pure strain female parent. Segregation distortion was detected in four linkage groups (4, 8, 13, 20) for both families. In family 3, only the largest fish were sampled for genotyping, suggesting that segregation distortion may represent regions possessing influences on growth. In family 2, almost all cases showing segregation distortion involved markers in the female hybrid parent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号