首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The T cell Ag receptor (CD3/Ti) and the sheep E receptor (CD2) expressed on the surface of human T cells are both capable of initiating intracellular signals necessary for T cell activation. CD3/Ti interacts with Ag to initiate cellular immune responses. Although the exact function of CD2 is unknown, lymphocyte function-associated Ag 3 (LFA-3), a 55- to 70-kDa receptor expressed on a broad spectrum of hemopoietic and nonhemopoietic cells, has recently been shown to be its natural ligand. We show here that although purified multimeric LFA-3 is not capable of initiating transmembrane signaling events on its own, the combination of LFA-3 and the anti-CD2 mAb CD2.1 induces intracellular calcium increases, phosphatidylinositol second messenger generation and lymphokine secretion in the T cell leukemic line Jurkat. In order to study the signaling requirements of CD2, we compared the ability of CD2 mAb and LFA-3 to initiate activation signals in Jurkat and in three Jurkat-derived mutants. A CD3-CD2+ mutant failed to increase calcium or exhibit phosphatidylinositol hydrolysis to either the combination of agonist CD2 mAb 9-1 and 9.6 or LFA-3 and CD2.1. Reconstitution of the Ag receptor by transfection of the Ti-beta-chain restored the expression of the CD3/Ti complex and the ability to respond to either combination of CD2 ligands. However, no response to CD2 ligands was detected in a CD3+CD2+ mutant selected for signaling defects to CD3/Ti ligands. Complementation of the CD3/Ti signaling defect by cell fusion also restored competency to respond to CD2 agonists. These results demonstrate that LFA-3 under appropriate conditions can activate T cells via the CD2 complex and that this activation requires not only the cell surface expression of the CD3/Ti complex but also a functional Ag receptor pathway.  相似文献   

2.
The T cell antigen receptor is composed of two variable chains (alpha and beta, termed Ti), which confer ligand specificity, and five constant chains (gamma, delta, epsilon, zeta, and p21, collectively termed CD3) whose functions are poorly understood. To explore the roles of the individual CD3 components, an antigen-specific murine T cell hybridoma was chemically mutagenized and antigen-induced growth inhibition was used to select CD3/Ti expression variants. One variant produced all CD3/Ti components except CD3-zeta and was able to express small amounts of surface CD3/Ti. This variant failed to respond normally to either antigen or a mitogenic anti-Thy-1 antibody. Surprisingly, in the absence of CD3-zeta, direct cross-linking of the partial receptor induced both phosphatidylinositol hydrolysis and interleukin 2 production. These data indicate that CD3-zeta determines the normal intracellular fate of the T cell antigen receptor and is likely to play an important role in physiologically relevant transmembrane signaling.  相似文献   

3.
We have investigated the role of CD2 molecules in Ag-specific T cell activation by using a mouse model system in which the function of CD2 can be analyzed without the apparent influence of major accessory molecules, such as CD4 or LFA-1. Transfection of the CD2 gene into a CD2- T cell hybridoma confers the enhancement of IL-2 production upon Ag stimulation. Anti-CD2 mAb inhibits the Ag-specific response of the CD2-transfectant, not only to the level of CD2- cells but to the background. B cells, but not MHC class II-transfected L cells, serve as APC to induce the inhibition of Ag response. The complete abrogation of the response is observed only upon the stimulation through TCR with Ag in the presence of APC but not through either TCR-CD3 or other molecules such as Thy-1. Furthermore, the inhibition can also be observed when anti-CD2 mAb is immobilized on culture plates, suggesting that the inhibition of Ag response results from transducing the negative signal through the CD2 molecule. The experiments on cytoplasmic domain-deleted CD2-transfected T cells reveal that the cytoplasmic portion is responsible for the CD2-mediated abrogation of Ag responses. These results imply that CD2 has important roles in T cell responses not only as an activation and adhesion molecule but also as a regulatory molecule of Ag-specific responses through the TCR.  相似文献   

4.
In this study the effect of anti-cluster designation (CD) 2 monoclonal antibodies (mAb) on the activation of a cloned human T cell line, HY837, after triggering the CD3/T cell receptor (TcR) complex by anti-CD3 or anti-TcR mAb is described. HY837, which reacts with a series of mAb directed at different epitopes on the TcR, could be induced to proliferation and interleukin 2 (IL-2) production by soluble mAb directed at the CD3/TcR complex in the absence of accessory cells. mAb directed at the CD2 epitope T11-1 were shown to block the IL-2 production by HY837, as well as the expression of the IL-2 receptor, induced by anti-CD3 mAb, resulting in the inhibition of the proliferative response. The effect of anti-CD2 mAb on the proliferative response of HY837, induced by anti-CD3 mAb, was not due to a competition for Fc binding sites. In contrast, the proliferative responses and IL-2 production of HY837, induced by mAb directed at the TcR, were shown to be enhanced by the action of the anti-CD2 mAb. These results indicate that effects mediated by anti-CD3/TcR mAb cannot always be extrapolated to antigen-mediated effects and show that anti-CD2 mAb may regulate the T cell response, induced by mAb directed at the CD3/TcR complex, depending on which part of this complex is triggered during activation.  相似文献   

5.
In this report we describe a novel pathway of human T cell activation and proliferation involving the CD5 surface Ag. The CD5-specific Cris1 mAb induces by itself monocyte-dependent proliferation of PBMC. Among a panel of CD5-specific mAb (Leu1, OKT1, LO-CD5a, F101-1C5, and F145GF3), only the F145GF3 mAb shared this property with Cris1. The analysis of the biochemical pathway involved in this activation showed the lack of detectable hydrolysis of inositol phosphates or early increments in the intracellular cytosolic calcium concentration, after triggering cells with the mitogenic CD5 mAb. However, stimulation with CD5 induces activation of protein kinase C, as measured by phosphorylation of a specific peptide substrate (peptide GS), which can be inhibited by a pseudosubstrate peptide inhibitor. Stimulation with CD5 mAb induces also tyrosine kinase activity, with a substrate pattern that differs from that induced after triggering lymphocytes through the TCR-CD3 complex. On the other hand the IL-2/IL-2R pathway seems involved in the CD5-mediated proliferation of PBMC because anti-IL-2R-specific mAb inhibits CD5-induced proliferation, and stimulation with mitogenic CD5 mAb induces production of IL-2 and expression of IL-2R alpha and beta chains. Therefore, the triggering of the CD5 Ag can induce IL-2- and monocyte-dependent human T cell proliferation by a biochemical pathway that differs, at least in the first stages, from the one that mediates TCR-CD3 complex-induced T cell activation.  相似文献   

6.
The CD44 molecule, also known as Hermes lymphocyte homing receptor, human Pgp-1, and extracellular matrix receptor III, has been shown to play a role in T cell adhesion and activation. Specifically, anti-CD44 mAb block binding of lymphocytes to high endothelial venules, inhibit T cell-E rosetting, and augment T cell proliferation induced by the CD2 or CD3-TCR pathways. We have characterized an anti-CD44 mAb (212.3) which immunoprecipitates a 90-kDa protein and is specific for CD44 as shown by peptide mapping and antibody competition studies. Interestingly, our studies with 212.3 demonstrate that this CD44-specific mAb completely inhibits T cell proliferation stimulated by the anti-CD3 mAb, OKT3. Inhibition is not a result of reduced cell viability, but is associated with 1) inhibition of IL-2 production, 2) inhibition of IL-2R expression, and 3) inhibition of OKT3-mediated increases in intracellular Ca2+ levels. In addition, 212.3 does not inhibit proliferation by the T cell mitogens PHA or PWM nor does it inhibit proliferation in a mixed lymphocyte reaction. Similar to other anti-CD44 mAb, 212.3 also augments T cell proliferation induced by mAb directed against the T11(2) and T11(3) epitopes of CD2. Thus, these studies describe a novel CD44-specific mAb (212.3) that inhibits T cell activation by OKT3 by blocking early signal transduction. Furthermore, these studies suggest that "receptor cross-talk" between the CD3-TCR complex and CD44 may regulate T cell activation.  相似文献   

7.
8.
9.
10.
A mouse mAb, TS 43, which recognized the human CD5 molecule, was found to induce the proliferation of human peripheral blood T cells. TS 43 mAb precipitated from 125I-radiolabeled T cells a 67-kDa band, which comigrated with the 67-kDa band precipitated by the anti-CD5 mAb OKT1. Preclearing of cell lysates with OKT1 mAb abolished the capacity of TS 43 mAb to precipitate radiolabeled material from T cell lysates. Furthermore, a mouse T cell hybridoma transfected with human CD5 was stained by TS 43 mAb. T cell proliferation mediated by TS 43 mAb was monocyte dependent, and was accompanied by IL-2R expression and by IL-2 synthesis. T cell activation by TS 43 mAb involved a rise in intracellular calcium level (CA2+)i and was dependent on the expression of the TCR/CD3 complex because no rise in (Ca2+)i was observed in a TCR-beta-deficient Jurkat T cell mutant. This study indicates that CD5 should be added to the list of surface molecules that can signal T cells to proliferate.  相似文献   

11.
Stimulatory of antigen-specific murine T cell hybridomas with the appropriate antigen has been shown to cause lymphokine secretion and inhibition of spontaneous cell growth. In this study, the effect of cellular activation on the growth of transformed T cells, of known or unknown antigen specificity, was explored with stimulatory monoclonal antibodies (mAb) that recognize nonclonally distributed T cell surface molecules. Anti-CD3 antibodies stimulated interleukin 2 (IL-2) secretion while they inhibited murine and human T cell tumor growth in vitro. Both responses required external cross-linking of the anti-CD3 antibodies. Activation via two molecules that are not physically associated with the T cell antigen receptor, Thy-1 and Ly-6, also inhibited transformed T cell growth while inducing IL-2 secretion. Notably, an anti-Thy-1 mAb that did not cause the transformed T cells to secrete lymphokines failed to affect their growth, and in fact blocked the growth inhibition induced by the stimulatory mAb. Regardless of which stimulating mAb was used, IL-2 production and cell growth were inversely proportional, manifesting similar antibody dose-response curves. Activation of a T cell hybridoma with stimulatory mAb resulted in rapid lysis, as evidenced by the release of 51Cr and lactate dehydrogenase. Cell cycle analysis demonstrated that cellular activation was accompanied by a cell cycle block between the G1 and S phases, and probably a slowing of the transit of cells already in S. These results demonstrate that the growth of a spectrum of neoplastic T cells, murine and human, can be inhibited by what are normally growth-promoting signals for non-transformed T cells.  相似文献   

12.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

13.
We have recently developed a mAb, anti-1F7, which defines a family of structures found to include the molecule recognized by anti-Ta1 (CD26). In this paper, we demonstrated that binding of 1F7 by solid-phase immobilized anti-1F7 mAb but not anti-Ta1 mAb has a comitogenic effect by inducing proliferation of human CD4+ T lymphocytes in conjunction with submitogenic doses of anti-CD3 or anti-CD2. The proliferative response induced via the CD3-1F7 or CD2-1F7 pathways is associated with the IL-2 autocrine pathway, including IL-2 production. IL-2R expression and anti-IL-2R (Tac) inhibition. Furthermore, solid-phase immobilization of anti-1F7 but not anti-Ta1 acts in conjunction with submitogenic doses of PMA to mediate a comitogenic effect in the absence of anti-CD3 or anti-CD2, leading to CD4+ T cell proliferation. PMA treatment, in the meantime, leads to enhanced expression of 1F7 on the T cell surface. Despite its functional association with both pathways of activation, however, the 1F7 structure is not comodulated with the CD3/TCR complex nor the CD2 molecule. These findings thus suggest that the CD26 Ag is involved in CD3 and CD2-induced human CD4+ T cell activation.  相似文献   

14.
Ly-6A/E molecules were originally implicated in regulation of T cell activation because anti-Ly-6A/E mAb induce IL-2 production. More recently we have shown that anti-Ly-6A/E also inhibits IL-2 production induced by anti-CD3. In the present study we used mutant and transfected cell lines that varied in expression of Ly-6A/E or TCR-zeta to test whether the positive and negative modulations of IL-2 production by anti-Ly-6A/E occur by distinct mechanisms. Anti-Ly-6A/E inhibited anti-CD3-induced IL-2 production for Ly-6E.1-transfected EL4J cells, but did not affect IL-2 production of the parental Ly-6A/E-negative EL4J cells. These results indicate that TCR-mediated IL-2 production can occur in the absence of Ly-6A/E expression and establish that anti-Ly-6A/E-induced inhibition of IL-2 production was the result of antibody binding to Ly-6A/E. As expected, MA5.8 (zeta-negative) or CT108 (zeta-truncated) variants of the 2B4.11 T cell hybridoma did not produce IL-2 when stimulated with anti-Thy-1 or anti-Ly-6A/E mAb. In contrast, anti-Ly-6A/E inhibited anti-CD3-induced IL-2 production by MA5.8 and CT108. Furthermore, anti-Ly-6A/E-induced IL-2 production was restored for zeta-transfected MA5.8. Thus, although induction of IL-2 by anti-Ly-6A/E depends on zeta expression, inhibition of IL-2 by anti-Ly-6A/E occurs by a zeta-independent mechanism. Interestingly, anti-Ly-6A/E, but not anti-Thy-1, inhibited anti-CD3-induced IL-2 production by MA5.8 and Ly-6E.1-transfected EL4J. Therefore, inhibition of IL-2 production by anti-Ly-6A/E was not a general property of a mAb binding to a phosphatidylinositol-linked molecule, as has been suggested for induction of IL-2 production. Taken together these data suggest that the molecular mechanisms of induction and inhibition of IL-2 production by anti-Ly-6A/E are separable and expression of TCR-zeta is one variable that distinguishes these two pathways.  相似文献   

15.
Engagement of the TCR (CD3-Ti) by Ag/MHC, CD3 mAb, or lectin mitogen stimulates the very early tyrosine phosphorylation of several cellular substrates including TCR-zeta. The T cell specific protein-tyrosine kinase (PTK), p56lck, has been implicated in the tyrosine phosphorylation of TCR-zeta. However, the significance of this event with regard to CD3-Ti signal transduction remains unclear. Herein, we have investigated the effect of the selective PTK inhibitor genistein (4',5,7-trihydroxyisoflavone) on cellular events associated with activation via CD3-Ti triggering. Genistein inhibited the T cell PTK, p56lck, in a dose-dependent fashion with an ID50 = 40 microM. Genistein also inhibited CD3 mAb or PHA-induced TCR-zeta chain phosphorylation in intact peripheral blood T cells. Genistein blocked the expression of IL-2 and IL-2R (CD25) in T cells stimulated with PHA/PMA or CD3 mAb/PMA, but did not inhibit the de novo expression of the CD69 early activation Ag, which is induced primarily by a PKC-dependent pathway. IL-2 and CD25 expression induced by calcium ionophore A23187 and PMA was largely refractory to inhibition by genistein, suggesting an effect of the drug on calcium-dependent pathways stimulated via CD3-Ti triggering. In this last regard, genistein partially inhibited the CD3 mAb-induced rise in [Ca2+]i but did not inhibit PHA- or CD3 mAb-induced phosphatidylinositol hydrolysis. Consequently, protein-tyrosine phosphorylation does not appear to be a prerequisite for CD3-Ti-mediated activation of phosphatidylinositol-specific phospholipase C activity and PIP2 hydrolysis. An alternative role for PTK in CD3-Ti signal transduction is suggested.  相似文献   

16.
Interaction of CD2 with its ligand, LFA-3, in human T cell proliferation   总被引:9,自引:0,他引:9  
Recently, it has been demonstrated that lymphocyte function-associated Ag (LFA-3) is a natural ligand for CD2 and that this receptor-ligand interaction functions in cell-cell adhesion. In this report, we demonstrate that LFA-3 plays a role in T cell activation. L cells were transfected with human genomic DNA and sorted for expression of LFA-3. We demonstrate that LFA-3+ L cells, together with anti-CD3 mAb or with suboptimal doses of PHA, stimulate proliferation of human peripheral blood T cells. Furthermore, thymocyte proliferation was induced by LFA-3+ L cells and suboptimal doses of PHA. Proliferation was inhibited by mAb directed against either CD2 or LFA-3. Stimulation of thymocytes by the combination of PHA and LFA-3+ L cells resulted in the increased expression of the IL-2R, as well as of the surface Ag 4F2, transferrin receptor, and HLA-DR. These data support the conclusion that LFA-3 plays a role in CD2-dependent T cell activation. LFA-3 is widely distributed and is expressed on all APC and target cells. Thus, the ability of the CD2/LFA-3 interaction to costimulate with an anti-CD3 mAb suggests that the CD2/LFA-3 interaction may be involved not only in an Ag-independent alternate pathway of T cell activation but also in Ag-specific T cell activation.  相似文献   

17.
Down-regulation of IL-2 production by activation of T cells through Ly-6A/E   总被引:4,自引:0,他引:4  
Ly-6A/E molecules are expressed on the surface of T cells and have been shown to function in activation by the capacity of anti-Ly-6A/E mAb to induce T cell hybridomas or normal T cells to produce IL-2. Recent evidence suggests that activation through Ly-6A/E may be linked to the TCR signaling pathway. To further investigate the relationship between Ly-6- and TCR-induced T cell activation, we have examined whether an anti-Ly-6A/E mAb (D7) modulates TCR signaling in vitro. We now report that mAb D7 specifically inhibited IL-2 production by T cells also activated through TCR. Such inhibition was noted for normal T cells stimulated by soluble anti-CD3 or alloantigen and for T hybridomas stimulated by soluble anti-CD3. The ability of D7 to inhibit IL-2 production by T hybridomas was dependent on the nature of the TCR activating signal because IL-2 production was not inhibited when T hybridomas were stimulated with Ag or immobilized anti-CD3. Inhibition of IL-2 production by D7 apparently required cross-linking of the mAb because D7 F(ab')2 fragments were not effective for inhibition of IL-2 production. Similar to its ability to enhance anti-Ly-6A/E-induced activation of T and B cells, IFN-gamma enhanced the D7-induced inhibition of IL-2 production by alloantigen-activated normal T cells. These data further support the notion that Ly-6 and TCR signaling pathways are interrelated.  相似文献   

18.
T Owens 《Cellular immunology》1991,133(2):352-366
The mechanism whereby noncognate contact with activated IL-2-producing Type 1 helper T cells (TH1) induces B cell activation was examined. Small resting B cells from C57B1/6 mice were cultured, in the absence of any ligand for surface Ig, with irradiated cells of the hapten-specific, CBA-derived, F23.1+ TH1 clone E9.D4 in F23.1 (anti-T cell receptor V-beta 8)-coated microwells. This induced polyclonal B cell activation to enter cell cycle (thymidine incorporation) at 2 days and to secrete immunoglobulin at 5 days. An anti-IL-2 mAb (S4B6) inhibited antibody production completely. Anti-IL-2 did not inhibit either LPS-induced B cell responses, or T cell activation (measured as IL-3 secretion). Anti-IL-2 receptor (anti-Tac) mAbs also inhibited T-dependent B cell responses, without affecting LPS responses. An anti-IFN-gamma mAb partially inhibited Ig secretion, without affecting entry into cycle. LPS responses or T cell activation. Other antibodies (anti-IL-3, IL-4, IL-5, Thy-1.2, CD5) were not inhibitory. After 2 days of culture with F23.1-activated T cells, B cells appeared to have become responsive to IL-2, in that they could be driven to immunoglobulin production by the addition of IL-2. Flow cytometry showed no expression by these B cells of 55-kDa (Tac) IL-2 receptors. Also, rigorous removal of T cells from 2-day cocultures prevented the response to IL-2, and readdition of T cells restored it. Because the reconstituted responses were inhibited both by anti-IL-2 and by anti-Tac, IL-2 must have acted indirectly, via the T cells that were present in these cultures. Continued contact with T cells was therefore necessary for the progression of B cells to antibody secretion.  相似文献   

19.
20.
Dendritic cells (DC) are unique in their capacity to either stimulate or regulate T cells, and receptor/ligand pairs on DC and T cells are critically involved in this process. In this study we present such a molecule, which was discovered by us when analyzing the functional effects of an anti-DC mAb. This mAb, 11C9, reacted strongly with DC, but only minimally with lymphocytes. In MLR it constantly reduced DC-induced T cell activation. Therefore, we assumed that mAb 11C9 primarily exerts its functions by binding to a DC-structure. This does not seem to be the case, however. Preincubation of DC with mAb 11C9 before adding T cells had no inhibitory effect on T cell responses. Retroviral expression cloning identified the 11C9 Ag as CD63. This lysosomal-associated membrane protein (LAMP-3), is only minimally expressed on resting T cells but can, as we show, quickly shift to the surface upon stimulation. Cross-linkage of that structure together with TCR-triggering induces strong T cell activation. CD63 on T cells thus represents an alternative target for mAb 11C9 with its binding to activated T cells rather than DC being responsible for the observed functional effects. This efficient CD63-mediated costimulation of T cells is characterized by pronounced induction of proliferation, strong IL-2 production and compared with CD28 enhanced T cell responsiveness to restimulation. Particularly in this latter quality CD63 clearly surpasses several other CD28-independent costimulatory pathways previously described. CD63 thus represents an activation-induced reinforcing element, whose triggering promotes sustained and efficient T cell activation and expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号