首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple oscillation method to determine the moment of inertia of limb segments is described. The method involves coupling the limb segment to an elastic mechanical device. The resulting system has a lightly damped oscillatory response from which its resonant frequency can be measured and used to determine the moment of inertia of the limb. The method has been applied to the forearm and results produced compare favourably with those obtained by other methods.  相似文献   

2.
A new method is presented for estimating the parameters of two different models of a joint. The two models are: (1) A rotational joint with a fixed axis of rotation, also referred to as a hinge joint and (2) a ball and socket model, corresponding to a spherical joint. Given the motion of a set of markers, it is shown how the parameters can be estimated, utilizing the whole data set. The parameters are estimated from motion data by minimizing two objective functions. The method does not assume a rigid body motion, but only that each marker rotates around the same fixed axis of rotation or center of rotation. Simulation results indicate that in situations where the rigid body assumption is valid and when measurement noise is present, the proposed method is inferior to methods that utilize the rigid body assumption. However, when there are large skin movement artefacts, simulation results show the proposed method to be more robust.  相似文献   

3.
There is a paucity of data in the literature on the restraining effects of the glenohumeral (GH) ligaments; cadaveric testing is one of the best methods for determining the function of these types of tissues. The aim of this work was to commission a custom-made six degrees of freedom (dof) joint loading apparatus and to establish a protocol for laxity testing of cadaveric shoulder specimens. Nine cadaveric shoulder specimens were used in this study and each specimen had all muscle resected leaving the scapula, humerus (transected at mid-shaft) and GH capsule. Specimens were mounted on the testing apparatus with the joint in the neutral position and at 30°, 60° and 90° GH abduction in the coronal, scapula and 30° forward flexion planes. For each orientation, 0–1 N m in 0.1 N m increments was applied in internal/external rotation and the angular displacement recorded. The toe-region of the moment–displacement curves ended at approximately ±0.5 N m. The highest rotational range of motion for the joint was 140° for ±1.0 N m at 30° GH abduction in the scapula plane. The range of motion shifted towards external rotation with increasing levels of abduction. The results provide the optimum loading regime to pre-condition shoulder specimens and minimise viscoelastic effects in the ligaments prior to laxity testing (>0.5 N m at 30° GH abduction in any of the three planes). Knowledge of the mechanical properties of the GH capsuloligamentous complex has implications for modelling of the shoulder as well surgical planning and intervention.  相似文献   

4.
Summary Interleukin 2 activity is usually determined by a proliferation assay using an IL-2-dependent cell line. Tritiated thymidine incorporation during DNA synthesis is a suitable method for this purpose, but its main drawback is the use of radioactive isotopes. We describe the use of Alamar Blue, a new fluorogenic growth indicator, for the measurement of interleukin 2 activity in microtitration plates. This assay is sensitive and economical. The lower limit of detection is about 400 cells per well with an intra-assay coefficient of variation of about 5 percent.  相似文献   

5.
The palmar axial triradius t. A new method of location   总被引:1,自引:0,他引:1  
T J David 《Human heredity》1971,21(6):624-627
  相似文献   

6.
Electromyography of trunk muscles in isometric graded axial rotation.   总被引:2,自引:0,他引:2  
This study was conducted to determine the pattern, magnitude, and phasic inter-relationship of the trunk muscles in maximal isometric and graded isometric axial rotational contractions and compare them with those previously observed from the same subjects in the same experimental session in dynamic conditions. In 50 normal young healthy subjects (27 male and 23 female), after a suitable skin preparation, bipolar silver-silver chloride recessed pregelled surface electrodes were placed on external oblique, internal oblique, rectus abdominis, pectoralis major, latissimus dorsi, erector spinae at T(10) and L(3) levels bilaterally with 2 cm interelectrode distance. EMG signals from grounded subjects were suitably preamplified and amplified by a fully isolated system. These subjects were stabilized in an upright-seated posture in the Axial Rotation Tester (AROT), which was placed in isometric mode for force and rotation output from the AROT. The 14 channels of EMG, the force and the rotation were sampled at 1 kHz. The subjects initially registered their isometric maximal voluntary contraction (MVC) on both sides which was used for reference and then performed their 25%, 50% and 75% of MVC bilaterally in an isometric mode in a random order. The EMG magnitude, the slope of the rise of the EMG, and the phasic interrelationship of muscles were analyzed. The results showed that female sample generated only 65% of torque of their male counterparts. There were no significant differences between the male and the female samples in the EMG variables. Exertions to the left and to the right were not significantly different from each other for the measured variables. However, the magnitude contribution of the muscles and the slope of rise of EMG were significantly different in two directions (p<0.001). The phasic interrelationship of the external obliques, the latissimus dorsi and the erector spinae were different from other muscles (p<0.01). With the increasing grades of contraction the latissimus dorsi and the external obliques increased their magnitude significantly whereas that of the erectores spinae underwent a decrease in proportionate terms (but not in absolute magnitude) suggesting their role as stabilizers but not as rotators.  相似文献   

7.
This research was designed to follow up the observation of Thornton and Kraemer ('51) that regressed, denervated limbs of Ambystoma larvae will not regenerate upon reinnervation if all digits on the limbs were not completely resorbed. The object of this experiment was to determine whether the presence of an apical structure, protruding past the amputation surface, would affect the regenerative process. Both forearms of adult newts were amputated midway between the elbow and the wrist. One limb served as a normal regeneration control, and in the other limb the third digit from the removed hand was implanted in place of the removed radius, so that the three distal phalangeal segments protruded past the plane of amputation. Blastema formation in the experimental limbs was delayed by several weeks as compared with control limbs. Approximately one third of the experimental limbs did not regenerate. The regenerates that did form were strongly deviated (45–90°) radially from the longitudinal axis of the limb. Experimental analysis showed that the delay in regeneration is due largely to the projecting part of the digit. The radial deviation of the regenerates is not due to the digital implant, but rather to the removal of the radius. Trauma alone does not account for this phenomenon.  相似文献   

8.
The terminal abdominal segments of male Aedes aegypti rotate 180° within 24 hr after adult emergence, rotation occurring in the intersegmental membrane between abdominal segments VII and VIII. The ultrastructure of this rotating membrane is compared with non-rotating intersegmental membranes at different developmental stages. The deposition of cuticle in both the rotating and non-rotating intersegments appears ultrastructurally similar, and follows the sequential pattern described for other insects. Shortly after adult emergence, however, disruptive changes occur in the membrane cuticle that are more pronounced in non-rotating intersegments. This disruption occurs initially 1 hr after adult emergence and becomes maximal within 3 hr. Disruption appears to occur by the addition of fluid to the cuticle and results in a ten-fold increase in cuticle thickness in non-rotating intersegments but only a two-fold increase in thickness in the rotating intersegment. While in the disrupted condition, the non-rotating intersegmental membranes become extensively folded whereas the cuticle in the rotating intersegment becomes stretched. During rotation, strain forces in the rotating intersegment result in a reorientation of microfibers in the cuticle from parabolic to parallel. This reorientation is presumably brought about by plastic flow.  相似文献   

9.
In the field of joint kinematics, clinical terms such as internal-external, or medical-lateral, rotations are commonly used to express the rotation of a body segment about its own long axis. However, these terms are not defined in a strict mathematical sense. In this paper, a new mathematical definition of axial rotation is proposed and methods to calculate it from the measured Euler angles are given. The definition and methods to calculate it from the measured Euler angles are given. The definition is based on the integration of the component of the angular velocity vector projected onto the long axis of the body segment. First, the absolute axial rotation of a body segment with respect to the stationary coordinate system is defined. This definition is then generalized to give the relative axial rotation of one body segment with respect to the other body segment where the two segments are moving in the three-dimensional space. The well-known Codman's paradox is cited as an example to make clear the difference between the definition so far proposed by other researchers and the new one.  相似文献   

10.
The effect of external forces on axial arterial wall mechanics has conventionally been regarded as secondary to hemodynamic influences. However, arteries are similar to muscles in terms of the manner in which they traverse joints, and their three-dimensional geometrical requirements for joint motion. This study considers axial arterial shortening and elongation due to motion of the lower extremity during gait, ascending stairs, and sitting-to-standing motion. Arterial length change was simulated by means of a graphics based anatomic and kinematic model of the lower extremity. This model estimated the axial shortening to be as much as 23% for the femoropopliteal arterial region and as much as 21% for the iliac artery. A strong correlation was observed between femoropopliteal artery shortening and maximum knee flexion angle (r2=0.8) as well as iliac artery shortening and maximum hip angle flexion (r2=0.9). This implies a significant mechanical influence of locomotion on arterial behavior in addition to hemodynamics factors. Vascular tissue has high demands for axial compliance that should be considered in the pathology of atherosclerosis and the design of vascular implants.  相似文献   

11.
New global method for computer prediction of functional sites in nucleotide sequences, based on the fractal representation, is presented. Fractal representation of set of sequences (FRS) provides simple way for generating recognitions matrix of functionally similar sequences and simple estimations of its efficiency for searching homologous regions in new sequences. Other advantages of the method are absence of the necessity of sequences alignment during generating based set and searching new homologous regions and small CPU time. Usage of the method illustrated for searching globin and histone genes, for ALU repeats in human genome and long terminal repeats in virus genome.  相似文献   

12.
A new method of vaginal reconstruction is reported. In the procedure, the left inferior abdominal wall flap with the subcutaneous pedicle containing epigastric superficial blood vessels and/or the circumflex iliac superficial vessel and the external pudendal vessel and their branches is raised and passed through an immediate extraperitoneal tunnel to be the artificial vagina. The operation is straightforward, quick, and safe. Thirty consecutive patients suffering from congenital absence of vagina have been treated. All flaps in the group, which were less bulky, survived completely. The follow-up survey was carried out from 6 months to more than 4 years postoperatively. There was no occurrence of hernia after surgery. The reconstructed vaginas in all patients were clean, soft, elastic, and expansible. Married patients indicated satisfaction with their sexual life.  相似文献   

13.
The genetic cascade that governs left-right (L-R) specification is starting to be elucidated. In the mouse, the lateral asymmetry of the body axis is revealed first by the asymmetric expression of nodal, lefty2 and pitx2 in the left lateral plate mesoderm of the neurulating embryo. Here we describe a novel gene, rotatin, essential for the correct expression of the key L-R specification genes nodal, lefty and Pitx2. Embryos deficient in rotatin show also randomized heart looping and delayed neural tube closure, and fail to undergo the critical morphogenetic step of axial rotation. The amino acid sequence deduced from the cDNA is predicted to contain at least three transmembrane domains. Our results show a novel key player in the genetic cascade that determines L-R specification, and suggest a causal link between this process and axial rotation.  相似文献   

14.
15.
16.
The 3-methyl-2-benzothiazolone hydrazone method has been applied to the determination of erythrocyte membrane sialic acid residues. This method requires a mild oxidation of sialic acid which results in the formation of analogs. Their separation by chromatography, after labeling, allows the choice of the best conditions for this oxidation. The concomitant liberated formaldehyde is determined. This method requires no prior release of sialic acid as opposed to the periodate-thiobarbituric method of Warren (1959, J. Biol. Chem., 234, 1971–1975). These two methods have been compared.  相似文献   

17.
18.
This paper describes a new non-orthogonal decomposition method to determine effective torques for three-dimensional (3D) joint rotation. A rotation about a joint coordinate axis (e.g. shoulder internal/external rotation) cannot be explained only by the torque about the joint coordinate axis because the joint coordinate axes usually deviate from the principal axes of inertia of the entire kinematic chain distal to the joint. Instead of decomposing torques into three orthogonal joint coordinate axes, our new method decomposes torques into three "non-orthogonal effective axes" that are determined in such a way that a torque about each effective axis produces a joint rotation only about one of the joint coordinate axes. To demonstrate the validity of this new method, a simple internal/external rotation of the upper arm with the elbow flexed at 90 degrees was analyzed by both orthogonal and non-orthogonal decomposition methods. The results showed that only the non-orthogonal decomposition method could explain the cause-effect mechanism whereby three angular accelerations at the shoulder joint are produced by the gravity torque, resultant joint torque, and interaction torque. The proposed method would be helpful for biomechanics and motor control researchers to investigate the manner in which the central nervous system coordinates the gravity torque, resultant joint torque, and interaction torque to control 3D joint rotations.  相似文献   

19.
Simplified loading modes (pure moment, compressive force) are usually applied in the in vitro studies to simulate flexion-extension, lateral bending and axial rotation of the spine. The load magnitudes for axial rotation vary strongly in the literature. Therefore, the results of current investigations, e.g. intervertebral rotations, are hardly comparable and may involve unrealistic values. Thus, the question 'which in vitro applicable loading mode is the most realistic' remains open. A validated finite element model of the lumbar spine was employed in two sensitivity studies to estimate the ranges of results due to published load assumptions and to determine the input parameters (e.g. torsional moment), which mostly affect the spinal load and kinematics during axial rotation. In a subsequent optimisation study, the in vitro applicable loading mode was determined, which delivers results that fit best with available in vivo measurements. The calculated results varied widely for loads used in the literature with potential high deviations from in vivo measured values. The intradiscal pressure is mainly affected by the magnitude of the compressive force, while the torsional moment influences mainly the intervertebral rotations and facet joint forces. The best agreement with results measured in vivo were found for a compressive follower force of 720N and a pure moment of 5.5Nm applied to the unconstrained vertebra L1. The results reveal that in many studies the assumed loads do not realistically simulate axial rotation. The in vitro applicable simplified loads cannot perfectly mimic the in vivo situation. However, the optimised values lead to the best agreement with in vivo measured values. Their consequent application would lead to a better comparability of different investigations.  相似文献   

20.
The aim of this paper is to prove the possible reproducibility of measurement with a new developed device for artery elasticity monitoring and determining the standard of major pulse wave parameters. As a measurement sensor, a conic probe with thin convex membrane was used. This technique allows setting an arbitrary pressure to a measured surface artery. We measured pulse waves on the radial arteries of 108 individuals. We expected similar features in arterial wall elasticity. We concentrated primarily on the amount of subcutaneous fat. For the measured waves we evaluated five following pulse wave parameters: relative crest time, elasticity index, dicrotic wave attenuation, dicrotic wave time and interwave distance. There were no significant differences in measured pulse wave parameters among the tested groups of subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号