首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microdialysis coupled to HPLC is the preferred method for quantification of glutamate (Glu) concentrations, both in normal and pathological conditions. However, HPLC is a time consuming technique that suffers from poor temporal resolution. Here we describe an alternative method to measure glutamate concentrations in small-volume dialysis samples by quantifying hydrogen peroxide released by glutamate oxidase using the Amplex Red method. This system permits continuous automatic sample collection and the detection of a fluorescent reaction product, resorufin, which provides a measure of the glutamate concentration. Quantification can be carried out in small microdialysis samples to allow a temporal resolution of 60 s. Both in vitro and in vivo tests showed that this method was reproducible and reliable, detecting Glu along a linear scale. To validate the proposed method, extracellular Glu concentrations in the rat brain were measured and correlated with electrophysiological activity prior, during and after seizure induction with 4-aminopyridine. This method may be adapted to monitor other biologically active compounds, including acetylcholine and glucose, as well as other compounds that generate hydrogen peroxide as a reaction product and may be used as an alternative to other neurochemical methods.  相似文献   

2.
Our newly developed method using a dialysis electrode has made it possible to perform real time monitoring of extracellular glutamate concentration ([Glu]e) utilizing the oxygen-independent reaction with glutamate oxidase and ferrocene. In this study, we therefore, investigated [Glu]e changes during brain ischemia using both the conventional microdialysis method and the dialysis electrode method. A comparison between our newly developed dialysis electrode and conventional microdialysis methods provided the following results. When the conventional microdialysis method was employed: (1) the elevation of [Glu]e during complete global ischemia was delayed; and (2) the elevation of concentration and reuptake of glutamate were delayed during 10-min transient ischemia, and the elevation of [Glu]e reached a maximum later using conventional microdialysis than using our dialysis electrode. (3) The biphasic [Glu]e elevation of glutamate concentration detected using the dialysis electrode method was not observed using the conventional microdialysis method. It was additionally investigated why the conventional microdialysis method provides inferior time resolution. In this study, we also demonstrated with the chromatographic SMART procedure coupled to UV detection that biogenic substances, i.e. low molecular weight proteins and peptides, are released during ischemic injury, and they may cause a delay in the time resolution in the microdialysis method.  相似文献   

3.
Glutamate (Glu) quantification has been performed by a combination of intracerebral microdialysis through which the samples are obtained and analyzed by high performance liquid chromatography (HPLC); its measurement requires a large expenditure of time (15–30 min per sample) and special training. Therefore, an alternative method is presented here, based on the electrochemiluminescence produced by the use of an enzymatic reactor, containing glutamate‐oxidase, mixed and incubated with microdialysate from dorsal striatum (DS) and prefrontal cortex (PFC) of young rats asphyxiated during the neonatal period, under a global asphyxia model in order to test this method. Using this approach, we found high extracellular Glu concentration in the DS of asphyxiated animals, but only during K+ stimulation, while in the PFC, only a delay in the rise of Glu after K+ stimulation was observed, without any difference in extracellular Glu content when compared with controls. This new method permitted a fast measurement of Glu in brain dialysate samples, it significantly reduces the cost of the analysis per sample, since only a single device and pump are needed without using columns and high pressure inside the system or complex hardware and software to control pumps, detector, fraction collector or any other peripheral used in HPLC.  相似文献   

4.
Absence epilepsy is an important epileptic syndrome in children. Multiscale entropy (MSE), an entropy-based method to measure dynamic complexity at multiple temporal scales, is helpful to disclose the information of brain connectivity. This study investigated the complexity of electroencephalogram (EEG) signals using MSE in children with absence epilepsy. In this research, EEG signals from 19 channels of the entire brain in 21 children aged 5-12 years with absence epilepsy were analyzed. The EEG signals of pre-ictal (before seizure) and ictal states (during seizure) were analyzed by sample entropy (SamEn) and MSE methods. Variations of complexity index (CI), which was calculated from MSE, from the pre-ictal to the ictal states were also analyzed. The entropy values in the pre-ictal state were significantly higher than those in the ictal state. The MSE revealed more differences in analysis compared to the SamEn. The occurrence of absence seizures decreased the CI in all channels. Changes in CI were also significantly greater in the frontal and central parts of the brain, indicating fronto-central cortical involvement of “cortico-thalamo-cortical network” in the occurrence of generalized spike and wave discharges during absence seizures. Moreover, higher sampling frequency was more sensitive in detecting functional changes in the ictal state. There was significantly higher correlation in ictal states in the same patient in different seizures but there were great differences in CI among different patients, indicating that CI changes were consistent in different absence seizures in the same patient but not from patient to patient. This implies that the brain stays in a homogeneous activation state during the absence seizures. In conclusion, MSE analysis is better than SamEn analysis to analyze complexity of EEG, and CI can be used to investigate the functional brain changes during absence seizures.  相似文献   

5.
To evaluatewhether changes in extracellular glutamate (Glu) levels in the centralnervous system could explain the depressed hypoxic ventilatory responsein hypothermic neonates, 12 anesthetized, paralyzed, and mechanicallyventilated piglets <7 days old were studied. The Glu levels in thenucleus tractus solitarius obtained by microdialysis, minute phrenicoutput (MPO), O2 consumption, arterial blood pressure, heart rate, and arterial blood gases weremeasured in room air and during 15 min of isocapnic hypoxia (inspiredO2 fraction = 0.10) at braintemperatures of 39.0 ± 0.5°C [normothermia (NT)]and 35.0 ± 0.5°C [hypothermia (HT)]. During NT, MPO increased significantly during hypoxia and remained above baseline. However, during HT, there was a marked decrease in MPOduring hypoxia (NT vs. HT, P < 0.03). Glu levels increased significantly in hypoxia during NT;however, this increase was eliminated during HT(P < 0.02). A significant linearcorrelation was observed between the changes in MPO and Glu levelsduring hypoxia (r = 0.61, P < 0.0001). Changes in pH, arterialPO2, O2 consumption, arterial bloodpressure, and heart rate during hypoxia were not different between theNT and HT groups. These results suggest that the depressed ventilatoryresponse to hypoxia observed during HT is centrally mediated and inpart related to a decrease in Glu concentration in the nucleus tractussolitarius.

  相似文献   

6.
The toxicity of organophosphorous (OP) nerve agents is attributed to their irreversible inhibition of acetylcholinesterase (AChE), which leads to excessive accumulation of acetylcholine (ACh) and is followed by the release of excitatory amino acids (EAA). EAAs sustain seizure activity and induce neuropathology due to over-stimulation of N-methyl-d-aspartate (NMDA) receptors. Huperzine A (Hup A), a blood–brain barrier permeable selective reversible inhibitor of AChE, has been shown to reduce EAA-induced cell death by interfering with glutamate receptor-gated ion channels in primary neuronal cultures. Although [−]-Hup A, the natural isomer, inhibits AChE approximately 38-fold more potently than [+]-Hup A, both [−]- and [+]-Hup A block the NMDA channel similarly. Here, we evaluated the protective efficacy of [+]-Hup A for NMDA-induced seizure in a rat model. Rats implanted with radiotelemetry probes to record electroencephalography (EEG), electrocardiography (ECG), body temperature, and physical activity were administered various doses of [+]-Hup A (intramuscularly) and treated with 20 μg/kg NMDA (intracerebroventricular) 20–30 min later. For post-exposure, rats were treated with [+]-Hup A (3 mg/kg, intramuscularly) 1 min after NMDA (20 μg/kg). Our data showed that pre- and post-exposure, [+]-Hup A (3 mg/kg) protects animals against NMDA-induced seizures. Also, NMDA-administered animals showed increased survival following [+]-Hup A treatment. [+]-Hup A has no visible effect on EEG, heart-rate, body temperature, or physical activity, indicating a reduced risk of side effects, toxicity, or associated pathology. Our results suggest that [+]-Hup A protects against seizure and status epilepticus (SE) by blocking NMDA-induced excitotoxicity in vivo. We propose that [+]-Hup A, or a unique combination of [+]- and [−]-Hup A, may prove to be effective for pre- and post-exposure treatment of lethal doses of OP-induced neurotoxicity.  相似文献   

7.
Functional magnetic resonance imaging (fMRI) and positron emission tomography measure local changes in brain hemodynamics induced by cognitive or perceptual tasks. These measures have a uniformly high spatial resolution of millimeters or less, but poor temporal resolution (about 1s). Conversely, electroencephalography (EEG) and magnetoencephalography (MEG) measure instantaneously the current flows induced by synaptic activity, but the accurate localization of these current flows based on EEG and MEG data alone remains an unsolved problem. Recently, techniques have been developed that, in the context of brain anatomy visualized with structural MRI, use both hemodynamic and electromagnetic measures to arrive at estimates of brain activation with high spatial and temporal resolution. These methods range from simple juxtaposition to simultaneous integrated techniques. Their application has already led to advances in our understanding of the neural bases of perception, attention, memory and language. Further advances in multi-modality integration will require an improved understanding of the coupling between the physiological phenomena underlying the different signal modalities.  相似文献   

8.
Many psychotropic substances used either for medications or illicit recreational purposes are able to produce an increase in extracellular serotonin (5HT) in the CNS. 5HT is well known to improve mood; however, only when the levels of its release are in an appropriate range. Excessive 5HT is harmful, and will generally result in serotonin syndrome. To date, clinical diagnosis of serotonin syndrome relies exclusively on observation of symptoms because of a lack of available laboratory tests. The goal of this study was to characterize the onset of the syndrome using laboratory settings to determine excessive 5HT‐evoked neurological abnormalities. Experiments were carried out in rats with the syndrome being elicited by three groups of 5HT‐promoting drugs: (i) (±)‐3,4‐methylenedioxymethamphetamine (MDMA); (ii) a combination of the monoamine oxidase inhibitor clorgyline with the 5HT precursor 5‐hydroxytryptophan; (iii) clorgyline combined with the serotonin‐selective reuptake inhibitor paroxetine. The onset of the syndrome was characterized by electroencephalography (EEG), tremor, and brain/plasma 5HT tests. We found that a mild syndrome was associated with reduced EEG amplitudes while a severe syndrome strongly with seizure‐like EEG activity and increased tremor activity. The occurrence of the syndrome was confirmed with microdialysis, showing excessive 5HT efflux in brain dialysate and the increased concentration of unbound 5HT in the plasma. Our findings suggest that the syndrome onset can be revealed with EEG recording, measurements of tremor activity and changes of unbound 5HT concentration in the plasma.  相似文献   

9.
The process by which the brain transitions into an epileptic seizure is unknown. In this study, we investigated whether the transition to seizure is associated with changes in brain dynamics detectable in the wideband EEG, and whether differences exist across underlying pathologies. Depth electrode ictal EEG recordings from 40 consecutive patients with pharmacoresistant lesional focal epilepsy were low-pass filtered at 500 Hz and sampled at 2,000 Hz. Predefined EEG sections were selected immediately before (immediate preictal), and 30 seconds before the earliest EEG sign suggestive of seizure activity (baseline). Spectral analysis, visual inspection and discrete wavelet transform were used to detect standard (delta, theta, alpha, beta and gamma) and high-frequency bands (ripples and fast ripples). At the group level, each EEG frequency band activity increased significantly from baseline to the immediate preictal section, mostly in a progressive manner and independently of any modification in the state of vigilance. Preictal increases in each frequency band activity were widespread, being observed in the seizure-onset zone and lesional tissue, as well as in remote regions. These changes occurred in all the investigated pathologies (mesial temporal atrophy/sclerosis, local/regional cortical atrophy, and malformations of cortical development), but were more pronounced in mesial temporal atrophy/sclerosis. Our findings indicate that a brain state change with distinctive features, in the form of unidirectional changes across the entire EEG bandwidth, occurs immediately prior to seizure onset. We postulate that these changes might reflect a facilitating state of the brain which enables a susceptible region to generate seizures.  相似文献   

10.
11.
Modern neuroimaging technologies have substantially advanced the measurement of brain activity. Electroencephalogram (EEG) as a noninvasive neuroimaging technique measures changes in electrical voltage on the scalp induced by brain cortical activity. With its high temporal resolution, EEG has emerged as an increasingly useful tool to study brain connectivity. Challenges with modeling EEG signals of complex brain activity include interactions among unknown sources, low signal-to-noise ratio, and substantial between-subject heterogeneity. In this work, we propose a state space model that jointly analyzes multichannel EEG signals and learns dynamics of different sources corresponding to brain cortical activity. Our model borrows strength from spatially correlated measurements and uses low-dimensional latent states to explain all observed channels. The model can account for patient heterogeneity and quantify the effect of a subject's covariates on the latent space. The EM algorithm, Kalman filtering, and bootstrap resampling are used to fit the state space model and provide comparisons between patient diagnostic groups. We apply the developed approach to a case-control study of alcoholism and reveal significant attenuation of brain activity in response to visual stimuli in alcoholic subjects compared to healthy controls.  相似文献   

12.
The effects of the halogenated aromatic amino acid 3,5-dibromo-d-tyrosine (3,5-DBr-d-Tyr) were studied in rat models of stroke and epileptic seizures caused by middle cerebral artery occlusion (MCAo) through respective intracerebral injection of endothelin-1 (ET-1) and intraperitoneal (i.p.) injection of pentylenetetrazole (PTZ). 3,5-DBr-d-Tyr was administered as three bolus injections (30 or 90 mg/kg, i.p.) starting at 30, 90, and 180 min after ET-1 administration or as a single bolus (30 mg/kg, i.p.) 15 min prior to PTZ administration. Neurological deficits and infarct volume were estimated 3 days after ET-1 administration and seizure score was assessed during the first 20 min after PTZ administration. The safety of 3,5-DBr-d-Tyr was evaluated in control animals using telemetry to measure cardiovascular parameters and immunostaining to assess the level of activated caspase-3. 3,5-DBr-d-Tyr significantly improved neurological function and reduced infarct volume in the brain even when the treatment was initiated 3 h after the onset of MCAo. 3,5-DBr-d-Tyr significantly depressed PTZ-induced seizures. 3,5-DBr-d-Tyr did not cause significant changes in arterial blood pressure, heart rate and spontaneous locomotor activity, nor did it increase the number of activated caspase-3 positive cells in the brain. We conclude that 3,5-DBr-d-Tyr, by alleviating the deleterious effects of MCAo and PTZ in rats with no obvious intrinsic effects on cardiovascular parameters and neurodegeneration, exhibits promising potential as a novel therapeutic direction for stroke and seizures.  相似文献   

13.
BackgroundEpilepsy surgery is a potentially curative treatment option for pharmacoresistent patients. If non-invasive methods alone do not allow to delineate the epileptogenic brain areas the surgical candidates undergo long-term monitoring with intracranial EEG. Visual EEG analysis is then used to identify the seizure onset zone for targeted resection as a standard procedure.MethodsDespite of its great potential to assess the epileptogenicty of brain tissue, quantitative EEG analysis has not yet found its way into routine clinical practice. To demonstrate that quantitative EEG may yield clinically highly relevant information we retrospectively investigated how post-operative seizure control is associated with four selected EEG measures evaluated in the resected brain tissue and the seizure onset zone. Importantly, the exact spatial location of the intracranial electrodes was determined by coregistration of pre-operative MRI and post-implantation CT and coregistration with post-resection MRI was used to delineate the extent of tissue resection. Using data-driven thresholding, quantitative EEG results were separated into normally contributing and salient channels.ResultsIn patients with favorable post-surgical seizure control a significantly larger fraction of salient channels in three of the four quantitative EEG measures was resected than in patients with unfavorable outcome in terms of seizure control (median over the whole peri-ictal recordings). The same statistics revealed no association with post-operative seizure control when EEG channels contributing to the seizure onset zone were studied.ConclusionsWe conclude that quantitative EEG measures provide clinically relevant and objective markers of target tissue, which may be used to optimize epilepsy surgery. The finding that differentiation between favorable and unfavorable outcome was better for the fraction of salient values in the resected brain tissue than in the seizure onset zone is consistent with growing evidence that spatially extended networks might be more relevant for seizure generation, evolution and termination than a single highly localized brain region (i.e. a “focus”) where seizures start.  相似文献   

14.
Exposure to early life stress may profoundly influence the developing brain in lasting ways. Neuropsychiatric disorders associated with early life adversity may involve neural changes reflected in EEG power as a measure of brain activity and disturbed sleep. The main aim of the present study was for the first time to characterize possible changes in adult EEG power after postnatal maternal separation in rats. Furthermore, in the same animals, we investigated how EEG power and sleep architecture were affected after exposure to a chronic mild stress protocol. During postnatal day 2–14 male rats were exposed to either long maternal separation (180 min) or brief maternal separation (10 min). Long maternally separated offspring showed a sleep-wake nonspecific reduction in adult EEG power at the frontal EEG derivation compared to the brief maternally separated group. The quality of slow wave sleep differed as the long maternally separated group showed lower delta power in the frontal-frontal EEG and a slower reduction of the sleep pressure. Exposure to chronic mild stress led to a lower EEG power in both groups. Chronic exposure to mild stressors affected sleep differently in the two groups of maternal separation. Long maternally separated offspring showed more total sleep time, more episodes of rapid eye movement sleep and higher percentage of non-rapid eye movement episodes ending in rapid eye movement sleep compared to brief maternal separation. Chronic stress affected similarly other sleep parameters and flattened the sleep homeostasis curves in all offspring. The results confirm that early environmental conditions modulate the brain functioning in a long-lasting way.  相似文献   

15.
The Stroop effect is considered as a standard attentional measure to study conflict resolution in humans. The response of the brain to conflict is supposed to change over time and it is impaired in certain pathological conditions. Neuropsychological Stroop test measures have been complemented with electroencephalography (EEG) techniques to evaluate the mechanisms in the brain that underlie conflict resolution from the age of 20 to 70. To study the changes in EEG activity during life, we recruited a large sample of healthy subjects of different ages that included 90 healthy individuals, divided by age into decade intervals, which performed the Stroop test while recording a 14 channel EEG. The results highlighted an interaction between age and stimulus that was focused on the prefrontal (Alpha and Theta band) and Occipital (Alpha band) areas. We concluded that behavioural Stroop interference is directly influenced by opposing Alpha and Theta activity and evolves across the decades of life.  相似文献   

16.
17.
It is well known that a dietary restriction of vitamin B-6 during gestation and lactation produces spontaneous seizures in neonatal animals. Since pyridoxal phosphate, one of the biologically active forms of vitamin B-6, is the cofactor for GAD the neonatal seizures have been attributed to low levels of brain GABA as a result of cofactor depletion. Although GABA levels are significantly lower in B-6 restricted neonatal rats with spontaneous seizures, seizure activity is not present in B-6 deficient adult rats or 28 day old rats in the present study, despite significantly low levels of brain GABA. These facts suggest that depletion of GABA is not the only biochemical alteration essential for the emergence of seizures. In the present study, the effect of vitamin B-6 undernutrition on the concentrations of the neuroactive amino acids, Glu, Gly, Tau, and GABA was determined in selected regions of the developing rat brain. The results show that the concentrations of Glu, Tau, and GABA were significantly lower and GLY significantly higher in selected brain regions of the B-6 restricted 14 day old rat compared to control tissue. Most of these changes were unique to 14 days of age, the time when spontaneous seizures are observed, and not present at 28 or 56 days of age when seizures are absent. This pattern of amino acid changes in the brain and the magnitude of the changes was consistent with those measured in a variety of chemically-induced animal models of epilepsy and in human epileptic foci. The regional distribution of amino acid changes was associated with brain regions which have been suggested to be responsible for the initiation and propagation of seizure activity. Two unique findings were also made in this study. First, there was a regional brain heterogeneity in the age-associated loss of brain Tau concentrations with the pons/medulla and substantia nigra appearing to be highly vulnerable and the hippocampus quite resistant to the loss of Tau. A second finding was the normalization of the neonatal GABA deficit in most brain regions by 56 days of age. The normalization of brain GABA was present in the face of continued dietary vitamin B-6 restriction. In summary, this study shows that the neuroactive amino acids Glu, Gly, Tau, and GABA are markedly altered in the seizure-prone vitamin B-6 restricted neonatal rat brain. The alterations in the brain concentration of Glu, Gly, and Tau may play an equally important role as GABA in the underlying mechanism of seizures associated with this condition.Abbreviations GAD Glutamic acid decarboxylase - GABA gamma-aminobutyric acid - Glu glutamate - Gly glycine - Tau taurine - CNS central nervous system - CTX cortex - HIPP hippocampus - C/P caudate/putamen - SN substantia nigra - Cb cerebellum - P/M pons/medulla  相似文献   

18.
ObjectiveEpileptic seizures are defined as manifest of excessive and hyper-synchronous activity of neurons in the cerebral cortex that cause frequent malfunction of the human central nervous system. Therefore, finding precursors and predictors of epileptic seizure is of utmost clinical relevance to reduce the epileptic seizure induced nervous system malfunction consequences. Researchers for this purpose may even guide us to a deep understanding of the seizure generating mechanisms. The goal of this paper is to predict epileptic seizures in epileptic rats.MethodsSeizures were induced in rats using pentylenetetrazole (PTZ) model. EEG signals in interictal, preictal, ictal and postictal periods were then recorded and analyzed to predict epileptic seizures. Epileptic seizures were predicted by calculating an index in consecutive windows of EEG signal and comparing the index with a threshold. In this work, a newly proposed dissimilarity index called Bhattacharyya Based Dissimilarity Index (BBDI), dynamical similarity index and fuzzy similarity index were investigated.ResultsBBDI, dynamical similarity index and fuzzy similarity index were examined on case and control groups and compared to each other. The results show that BBDI outperforms dynamical and fuzzy similarity indices. In order to improve the results, EEG sub-bands were also analyzed. The best result achieved when the proposed dissimilarity index was applied on Delta sub-band that predicts epileptic seizures in all rats with a mean of 299.5 s.ConclusionThe dissimilarity of neural network activity between reference window and present window of EEG signal has a significant increase prior to an epileptic seizure and the proposed dissimilarity index (BBDI) can reveal this variation to predict epileptic seizures. In addition, analyzing EEG sub-bands results in more accurate information about constituent neuronal activities underlying the EEG since certain changes in EEG signal may be amplified when each sub-band is analyzed separately.SignificanceThis paper presents application of a dissimilarity index (BBDI) on EEG signals and its sub-bands to predict PTZ-induced epileptic seizures in rats. Based on the results of this work, BBDI will predict epileptic seizures more accurately and more reliably compared to current indices that increases epileptic patient comfort and improves patient outcomes.  相似文献   

19.
In the present study we examined the effects of cocaine seizure kindling on the expression of NMDA receptors and levels of extracellular glutamate in mouse brain. Quantitative autoradiography did not reveal any changes in binding of [3H] MK-801 to NMDA receptors in several brain regions. Likewise, in situ hybridization and Western blotting revealed no alteration in expression of the NMDA receptor subunits, NR1 and NR2B. Basal overflow of glutamate in the ventral hippocampus determined by microdialysis in freely moving animals also did not differ between cocaine-kindled and control groups. Perfusion with the selective excitatory amino acid transporter inhibitor, pyrrolidine-2,4-dicarboxylic acid (tPDC, 0.6 mM), increased glutamate overflow confirming transport inhibition. Importantly, KCl-evoked glutamate overflow under tPDC perfusion was significantly higher in cocaine-kindled mice than in control mice. These data suggest that enhancement of depolarization stimulated glutamate release may be one of the mechanisms underlying the development of increased seizure susceptibility after cocaine kindling.  相似文献   

20.
4-Aminopyridine is a powerful convulsant that induces the release of neurotransmitters, including glutamate. We report the effect of intrahippocampal administration of 4-aminopyridine at six different concentrations through microdialysis probes on EEG activity and on concentrations of extracellular amino acids and correlate this effect with histological changes in the hippocampus. 4-Aminopyridine induced in a concentration-dependent manner intense and frequent epileptic discharges in both the hippocampus and the cerebral cortex. The three highest concentrations used induced also a dose-dependent enhancement of extracellular glutamate, aspartate, and GABA levels and profound hippocampal damage. Neurodegenerative changes occurred in CA1, CA3, and CA4 subfields, whereas CA2 was spared. In contrast, microdialysis administration of a depolarizing K+ concentration and of tetraethylammonium resulted in increased amino acid levels but no epileptic activity and no or moderate neuronal damage. These results suggest that seizure activity induced by 4-aminopyridine is due to a combined action of excitatory amino acid release and direct stimulation of neuronal firing, whereas neuronal death is related to the increased glutamate release but is independent of seizure activity. In addition, it is concluded that the glutamate release-inducing effect of 4-aminopyridine results in excitotoxicity because it occurs at the level of nerve endings, thus permitting the interaction of glutamate with its postsynaptic receptors, which is probably not the case after K+ depolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号