首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Structure and thermodynamic properties of native and annealed wheat starches with different amylose content (from 1.5% to 39.5%) have been studied by high-sensitivity differential scanning microcalorimetry (HSDSC), small-angle X-ray diffraction (SAXS), light (LM), and scanning electron microscopy (SEM). Starch morphology, the values of the melting cooperative unit, the thickness of crystalline lamellae and the size of amylopectin clusters as well as thermodynamic parameters characterizing surface of the face side in starch crystals were determined. Some suppositions based on different physical approaches are used for a discussion of the results concerning structural reorganization of starches on different levels of macromolecular organization.  相似文献   

2.
High-sensitivity differential scanning microcalorimetry (HSDSC), small-angle X-ray scattering (SAXS), light (LM) and scanning electronic (SEM) microscopy techniques were used to study the defectiveness of different supramolecular structures in starches extracted from 11 Thai cultivars of rice differing in level of amylose and amylopectin defects in starch crystalline lamellae. Despite differences in chain-length distribution of amylopectin macromolecules and amylose level in starches, the invariance in the sizes of crystalline lamellae, amylopectin clusters and granules was established. The combined analysis of DSC, SAXS, LM and SEM data for native starches, as well as the comparison of the thermodynamic data for native and annealed starches, allowed to determine the structure of defects and the localization of amylose chains in crystalline and amorphous lamellae, defectiveness of lamellae, clusters and granules. It was shown that amylose “tie chains”, amylose–lipid complexes located in crystalline lamellae, defective ends of double helical chains dangling from crystallites inside amorphous lamellae (“dangling” chains), as well as amylopectin chains with DP 6–12 and 25–36 could be considered as defects. Their accumulation can lead to a formation of remnant granules. The changes observed in the structure of amylopectin chains and amylose content in starches are reflected in the interconnected alterations of structural organization on the lamellar, cluster and granule levels.  相似文献   

3.
Two new unsaturated amides, retrofractamides A and C, were isolated from the total above-ground parts of Piper retrofractum. Retrofractamide A was shown to be N-isobutyl-9(3′,4′-methylenedioxyphenyl)2E,4E,8E-nonatrienamide from spectroscopic and chemical investigations. The structure 6 for retrofractamide C was suggested from spectroscopic and chemical studies and was confirmed by a total stereoselective synthesis. The presence of sesamin and 3,4,5-trimethoxydihydrocinnamic acid as well as two higher homologues of retrofractamide A, viz. pipericide (retrofractamide B) and retrofractamide D was demonstrated. The synthesis of pipericide was also achieved.  相似文献   

4.
Deoxycytidine kinase (dCK) is an essential nucleoside kinase critical for the production of nucleotide precursors for DNA synthesis. This enzyme catalyzes the initial conversion of the nucleosides deoxyadenosine (dA), deoxyguanosine (dG), and deoxycytidine (dC) into their monophosphate forms, with subsequent phosphorylation to the triphosphate forms performed by additional enzymes. Several nucleoside analog prodrugs are dependent on dCK for their pharmacological activation, and even nucleosides of the non-physiological L-chirality are phosphorylated by dCK. In addition to accepting dC and purine nucleosides (and their analogs) as phosphoryl acceptors, dCK can utilize either ATP or UTP as phosphoryl donors. To unravel the structural basis for substrate promiscuity of dCK at both the nucleoside acceptor and nucleotide donor sites, we solved the crystal structures of the enzyme as ternary complexes with the two enantiomeric forms of dA (D-dA, or L-dA), with either UDP or ADP bound to the donor site. The complexes with UDP revealed an open state of dCK in which the nucleoside, either D-dA or L-dA, is surprisingly bound in a manner not consistent with catalysis. In contrast, the complexes with ADP, with either D-dA or L-dA, adopted a closed and catalytically competent conformation. The differential states adopted by dCK in response to the nature of the nucleotide were also detected by tryptophan fluorescence experiments. Thus, we are in the unique position to observe differential effects at the acceptor site due to the nature of the nucleotide at the donor site, allowing us to rationalize the different kinetic properties observed with UTP to those with ATP.  相似文献   

5.
Groer GJ  Haslbeck M  Roessle M  Gessner A 《FEBS letters》2008,582(28):3941-3947
The protein family of membrane-anchored extended synaptotagmin-like proteins (E-Syts) was recently discovered in humans. E-Syt1 to 3 each contain at least one transmembrane domain and three or five C2 domains. To investigate the whole C2 area of murine E-Syt2, highly pure recombinant E-Syt2 (rE-Syt2) covering all three C2 domains was isolated. The structure of rE-Syt2 was studied by small-angle X-ray scattering (SAXS) providing a three-dimensional image of a protein with three C2 domains. Calcium binding of rE-Syt2 triggered structural rearrangements and initiated reversible multimerization of the protein in vitro. Quantitative analysis of the calcium binding revealed an apparent binding constant of 100 μM. This is the first structural study of a multi-C2 protein, presumably involved in Ca-dependent signalling events.  相似文献   

6.
ZPR1 proteins belong to the C4‐type of zinc finger coordinators known in animal cells to interact with other proteins and participate in cell growth and proliferation. In contrast, the current knowledge regarding plant ZPR1 proteins is very scarce. Here, we identify a novel potato nuclear factor belonging to this family and named StZPR1. StZPR1 is specifically expressed in photosynthetic organs during the light period, and the ZPR1 protein is located in the nuclear chromatin fraction. From modelling and experimental analyses, we reveal the StZPR1 ability to bind the circadian DNA cis motif ‘CAACAGCATC’, named CIRC and present in the promoter of the clock‐controlled double B‐box StBBX24 gene, the expression of which peaks in the middle of the day. We found that transgenic lines silenced for StZPR1 expression still display a 24 h period for the oscillation of StBBX24 expression but delayed by 4 h towards the night. Importantly, other BBX genes exhibit altered circadian regulation in these lines. Our data demonstrate that StZPR1 allows fitting of the StBBX24 circadian rhythm to the light period and provide evidence that ZPR1 is a novel clock‐associated protein in plants necessary for the accurate rhythmic expression of specific circadian‐regulated genes.  相似文献   

7.
Structural changes in the oligosaccharide moiety of human IgG with aging   总被引:3,自引:0,他引:3  
In order to elucidate the relationship between glycosylation of IgG and aging, oligosaccharide structures of human IgG purified from sera of men and women aged 18 to 73 years were investigated. Oligosaccharides were liberated quantitatively from IgG by hydrazinolysis followed by N-acetylation and were tagged with p-aminobenzoic acid ethyl ester. The oligosaccharide structures were then analyzed by HPLC in conjunction with sequential exoglycosidase digestion. All IgG samples were shown to contain a series of biantennary complex type oligosaccharides which consisted of ±Gal1-4GlcNAc1-2Man1-6(±GlcNAc1-4)(±Gal1-4GlcNAc1-2Man1-3)Man1-4GlcNAc1-4(±Fuc1-6)GlcNAc and their mono- and di-sialo glycoforms in different ratios. In female IgG samples only, the incidence of non-galactosylated oligosaccharides with non-reducing terminal GlcNAc residues increased with aging (r>0.8), whereas that of digalactosylated oligosaccharides decreased (r<–0.8). A weaker correlation was observed between aging and the incidence of neutral and monosialo oligosaccharides in female IgG (r:0.461 and r=–0.538, respectively) and between aging and the incidence of oligosaccharides with a bisecting GlcNAc in both male and female IgG samples (r=0.566 and r=0.440, respectively). In addition, a significant change with aging in the galactosylation of IgG oligosaccharides was observed in females in their thirties, fifties, and sixties (p<0.02, p<0.01, and p<0.04, respectively). These findings may contribute to our understanding of autoimmune diseases such as rheumatoid arthritis in which glycosylation is involved.  相似文献   

8.
The purpose of this study was to compare the mechanisms of intestinal retinol (ROL) and carotenoid transport. When differentiated Caco-2 cells were incubated with ROL for varying times, cellular ROL plateaued within 2 h, whereas retinyl ester (RE) formation increased continuously. ROL and RE efflux into basolateral medium (BM) increased linearly with time, ROL in the nonlipoprotein fraction and REs in chylomicrons (CMs). In contrast to carotenoids, ROL uptake was proportional to ROL concentration (0.5-110 microM). ROL efflux into BM occurred via two processes: a) a saturable process at low concentrations (<10 microM) and b) a nonsaturable process at higher concentrations. When ROL-loaded cells were maintained on retinoid-free medium, free ROL, but not REs, was secreted into BM. Glyburide significantly reduced ROL efflux but not ROL uptake. Inhibition of ABCA1 protein expression by small interfering RNAs decreased ROL efflux but not carotenoid efflux. Scavenger receptor class B type I (SR-BI) inhibition did not affect ROL transport but decreased carotenoid uptake. The present data suggest that a) ROL enters intestinal cells by diffusion, b) ROL efflux is partly facilitated, probably by the basolateral transporter ABCA1, and c) newly synthesized REs, but not preformed esters, are incorporated into CM and secreted. In contrast to ROL transport, carotenoid uptake is mediated by the apical transporter SR-BI, and carotenoid efflux occurs exclusively via their secretion in CM.  相似文献   

9.
Complications associated with insulin-dependent diabetes mellitus (type-1diabetes) primarily represent vascular dysfunction that has its origin in the endothelium. While many of the vascular changes are more accountable in the late stages of type-1diabetes, changes that occur in the early or initial functional stages of this disease may precipitate these later complications. The early stages of type-1diabetes are characterized by a diminished production of both insulin and C-peptide with a significant hyperglycemia. During the last decade numerous speculations and theories have been developed to try to explain the mechanisms responsible for the selective changes in vascular reactivity and/or tone and the vascular permeability changes that characterize the development of type-1diabetes. Much of this research has suggested that hyperglycemia and/or the lack of insulin may mediate the observed functional changes in both endothelial cells and vascular smooth muscle. Recent studies suggest several possible mechanisms that might be involved in the observed decreases in vascular nitric oxide (NO) availability with the development of type-1 diabetes. In addition more recent studies have indicated a direct role for both endogenous insulin and C-peptide in the amelioration of the observed endothelial dysfunction. These results suggest a synergistic action between insulin and C-peptide that facilitates increase NO availability and may suggest new clinical treatment modalities for type-1 diabetes mellitus.  相似文献   

10.
Enteropathogenic Escherichia coli utilise a filamentous type III secretion system to translocate effector proteins into host gut epithelial cells. The primary constituent of the extracellular component of the filamentous type III secretion system is EspA. This forms a long flexible helical conduit between the bacterium and host and has a structure almost identical to that of the flagella filament. We have inserted the D3 domain of FliCi (from Salmonella typhimurium) into the outer domain of EspA and have studied the structure and function of modified filaments when expressed in an enteropathogenic E. coli espA mutant. We found that the chimeric protein EspA-FliCi filaments were biologically active as they supported protein secretion and translocation [assessed by their ability to trigger actin polymerisation beneath adherent bacteria (fluorescent actin staining test)]. The expressed filaments were recognised by both EspA and FliCi antisera. Visualisation and analysis of the chimeric filaments by electron microscopy after negative staining showed that, remarkably, EspA filaments are able to tolerate a large protein insertion without a significant effect on their helical architecture.  相似文献   

11.
Missense mutations in filamin B (FLNB) are associated with the autosomal dominant atelosteogenesis (AO) and the Larsen group of skeletal malformation disorders. These mutations cluster in particular FLNB protein domains and act in a presumptive gain-of-function mechanism. In contrast the loss-of-function disorder, spondylocarpotarsal synostosis syndrome, is characterised by the complete absence of FLNB. One cluster of AO missense mutations is found within the second of two calponin homology (CH) domains that create a functional actin-binding domain (ABD). This N-terminal ABD is required for filamin F-actin crosslinking activity, a crucial aspect of filamin's role of integrating cell-signalling events with cellular scaffolding and mechanoprotection. This study characterises the wild type FLNB ABD and investigates the effects of two disease-associated mutations on the structure and function of the FLNB ABD that could explain a gain-of-function mechanism for the AO diseases. We have determined high-resolution X-ray crystal structures of the human filamin B wild type ABD, plus W148R and M202V mutants. All three structures display the classic compact monomeric conformation for the ABD with the CH1 and CH2 domains in close contact. The conservation of tertiary structure in the presence of these mutations shows that the compact ABD conformation is stable to the sequence substitutions. In solution the mutant ABDs display reduced melting temperatures (by 6-7 °C) as determined by differential scanning fluorimetry. Characterisation of the wild type and mutant ABD F-actin binding activities via co-sedimentation assays shows that the mutant FLNB ABDs have increased F-actin binding affinities, with dissociation constants of 2.0 μM (W148R) and 0.56 μM (M202V), compared to the wild type ABD Kd of 7.0 μM. The increased F-actin binding affinity of the mutants presents a biochemical mechanism that differentiates the autosomal dominant gain-of-function FLNB disorders from those that arise through the complete loss of FLNB protein.  相似文献   

12.
From the leaves of Lasianthus fordii, three megastigmane glucosides, lasianthionosides A, B and C, were isolated together with the known iridoid glucoside, asperuloside, deacetylasperuloside and methyl deacetyl-asperulosidate, and a megastigmane glucoside, citroside A. The structures have been elucidated based on spectroscopic analyses and/or X-ray crystallographic analysis.  相似文献   

13.
Phytochemical study of the fruits of Vismia laurentii resulted in the isolation of five structurally related compounds. Three of them are constituents, namely, laurentiquinone A (1) (methyl 1,6,8-trihydroxy-3-methyl-7-(3-methylbut-2-enyl)-9,10-dioxo-9,10-dihydroanthracene-2-carboxylate), laurentiquinone B (2) (methyl 5,7-dihydroxy-2,2,9-trimethyl-6,11-dioxo-6,11-dihydro-2H-anthra[2,3-b]pyran-8-carboxylate) and laurentiquinone C (3) (methyl 9-(ethanoyloxymethyl)-5,7-dihydroxy-2,2-dimethyl-6,11-dioxo-6,11-dihydro-2H-anthra[2,3-b]pyran-8-carboxylate) and two are known compounds, emodin (4) and isoxanthorin (5). Their structures were elucidated by spectroscopic means. Crude extracts of hexane and EtOAc showed anti-plasmodial activity against the W2 strain of Plasmodium falciparum.  相似文献   

14.
Gramicidin A (gA) is a polypeptide antibiotic, which forms dimeric channels specific for monovalent cations in artificial and biological membranes. It is a polymorphic molecule that adopts a unique variety of helical conformations, including antiparallel double‐stranded ↑↓β5.6 or ↑↓β7.2 helices (number of residues per turn) and a single‐stranded β6.3 helix (the ‘channel form’). The behavior of gA‐Cs+ complex in the micelles of TX‐100 was studied in this work. Transfer of the complex into the micelles activates a cascade of sequential conformational transitions monitored by CD and FT‐IR spectroscopy: At the first step after Cs+ removal, the RH ↑↓β5.6 helix is formed, which has been discussed so far only hypothetically. Kinetics of the transitions was measured, and the activation parameters were determined. The activation energies of the ↑↓β5.6 → β‐helical monomer transition in dioxane and dioxane/water solutions were also measured for comparison. The presence of water raises the transition rate constant ~103 times but does not lead to crucial fall of the activation energy. All activation energies were found in the 20–25 kcal/mol range, i.e. much lower than would be expected for unwinding of the double helix (when 28 H‐bonds are broken simultaneously). These results can be accounted for in the light of local unfolding (or ‘cracking’) model for large scale conformational transitions developed by the P. G.Wolynes team [Miyashita O, Onuchic JN, Wolynes PG. Proc. Natl. Acad. Sci. USA 2003; 100: 12570‐12575.]. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Here we show that 14-3-3 proteins bind to Pim kinase-phosphorylated Ser166 and Ser186 on the human E3 ubiquitin ligase mouse double minute 2 (Mdm2), but not protein kinase B (PKB)/Akt-phosphorylated Ser166 and Ser188. Pim-mediated phosphorylation of Ser186 blocks phosphorylation of Ser188 by PKB, indicating potential interplay between the Pim and PKB signaling pathways in regulating Mdm2. In cells, expression of Pim kinases promoted phosphorylation of Ser166 and Ser186, interaction of Mdm2 with endogenous 14-3-3s and p14ARF, and also increased the amount of Mdm2 protein by a mechanism that does not require Pim kinase activities. The implications of these findings for regulation of the p53 pathway, oncogenesis and drug discovery are discussed.

Structured summary

MINT-6823587:PIM3 (uniprotkb:Q86V86) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)MINT-6823623:MDM2 (uniprotkb:Q00987) physically interacts (MI:0218) with p14ARF (uniprotkb:Q8N7268N726) by coimmunoprecipitation (MI:0019)MINT-6823537:PKB (uniprotkb:P31749) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)MINT-6823574:PIM2 (uniprotkb:QP1W9) phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)MINT-6823555:PIM1 (uniprotkb:P11309)P phosphorylates (MI:0217) MDM2 (uniprotkb:Q00987) by protein kinase assay (MI:0424)  相似文献   

16.
Several members of the synaptotagmin (syt) family of vesicle proteins have been proposed to act as Ca2+ sensors on synaptic vesicles. The mechanism by which calcium activates this class of proteins has been the subject of controversy, yet relatively few detailed biophysical studies have been reported on how isoforms other than syt I respond to divalent metal ions. Here, we report a series of studies on the response of syt II to a wide range of metal ions. Analytical ultracentrifugation studies demonstrate that Ca2+ induces protein dimerization upon exposure to 5 mM Ca2+. Whereas Ba2+, Mg2+, or Sr2+ do not potentiate self-association as strongly as Ca2+, Pb2+ triggers self-association of syt II at concentrations as low as 10 microM. Partial proteolysis studies suggest that the various divalent metals cause different changes in the conformation of the protein. The high calcium concentrations required for self-association of syt II suggest that the oligomerized state of this protein is not a critical intermediate in vesicle fusion; however, low-affinity calcium sites on syt II may play a critical role in buffering calcium at the presynaptic active zone. In addition, the high propensity of lead to oligomerize syt II offers a possible molecular explanation for how lead interferes with calcium-evoked neurotransmitter release.  相似文献   

17.

Introduction

Logic regression is a generalized regression method that can recognize complex Boolean interactions of binary variables. It has been successfully applied to single-nucleotide polymorphism (SNP) data because of the importance of interactions in SNP association studies. The objective of this study is to assess the association between high-density lipoprotein (HDL) function and some related gene polymorphisms after adjusting for potential confounders using logic regression.

Methods

Subjects in this cross-sectional study were randomly selected from among participants of the Tehran Lipid and Glucose Study (TLGS). A total of 436 subjects (172 men and 264 women), aged ≥ 20 years, were selected to be included in the current study. Logic regression analysis was used in order to recognize the combination of genetic main effects and possible interactions associated with HDL-C level. Cross validation and randomization test were carried out to avoid over fitting of the models.

Results

The cross validation test suggested three Boolean combinations with four predictors for a fully-adjusted logic model. The fully adjusted model showed that those who carry an Apo E gene E3 allele or have high TG level have an odds ratio of 2.35 (95% CI:1.3–4.25) for having low HDL compared to other subjects. In addition, subjects with high TG level have an odds ratio of 2.73 (95% CI: 1.65, 4.53) for having low HDL.

Conclusion

The results showed that logic regression is a powerful method to find the interaction between high TG level and Apo E polymorphism associated with low HDL.  相似文献   

18.
A peptide model of insulin folding intermediate with one disulfide   总被引:4,自引:0,他引:4       下载免费PDF全文
Insulin folds into a unique three-dimensional structure stabilized by three disulfide bonds. Our previous work suggested that during in vitro refolding of a recombinant single-chain insulin (PIP) there exists a critical folding intermediate containing the single disulfide A20-B19. However, the intermediate cannot be trapped during refolding because once this disulfide is formed, the remaining folding process is very quick. To circumvent this difficulty, a model peptide ([A20-B19]PIP) containing the single disulfide A20-B19 was prepared by protein engineering. The model peptide can be secreted from transformed yeast cells, but its secretion yield decreases 2-3 magnitudes compared with that of the wild-type PIP. The physicochemical property analysis suggested that the model peptide adopts a partially folded conformation. In vitro, the fully reduced model peptide can quickly and efficiently form the disulfide A20-B19, which suggested that formation of the disulfide A20-B19 is kinetically preferred. In redox buffer, the model peptide is reduced gradually as the reduction potential is increased, while the disulfides of the wild-type PIP are reduced in a cooperative manner. By analysis of the model peptide, it is possible to deduce the properties of the critical folding intermediate with the single disulfide A20-B19.  相似文献   

19.
对不同林龄南方红豆杉也Taxuschinensisvar.mairei(LemeeetL&#233;vl.)ChengetL.K.Fu页人工林不同等级细根的结构参数及C和N含量进行了比较,并分析了细根结构参数与C和N含量的相关性。结果显示:不同林龄南方红豆杉Ⅰ-吁级细根的根直径、比根长(SRL)和比表面积(SSA)均有差异,6、7和8a植株细根的平均直径分别为1.073、1.815和1.734mm,平均SRL分别为14.09、12.88和14.12m·g-1,平均SSA分别为54.93、45.85和50.72cm2·g-1;随根序等级提高,同龄植株细根的SRL和SSA均依次降低、根直径则逐渐增大,且总体差异显著(P〈0.05);总体上,除Ⅰ级细根外,7a植株各级细根的SRL和SSA均最小;6a植株各级细根的直径均最小。各林龄植株细根的根尖密度和分叉数无显著差异(P〉0.05),但均以6a植株最大。细根干质量以6a植株最低、7a植株最高,且差异显著。随根序等级提高,细根C含量逐渐增加、N含量则逐渐降低,同龄植株Ⅰ-Ⅴ级细根的C和N含量总体上差异显著;各级细根中,7a植株的C含量均最高、8a植株的N含量均最低;6、7和8a植株细根的平均C含量分别为454.41、501.90和441.55mg·g-1,平均N含量分别为12.63、11.99和5.88mg·g-1。各林龄植株细根的C含量与细根直径和干质量均正相关,与SRL、SSA和根尖密度均负相关;N含量与细根直径均负相关,与SRL、SSA和根尖密度均正相关;此外,N含量与干质量以及C和N含量与分叉数的相关性均无规律性。研究结果表明:树龄对南方红豆杉细根直径影响较大,而不同序级细根的结构差异更明显。  相似文献   

20.
From the leaves of Rhamnella inaequilatera, three flavone C,O-bisglycosides, rhamnellaflavosides A, B and C, were isolated and their structures were elucidated based on their spectral data and chemical evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号