首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution two-dimensional gel electrophoresis and mass spectrometry has been used to identify the outer membrane (OM) subproteome of the Gram-negative bacterium Methylococcus capsulatus (Bath). Twenty-eight unique polypeptide sequences were identified from protein samples enriched in OMs. Only six of these polypeptides had previously been identified. The predictions from novel bioinformatic methods predicting β-barrel outer membrane proteins (OMPs) and OM lipoproteins were compared to proteins identified experimentally. BOMP () predicted 43 β-barrel OMPs (1.45%) from the 2,959 annotated open reading frames. This was a lower percentage than predicted from other Gram-negative proteomes (1.8–3%). More than half of the predicted BOMPs in M. capsulatus were annotated as (conserved) hypothetical proteins with significant similarity to very few sequences in Swiss-Prot or TrEMBL. The experimental data and the computer predictions indicated that the protein composition of the M. capsulatus OM subproteome was different from that of other Gram-negative bacteria studied in a similar manner. A new program, Lipo, was developed that can analyse entire predicted proteomes and give a list of recognised lipoproteins categorised according to their lipo-box similarity to known Gram-negative lipoproteins (). This report is the first using a proteomics and bioinformatics approach to identify the OM subproteome of an obligate methanotroph.  相似文献   

2.
Yersinia adhesin A (YadA) belongs to a class of bacterial adhesins that form trimeric structures. Their mature form contains a passenger domain and a C-terminal β-domain that anchors the protein in the outer membrane (OM). Little is known about how precursors of such proteins cross the periplasm and assemble into the OM. In the present study we took advantage of the evolutionary conservation in the biogenesis of β-barrel proteins between bacteria and mitochondria. We previously observed that upon expression in yeast cells, bacterial β-barrel proteins including the transmembrane domain of YadA assemble into the mitochondrial OM. In the current study we found that when expressed in yeast cells both the monomeric and trimeric forms of full-length YadA were detected in mitochondria but only the trimeric species was fully integrated into the OM. The oligomeric form was exposed on the surface of the organelle in its native conformation and maintained its capacity to adhere to host cells. The co-expression of YadA with a mitochondria-targeted form of the bacterial periplasmic chaperone Skp, but not with SurA or SecB, resulted in enhanced levels of both forms of YadA. Taken together, these results indicate that the proper assembly of trimeric autotransporter can occur also in a system lacking the lipoproteins of the BAM machinery and is specifically enhanced by the chaperone Skp.  相似文献   

3.
The bacterial outer membrane protein OmpX from Escherichia coli has been investigated by molecular dynamics simulations when embedded in a phospholipid bilayer and as a protein-micelle aggregate. The resulting simulation trajectories were analysed in terms of structural and dynamic properties of the membrane protein. In agreement with experimental observations, highest relative stability was found for the β-barrel region that is embedded in the lipophilic phase, whereas an extracellular protruding β-sheet, which is a unique structural feature of OmpX that supposedly plays an important role in cell adhesion and invasion, shows larger structure fluctuations. Additionally, we investigated water permeation into the core of the β-barrel protein, which contains a tight salt-bridge and hydrogen-bond network, so that extensive water flux is unlikely. Differences between the bilayer and the micellar system were observed in the length of the barrel and its position inside the lipid environment, and in the protein interactions with the hydrophilic part of the lipids near the lipid/water interface. Those variations suggest that micelles and other detergent environments might not offer a wholly membrane-like milieu to promote adoption of the physiological conformational state by OmpX.  相似文献   

4.
The polypeptide profile of the porin protein fraction of Yersinia ruckeri, a Gram-negative bacterium causing yersiniosis in fish, has been shown to depend on cultivation temperature. OmpF-like porins are expressed mainly in the outer membrane (OM) of the “cold” variant (4°C) of the microorganism and OmpC-like proteins are expressed in the OM of the “warm” variant (37°C). Both types of porins are present in the OM of Y. ruckeri at room temperature. The OmpF-like porin of the “cold” variant was isolated and characterized. The molecular weight and primary structure of the protein were determined. The methods of optical spectroscopy (circular dichroism and intrinsic protein fluorescence) have shown that the protein has a spatial structure typical of β-structured porins from the OM of Gram-negative bacteria. The functional activity of isolated protein was characterized by the bilayer lipid membrane (BLM) technique. The most probable level of channel conductivity was 320 ± 60 pS, corresponding to the channel conductivity of OmpF porins of the genus Yersinia. The distinctive feature of OmpF porin from Y. ruckeri is high thermostability of its functionally active conformation: the protein forms stable pores in the BLM even after heating to 85°C.  相似文献   

5.
A protocol is described for the reconstitution of a transmembrane β-barrel protein domain, tOmpA, into lipid bicelles. tOmpA is the largest protein to be reconstituted in bicelles to date. Its insertion does not prevent bicelles from orienting with their plane either parallel or perpendicular to the magnetic field, depending on the absence or presence of paramagnetic ions. In the latter case, tOmpA is shown to align with the axis of the β-barrel parallel to the magnetic field, i.e. perpendicular to the plane of the bilayer, an orientation conforming to that in natural membranes and favourable to structural studies by solid-state NMR. Reconstitution into bicelles may offer an interesting approach for structural studies of membrane proteins in a medium resembling a biological membrane, using either NMR or other biophysical techniques. Our data suggest that alignment in the magnetic field of membrane proteins included into bicelles may be facilitated if the protein is folded as a β-barrel structure.  相似文献   

6.
Proteins interacting with the biological information molecules DNA and RNA play important cellular roles in all organisms. One widespread super family of proteins implicated in such function(s) is cold shock protein (CSP) that contains the cold shock domain (CSD). This work is planned to study the three-dimensional structure, conserved residues, and different active sites in the structure of cold resistant protein (CRP) from CRPF1, cold tolerant mutant of Pseudomonas fluorescence by comparative homology modeling. Here we tried to identify crucial residues that are involved in active sites or functional sites of the protein. The study reveals that CRP represent the prototype of the CSD and share a highly similar overall fold consisting of five antiparallel β-sheets forming a β-barrel structure with surface exposed aromatic and basic residues that were responsible for nucleic acid binding properties of variable binding affinities and sequence selectivity and harbors the nucleic acid binding motifs RNP1 and RNP2 that is highly conserved in CSP family.  相似文献   

7.
Many enteric pathogens, including enterotoxigenic Escherichia coli (ETEC), produce one or more serine proteases that are secreted via the autotransporter (or type V) bacterial secretion pathway. These molecules have collectively been referred to as SPATE proteins (serine protease autotransporter of the Enterobacteriaceae). EatA, an autotransporter previously identified in ETEC, possesses a functional serine protease motif within its secreted amino-terminal passenger domain. Although this protein is expressed by many ETEC strains and is highly immunogenic, its precise function is unknown. Here, we demonstrate that EatA degrades a recently characterized adhesin, EtpA, resulting in modulation of bacterial adhesion and accelerated delivery of the heat-labile toxin, a principal ETEC virulence determinant. Antibodies raised against the passenger domain of EatA impair ETEC delivery of labile toxin to epithelial cells suggesting that EatA may be an effective target for vaccine development.  相似文献   

8.
In Gram-negative bacteria, the two-partner secretion pathway mediates the secretion of TpsA proteins with various functions. TpsB transporters specifically recognize their TpsA partners in the periplasm and mediate their transport through a hydrophilic channel. The filamentous haemagglutinin adhesin (FHA)/FhaC pair represents a model two-partner secretion system, with the structure of the TpsB transporter FhaC providing the bases to decipher the mechanism of action of these proteins. FhaC is composed of a β-barrel preceded by two periplasmic polypeptide-transport-associated (POTRA) domains in tandem. The barrel is occluded by an N-terminal helix and an extracellular loop, L6, folded back into the FhaC channel. In this article, we describe a functionally important motif of FhaC. The VRGY tetrad is highly conserved in the TpsB family and, in FhaC, it is located at the tip of L6 reaching the periplasm. Replacement by Ala of the invariant Arg dramatically affects the secretion efficiency, although the structure of FhaC and its channel properties remain unaffected. This substitution affects the secretion mechanism at a step beyond the initial TpsA-TpsB interaction. Replacement of the conserved Tyr affects the channel properties, but not the secretion activity, suggesting that this residue stabilizes the loop in the resting conformation of FhaC. Thus, the conserved motif at the tip of L6 represents an important piece of two-partner secretion machinery. This motif is conserved in a predicted loop between two β-barrel strands in more distant relatives of FhaC involved in protein transport across or assembly into the outer membranes of bacteria and organelles, suggesting a conserved function in the molecular mechanism of transport.  相似文献   

9.
We report the 1H, 13C and 15N backbone chemical shift assignments and secondary structure of the Escherichia coli protein BamC, a 32-kDa protein subunit that forms part of the BAM (Omp85) complex, the β-barrel assembly machinery present in all Gram-negative bacteria and which is essential for viability.  相似文献   

10.
The pheromone response ofSaccharomyces cerevisiae is mediated by a receptor-coupled heterotrimeric G protein. The βγ subunit of the G protein stimulates a PAK/MAP kinase cascade that leads to cellular changes preparatory to mating, while the pheromone-responsive Gα protein, Gpa1, antagonizes the Gβγ-induced signal. In its inactive conformation, Gpa1 sequesters Gβγ and tethers it to the receptor. In its active conformation, Gpa1 stimulates adaptive mechanisms that downregulate the mating signal, but which are independent of α-βγ binding. To elucidate these potentially novel signaling functions of Gα in yeast, epistasis analyses were performed using N388D, a hyperadaptive mutant form of Gpa1, and null alleles of various loci that have been implicated in adaptation. The results of these experiments indicate the existence of signaling thresholds that affect the yeast mating reaction. At low pheromone concentration, the Regulator of G Protein Signaling (RGS) homologue and putative guanosine triphosphatase (GTPase) activating protein, Sst2, appears to stimulate sequestration of Gβγ by Gpa1. Throughout the range of pheromone concentrations sufficient to cause cell cycle arrest, Gpa1 stimulates adaptive mechanisms that are partially dependent on Msg5 and Mpt5. Gpa1-mediated adaptation appears to be independent of Afr1, Akr1, and the carboxy-terminus of the pheromone receptor.  相似文献   

11.
The assembly of the β-barrel proteins present in the outer membrane (OM) of Gram-negative bacteria is poorly characterized. After translocation across the inner membrane, unfolded β-barrel proteins are escorted across the periplasm by chaperones that reside within this compartment. Two partially redundant chaperones, SurA and Skp, are considered to transport the bulk mass of β-barrel proteins. We found that the periplasmic disulfide isomerase DsbC cooperates with SurA and the thiol oxidase DsbA in the folding of the essential β-barrel protein LptD. LptD inserts lipopolysaccharides in the OM. It is also the only β-barrel protein with more than two cysteine residues. We found that surAdsbC mutants, but not skpdsbC mutants, exhibit a synthetic phenotype. They have a decreased OM integrity, which is due to the lack of the isomerase activity of DsbC. We also isolated DsbC in a mixed disulfide complex with LptD. As such, LptD is identified as the first substrate of DsbC that is localized in the OM. Thus, electrons flowing from the cytoplasmic thioredoxin system maintain the integrity of the OM by assisting the folding of one of the most important β-barrel proteins.  相似文献   

12.

Background  

Prediction of the transmembrane strands and topology of β-barrel outer membrane proteins is of interest in current bioinformatics research. Several methods have been applied so far for this task, utilizing different algorithmic techniques and a number of freely available predictors exist. The methods can be grossly divided to those based on Hidden Markov Models (HMMs), on Neural Networks (NNs) and on Support Vector Machines (SVMs). In this work, we compare the different available methods for topology prediction of β-barrel outer membrane proteins. We evaluate their performance on a non-redundant dataset of 20 β-barrel outer membrane proteins of gram-negative bacteria, with structures known at atomic resolution. Also, we describe, for the first time, an effective way to combine the individual predictors, at will, to a single consensus prediction method.  相似文献   

13.
Nuclear magnetic resonance (NMR) spectroscopy is a useful biophysical technique to study the ligand–protein interaction. In this report, we have used bacterially produced ERβ and its domains for studying the functional analysis of ligand–protein interaction. Briefly, ERβ and its transactivation domain (TAD) and ligand binding domain (LBD) were subcloned and overexpressed using a prokaryotic expression system. The recombinant proteins were purified using Ni+2-IDA affinity chromatography and analyzed by NMR. Purified ERβ and TAD show similar conformation in the absence or presence of 17β-estradiol. However, LBD shows altered conformation in the presence of 17β-estradiol. These findings suggest that ERβ produced in bacteria exhibits a conformation such that its LBD remains masked and consequently it binds less to 17β-estradiol. Such study may help to develop the therapeutic approaches for controlling the estradiol-mediated gene expression in hormone dependent diseases.  相似文献   

14.
A molecular dynamics simulation study of mononuclear iron 15S-lipoxygenase (15S-LOX) from rabbit reticulocytes was performed to investigate its structure and dynamics; newly developed AMBER force field parameters were employed for the first coordination sphere of the catalytic iron (II). The results obtained from this study demonstrate that the structural features of the catalytic iron coordination site are in good agreement with available data obtained from experiments. The motional flexibility of the N-terminal β-barrel domain is greater than the C-terminal catalytic domain; flexibility was assessed in terms of B-factors and secondary structure calculations. The significant features obtained for the relative motional flexibility of these two domains of 15S-LOX in solution as well as the isolated C-terminal domain were analyzed in terms of radius of gyration and maximum diameter, which correlated well with the structural flexibility of 15-lipoxygenase-1 in solution as probed by small-angle X-ray scattering. The motional flexibility indicates interdomain motion between the N-terminal β-barrel and the C-terminal catalytic domain; this was further verified by the evaluation of central bending in the solvated LOX molecule, which identified an unstructured stretch of amino acids as the interdomain linker. The average bending angle confirmed significant central bending between these two domains, which was linked to the high degree of motional freedom of the N-terminal β-barrel domain in aqueous solutions. This can be considered to have biological relevance for membrane binding as well as for regulating the catalytic domain.  相似文献   

15.
The idea is advanced that under the extreme earth conditions for ~3.9 billions years ago, protein-based β-sheet molecular structures were the first self-propagating and information-processing biomolecules that evolved. The amyloid structure of these aggregates provided an effective protection against the harsh conditions known to decompose both polyribonucleotides and natively folded polypeptides. In the prebiotic amyloid world, both the replicative and informational functions were carried out by structurally stable β-sheet protein aggregates in a prion-like mode involving templated self-propagation and storage of information in the β-sheet conformation. In this amyloid (protein)-first, hybrid replication-metabolism view, the synthesis of RNA, and the evolvement of an RNA-protein world, were later, but necessary events for further biomolecular evolution to occur. I further argue that in our contemporary DNA↔RNA→protein world, the primordial β-conformation-based information system is preserved in the form of a cytoplasmic epigenetic memory.  相似文献   

16.
Bacteria engage in contact-dependent activities to coordinate cellular activities that aid their survival. Cells of Myxococcus xanthus move over surfaces by means of type IV pili and gliding motility. Upon direct contact, cells physically exchange outer membrane (OM) lipoproteins, and this transfer can rescue motility in mutants lacking lipoproteins required for motility. The mechanism of gliding motility and its stimulation by transferred OM lipoproteins remain poorly characterized. We investigated the function of CglC, GltB, GltA and GltC, all of which are required for gliding. We demonstrate that CglC is an OM lipoprotein, GltB and GltA are integral OM β-barrel proteins, and GltC is a soluble periplasmic protein. GltB and GltA are mutually stabilizing, and both are required to stabilize GltC, whereas CglC accumulate independently of GltB, GltA and GltC. Consistently, purified GltB, GltA and GltC proteins interact in all pair-wise combinations. Using active fluorescently-tagged fusion proteins, we demonstrate that GltB, GltA and GltC are integral components of the gliding motility complex. Incorporation of GltB and GltA into this complex depends on CglC and GltC as well as on the cytoplasmic AglZ protein and the inner membrane protein AglQ, both of which are components of the gliding motility complex. Conversely, incorporation of AglZ and AglQ into the gliding motility complex depends on CglC, GltB, GltA and GltC. Remarkably, physical transfer of the OM lipoprotein CglC to a ΔcglC recipient stimulates assembly of the gliding motility complex in the recipient likely by facilitating the OM integration of GltB and GltA. These data provide evidence that the gliding motility complex in M. xanthus includes OM proteins and suggest that this complex extends from the cytoplasm across the cell envelope to the OM. These data add assembly of gliding motility complexes in M. xanthus to the growing list of contact-dependent activities in bacteria.  相似文献   

17.
Phosphorylation of ribosomal acidic proteins ofSaccharomyces cerevisiae is an important mechanism regulating a number of active ribosomes. The key role in the regulatory mechanism is played by specific phosphoprotein kinases and phosphoprotein phosphatases. Three different cAMP-independent protein kinases phosphorylating acidic ribosomal proteins have been identified and characterized. The protein kinase 60S (PK60S), RAP kinase, and casein kinase type 2 (CK2). All three protein kinases phosphorylate serine residues which are localized in the C-terminal end of phosphoproteins. Synthetic peptides were used to determinate the amino acid sequence of phosphoacceptor site for PK60S. Peptide AAEESDDD derived from phosphoproteins YP1β/β′ and YP2α turned out to be the best substrate for PK60S. A number of halogenated benzimidazoles and 2-azabenzimidazoles were tested as inhibitors of the three protein kinases. 4,5,6,7-Tetrabromo-2-azabenzimidazole inhibits phosphorylation only of these polypeptides phosphorylated by protein kinase 60S, namely YP1β/β′ and YP2α, but not the other, YP1α and YP2β phosphorylated by protein kinases RAP and CK2. RAP kinase has been found in an active form in the soluble fraction ofS. cerevisiae. The enzyme uses ATP as a phosphate donor and is less sensitive to heparin than casein kinase 2. RAP kinase monophosphorylates the four acidic proteins. The ribosome-bound proteins are a better substrate for the enzyme. Multifunctional CK2 kinase phosphorylate all four acidic proteins. The kinase phosphorylates preferentially serine or threonine residues surrounded by cluster of acidic residues. The enzyme activity is stimulatedin vitro by the presence of polylysine and inhibited by heparin. Presented at theSymposium on Regulation of Translation of Genetic Information by Protein Phosphorylation, 21 st Congress of the Czechoslovak Society for Microbiology, Hradec Králové (Czech Republic), September 6–10, 1998.  相似文献   

18.
The multi-protein β-barrel assembly machine (BAM) of Escherichia coli is responsible for the folding and insertion of β-barrel containing integral outer membrane proteins (OMPs) into the bacterial outer membrane. An essential component of this complex is the BamA protein, which binds unfolded β-barrel precursors via the five polypeptide transport-associated (POTRA) domains in its N-terminus. The C-terminus of BamA contains a β-barrel domain, which tethers BamA to the outer membrane and is also thought to be involved in OMP insertion. Here we mutagenize BamA using linker scanning mutagenesis and demonstrate that all five POTRA domains are essential for BamA protein function in our experimental system. Furthermore, we generate a homology based model of the BamA β-barrel and test our model using insertion mutagenesis, deletion analysis and immunofluorescence to identify β-strands, periplasmic turns and extracellular loops. We show that the surface-exposed loops of the BamA β-barrel are essential.  相似文献   

19.
BackgroundEnterotoxigenic Escherichia coli (ETEC) are common causes of diarrheal morbidity and mortality in developing countries for which there is currently no vaccine. Heterogeneity in classical ETEC antigens known as colonization factors (CFs) and poor efficacy of toxoid-based approaches to date have impeded development of a broadly protective ETEC vaccine, prompting searches for novel molecular targets.MethodologyUsing a variety of molecular methods, we examined a large collection of ETEC isolates for production of two secreted plasmid-encoded pathotype-specific antigens, the EtpA extracellular adhesin, and EatA, a mucin-degrading serine protease; and two chromosomally-encoded molecules, the YghJ metalloprotease and the EaeH adhesin, that are not specific to the ETEC pathovar, but which have been implicated in ETEC pathogenesis. ELISA assays were also performed on control and convalescent sera to characterize the immune response to these antigens. Finally, mice were immunized with recombinant EtpA (rEtpA), and a protease deficient version of the secreted EatA passenger domain (rEatApH134R) to examine the feasibility of combining these molecules in a subunit vaccine approach.ConclusionsCollectively, these data suggest that novel antigens could significantly complement current approaches and foster improved strategies for development of broadly protective ETEC vaccines.  相似文献   

20.
A novel orange fluorescent protein (OFP) was cloned from the tentacles of Cnidarian tube anemone Cerianthus sp. It consists of 222 amino acid residues with a calculated molecular mass of 25.1 kDa. A BLAST protein sequence homology search revealed that native OFP has 81% sequence identity to Cerianthus membranaceus green fluorescent protein (cmFP512), 38% identity to Entacmaea quadricolor red fluorescent protein (eqFP611), 37% identity to Discosoma red fluorescent protein (DsRed), 36% identity to Fungia concinna Kusabira-orange fluorescent protein (KO), and a mere 21% identity to green fluorescent protein (GFP). It is most likely that OFP also adopts the 11-strand β-barrel structure of fluorescent proteins. Spectroscopic analysis indicated that it has a wide absorption spectrum peak at 548 nm with two shoulders at 487 and 513 nm. A bright orange fluorescence maximum at 573 nm was observed when OFP was excited at 515 nm or above. When OFP was excited well below 515 nm, a considerable amount of green emission maximum at 513 nm was also observed. It has a fluorescence quantum yield (Φ) of 0.64 at 25°C. The molar absorption coefficients (ɛ) of folded OFP at 278 and 548 nm are 47,000 and 60,000 M-1−1 • cm-1−1, respectively. Its fluorescent brightness (ɛ Φ) at 25°C is 38,400 M−1-1 • cm−1-1. Like other orange-red fluorescent proteins, OFP is also tetrameric. It was readily expressed as soluble protein in Escherichia coli at 37°C, and no aggregate was observed in transfected HeLa cells under our experimental conditions. Fluorescent intensity of OFP is detectable over a pH range of 3 to 12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号