首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study was undertaken to examine the issue of whether achieving a critical mass of cells and/or palatal shelf volume during vertical development of shelf is essential for reorientation to occur. In control and 5-fluorouracil (5FU)-treated hamster embryos' palatal shelves, at different times during gestation, the numbers of both epithelial and mesenchymal cells were counted and cross-sectional area was measured. DNA synthesis was measured by 3H-thymidine incorporation and was used as an index of growth by cell proliferation. The control data indicated that, unlike development during initial 24 hours, the later period of vertical palatal development was characterized by a steady level of mesenchymal and epithelial cell numbers and palatal shelf area. Following 5FU treatment all the measurements were reduced, and until they reached the equivalent of control values, the palatal shelves did not reorient. The density of mesenchymal cells in the developing palate did not seem to affect cell number. On the basis of the analysis of results of the present study, along with those reported in the literature, it is suggested that, in hamsters, acquisition and maintenance of both a specified number of mesenchymal cells and shelf area, at least 24 hours prior to reorientation, may be critical for ensuing mesenchymal differentiation to enforce palatal shelf reorientation on schedule. 5FU affected these features to delay reorientation of the palatal shelf.  相似文献   

2.
Cyclophosphamide (CP), when injected in hamster mother between days 9 and 11 of pregnancy, was teratogenic in fetuses. On the basis of a morphological study it was deduced that CP delayed the reorientation of hamster palatal shelves by 16-20 h. In a subsequent experiment, in both control and CP-treated palatal shelves, the numbers of epithelial and mesenchymal cells were counted and cross-sectional area was measured. DNA synthesis, measured by 3H-thymidine incorporation, was used as an index of growth by cell proliferation. The results showed that during the vertical development of palatal shelves, the mesenchymal cells reached their peak number during the initial 24 hours, i.e., at the end of the second peak in DNA synthesis, and remained unchanged thereafter throughout reorientation. The shelf area also showed rapid increase during the initial 24 h followed by a spurt 2 h prior to reorientation. Cyclophosphamide prolonged the acquisition of these features by affecting the mesenchymal cells and consequently delayed the reorientation of the vertical shelves until such time that the number of healthy mesenchymal cells and shelf area were restored to the control values. The data lend further support to the hypothesis that the acquisition of a specific number of cells and shelf volume, during vertical palatal development, may be essential for palatal shelf reorientation.  相似文献   

3.
Cellular aspects of vertical development of the secondary palate were examined in control and 6-mercaptopurine (6MP)-treated hamster embryos. Cross-sectional area of the palatal shelf was measured and the numbers of both epithelial and mesenchymal cells counted. Also, in 6MP-treated palates the damaged mesenchymal cells, characterized by the presence of dense bodies, were counted. DNA synthesis in both control and treated fetuses was measured by 3H-thymidine incorporation. The results indicated that both the shelf area and cell numbers increased with age in control and 6MP-treated palates. However, in controls the mesenchymal cell density and DNA synthesis showed two peaks that were absent following 6MP treatment. Unlike controls, in treated embryos the damage to mesenchymal cells became increasingly pronounced between days 10:00 and 10:12 but subsided by day 11:00 of gestation. It is suggested that a major force in the development of the initial primordia and early vertical development of the palatal shelf may be provided by a spurt of DNA synthesis in the mesenchymal cells resulting in their increased number. After 6MP treatment, depression of DNA synthesis and consequent reduction in the mesenchymal cell number and density followed by cell damage lead to retardation in the vertical development of the palatal shelves.  相似文献   

4.
In the present study, the morphological, histochemical, biochemical, and cellular aspects of the pathogenesis of bromodeoxyuridine (BrdU)-induced cleft palate in hamster fetuses were analyzed. Morphological observations indicated that BrdU interferes with the growth of the vertical shelves and thus induces cleft palate. At an ultrastructural level, BrdU-induced changes were first seen in the mesenchymal cells. Eighteen hours after drug administration, the initial alterations were characterized by swelling of the nuclear membrane and the appearance of lysosomes in the mesenchymal cells of the roof of the oronasal cavity. During the next 6 hr, as the palatal primordia developed, lysosomes were also seen in the overlying epithelial cells. The appearance of lysosomal activity, which was verified by acid phosphatase histochemistry, was temporally abnormal and was interpreted as a sublethal response to BrdU treatment. Later the cellular alterations subsided; 48 hr after BrdU treatment, they were absent in both the epithelial and mesenchymal cells of the vertically developing palatal shelves. Subsequently, unlike controls (in which the palatal shelves undergo reorientation and fusion), the BrdU-treated shelves remained vertical until term. Biochemical determination of DNA synthesis indicated that although there was an inhibition of DNA synthesis at the time of appearance of palatal primordia, a catch-up growth during the ensuing 12 hr may have restored the number of cells available for the formation of a vertical palatal shelf. It was suggested that BrdU affected cytodifferentiation in the palatal tissues during the critical phase of early vertical development to induce a cleft palate.  相似文献   

5.
Sequential alterations in 5-fluorouracil-treated hamster fetal palate were studied by light and electron microscopy and by acid phosphatase cytochemistry. At an early stage in 5-fluorouracil-treated fetuses, when the palatal shelves were vertical, lysosomes first appeared in cells of the prospective fusion epithelium and then in the cells of subjacent mesenchyme. In contrast to controls, increasing numbers of both the epithelial and mesenchymal cells of the vertical palate showed lysosomal injury in 5-fluorouracil-treated fetuses as development progressed. Subsequently, the basal lamina in the vertical palate showed alterations, characterized initially by disturbances in lamina lucida, by fingerlike extensions of lamina densa, and ultimately by its complete breakdown. At a later stage, when shelves became horizontal, the lysosomes were absent in both the epithelial and mesenchymal cells, and the basal lamina continuity was restored. Unlike controls, however, 5-fluorouracil-treated horizontal shelves never contacted one another. Instead, the epithelia of the horizontal shelves underwent stratification. It appears that premature formation of lysosomes in palatal epithelial and mesenchymal cells following 5-fluorouracil treatment disrupts normal cytodifferentiation and affects the integrity of the basal lamina; both effects are associated with cleft-palate development.  相似文献   

6.
A study was undertaken to analyze the ultrastructural aspects and the enzyme acid phosphatase cytochemistry and biochemistry of the pathogenesis of cyclophosphamide (CP)-induced cleft palate in hamster fetuses. The initial CP-induced alterations were the appearance of lysosomes in the mesenchymal cells of the vertically developing palatal primordia within 8 hr of drug administration. The mesenchymal lysosomal activity, which increased during the next 16 hr, was abnormal and interpreted as a sub-lethal response to CP treatment. Subsequently, the lysosomal activity in the mesenchyme diminished gradually and, 48 hr after CP treatment, was absent. At this time, lysosomes were seen in the epithelial cells of the vertical palate. Fifty-six hours after CP treatment, unlike controls where palatal shelves were already fused, lysosomal activity subsided in the epithelial cells. Changes, however, continued to be seen at the epithelial-mesenchymal interface. These changes were characterized by discontinuity in the basal lamina, and by epithelial-mesenchymal contacts. They persisted for 8 hr but were absent thereafter. Sixty-four hours after CP administration, the vertical shelves became horizontal and remained so until term. Following analysis of data, both from the literature and from the present study, it was suggested that CP first affected mesenchymal cell proliferation, and then its cytodifferentiation, during the critical phase of early vertical development; consequently the reorientation of the shelves to a horizontal plane was delayed, inducing cleft palate.  相似文献   

7.
Morphogenesis of the secondary palate in mammalian embryos involves two major events: first, reorientation of the two vertically oriented palatal shelves into a horizontal position above the tongue, and second, fusion of the two shelves at the midline. Genetic evidence in humans and mice indicates the involvement of matrix metalloproteinases (MMPs). As MMP expression patterns might differ from sites of activity, we used a recently developed highly sensitive in situ zymography technique to map gelatinolytic MMP activity in the developing mouse palate. At embryonic day 14.5 (E14.5), we detected strong gelatinolytic activity around the lateral epithelial folds of the nasopharyngeal cavity, which is generated as a consequence of palatal shelf elevation. Activity was concentrated in the basement membrane of the epithelial fold but extended into the adjacent mesenchyme, and increased in intensity with lateral outgrowth of the cavity at E15.5. Gelatinolytic activity at this site was not the consequence of epithelial fold formation, as it was also observed in Bmp7-deficient embryos where shelf elevation is delayed. In this case, gelatinolytic activity appeared in vertical shelves at the exact position where the epithelial fold will form during elevation. Mmp2 and Mmp14 (MT1-MMP), but not Mmp9 and Mmp13, mRNAs were expressed in the mesenchyme around the epithelial folds of the elevated palatal shelves; this was confirmed by immunostaining for MMP-2 and MT1-MMP. Weak gelatinolytic activity was also found at the midline of E14.5 palatal shelves, which increased during fusion at E15.5. Whereas MMPs have been implicated in palatal fusion before, this is the first report showing that gelatinases might contribute to tissue remodeling during early stages of palatal shelf elevation and formation of the nasopharynx.  相似文献   

8.
The present study analyzes the morphological, histochemical, and ultrastructural aspects of the pathogenesis of 6-mercaptopurine (6MP)-induced cleft palate in hamster fetuses. Gross and light microscopic observations indicated that 6MP stunts the growth of vertical palatal shelves and thus induces cleft palate. Ultrastructural analysis showed that, in contrast to controls, 6MP-induced alterations were first seen in the mesenchymal cells 24 hr after drug administration. The initial alterations were characterized by swelling of the nuclear membrane. During the next 12 hr, lysosomes were seen first in the mesenchymal cells and then in the cells of the medial edge epithelium (MEE) of the developing palatal primordia. The appearance of lysosomes was temporally abnormal and was interpreted as a sublethal response to 6MP treatment. Subsequently, the nuclear alterations and the lysosomes diminished; and 48 hr after 6MP administration, they were absent from the palatal tissues. Ninety hours after 6MP administration, unlike the controls (in which the palatal shelves were already fused), changes were seen at the epithelial-mesenchymal interface in the developing cleft palatal shelves. These changes were characterized by breakdown of the basal lamina and epithelial-mesenchymal contacts. Eventually, at term, the MEE of the vertical shelf stratified. It was suggested that 6MP affected cytodifferentiation in the palatal tissues during the critical phase of early vertical shelf development and thereby induced cleft palate.  相似文献   

9.
Two specific regions of the future nasal and oral epithelial surfaces of the secondary palatal shelves increase in cell density during shelf reorientation. The relationships of mesenchymal cells to the basal lamina underlying these regions were examined and compared to those of cells underlying adjacent regions which did not change in cell density. CD-1 mouse fetuses were obtained on day 13.5 of gestation. Some palatal shelves were excised immediately and fixed for electron microscopy; other heads were partially dissected and incubated for 4 hr prior to fixation. Although shelf movement is detected only after 6 hr incubation, the shorter time period was selected in order to detect events which precede reorientation. Electron micrographs were taken of the epithelial-mesenchymal interface of nasal and oral regions known to increase in epithelial cell density (active segments) and of nasal and oral regions which did not increase (inactive segments). Several measurements were made in a 500-nm-wide zone delimited on photographic prints. Distinct differences in mesenchymal cell configuration were found between nasal and oral regions. Active and inactive segments of each region also differed. A filamentous layer attached to the undersurface of the lamina densa was observed to vary in thickness and character between regions as well. After 4 hr incubation, differences in mesenchymal cell configuration and ultrastructure of the sublaminar zone were apparent between regions. These results suggest that local epithelial-mesenchymal interactions, possibly mediated by the extracellular matrix, precede shelf reorientation. Whether these changes in mesenchymal cell configuration actually reflect mesenchymal cell activities that are necessary for shelf reorientation remains to be elucidated.  相似文献   

10.
The distribution of syndecan, an integral membrane proteoglycan, has been immunohistochemically mapped during the course of murine secondary palate morphogenesis, gestational days 12-15. Syndecan has been shown to mediate cell adhesion and shape change and to be involved in epithelial-mesenchymal interactions during the morphogenesis of several structures. Changes in epithelial cell architecture accompany and may serve to direct the reorientation of the murine secondary palatal shelves from a vertical position on either side of the tongue to a horizontal and adhering position above it. Using a monoclonal antibody made to the core protein of the ectodomain of syndecan, staining was observed to correlate with epithelial cell shape, packing and degree of differentiation. Staining of condensing mesenchyme was also observed. Syndecan may be involved in modulating epithelial cell shape, architecture and fates during both major phases of secondary palate morphogenesis: shelf reorientation and midline epithelial seam dissolution.  相似文献   

11.
Differential expression of TGF beta isoforms in murine palatogenesis   总被引:17,自引:0,他引:17  
We have studied the expression of genes encoding transforming growth factors (TGFs) beta 1, beta 2 and beta 3 during development of the secondary palate in the mouse from 11.5 to 15.5 days postcoitum using in situ hybridisation. The RNA detected at the earliest developmental stage is TGF beta 3, which is localised in the epithelial component of the vertical palatal shelf. This expression continues in the horizontal palatal shelf, predominantly in the medial edge epithelium, and is lost as the epithelial seam disrupts, soon after palatal shelf fusion. TGF beta 1 RNA is expressed with the same epithelial pattern as TGF beta 3, but is not detectable until the horizontal palatal shelf stage. TGF beta 2 RNA is localised to the palatal mesenchyme underlying the medial edge epithelia in the horizontal shelves and in the early postfusion palate. The temporal and spatial distribution of TGF beta 1, beta 2 and beta 3 RNAs in the developing palate, together with a knowledge of in vitro TGF beta biological activities, suggests an important role for TGF beta isoforms in this developmental process.  相似文献   

12.
A morphological, electron microscopic, and biochemical study was undertaken to analyze the genesis of hadacidin-induced cleft palate in hamster fetuses. Gross and light microscopic observations indicated that hadacidin affected the growth of vertical palatal shelves to induce cleft palate. Electron microscopic observations showed that initial hadacidin-induced changes were seen in the mesenchymal cells. Within 12 hr of drug administration, the perinuclear space was swollen and a lysosomal response injury was evident in the mesenchymal cells. Subsequently, 24 hr after hadacidin treatment, lysosomes appeared in the epithelial cells; changes were also seen in the basal lamina which included separation of the lamina densa from the basal cells, duplication of lamina densa, and complete loss of basal lamina. Between 36 and 42 hr post-treatment, the cellular and basal lamina changes subsided, and the epithelium of vertical shelves underwent stratification. Biochemical determination of enzyme acid phosphatase indicated that the levels of enzyme activity in both the control and treated palatal tissues corresponded to the appearance of lysosomes. Measurement of cAMP levels suggested that the peak activity of cAMP corresponded to that of enzyme acid phosphatase and cell injury. The cAMP activity in hadacidin-injured cells, however, was significantly lower in comparison to that of the dying cells of control palates. Hadacidin treatment also affected DNA synthesis in the developing primordia of the palate. It was suggested that hadacidin injures the precursor cells of the palate prior to the appearance of the primordia, and subsequently affects their proliferative behavior, stunting the vertical growth of the palatal shelves and inducing a cleft palate.  相似文献   

13.
Reports of adverse human pregnancy outcomes including cleft palate have increased as the clinical use of isotretinoin (13-cis-retinoic acid) and other retinoic acid (RA) derivatives have increased, but the mechanisms by which their effects are exerted are not understood. Research in craniofacial development is generally performed in rodents, and mouse palatal shelves exposed in organ cultures to retinoids and epidermal growth factor (EGF) display altered medial epithelial cell morphology blocking normal union of apposing shelves. In the present study, precontacting human palatal shelves were maintained in organ culture for 2, 3, or 6 days and exposed to labeled thymidine (3H-TdR) during the last 16 hr. Retinoids and EGF were included in the media so that each shelf was exposed to one of the following: control, EGF, trans-RA at 10(-5)M, cis-RA at 10(-7) or 10(-9) M, or RA + EGF. After exposure of cultured human embryonic palatal shelves to 13-cis-RA and trans-RA with or without EGF, medial epithelial cells do not degenerate, cell surface morphology shifts toward a nasal type, glycogen deposits decrease, smooth endoplasmic reticulum (SER) increases, and basal lamina appear altered. In shelves exposed to EGF and trans-RA early in their development, DNA synthesis appears to terminate prematurely as compared to shelves cultured in control media, and this effect is accompanied by excessive mesenchymal extracellular space expansion. Exposure of shelves to EGF alone is sufficient to block degeneration and induce hyperplasia of the medial epithelial cells but does not induce other ultrastructural changes seen with both EGF and RA. The observed alterations in medial cell morphology could interfere with adhesion of the palatal shelves and may play a role in retinoid-induced cleft palate in the human embryo.  相似文献   

14.
During palatogenesis, the palatal medial edge epithelium (MEE) forms the medial epithelial seam (MES) on adhesion of the opposing palatal shelves. The MES eventually disappears, leading to mesenchymal confluence of the palate and completion of palatogenesis. Failure of these processes results in cleft palate, one of the most common congenital anomalies in human affecting around one case in 500-2500 live births. The cell fate of MEE has been controversial for more than 20 years. Recent studies suggest that the disappearance of MES is a complex process involving cell death, epithelial-mesenchymal transition (EMT) and epithelial migration. Interestingly, transforming growth factor-β3 (Tgf β3) expression in MEE and the tip epithelium of the nasal septum begins just before palatal shelf reorientation and lasts until MES disruption, and several works including targeted disruption of the gene have indicated that the process appears to be regulated mainly by the TGFβ3-TGFβR signaling. However, how MEE cells choose their fate and how the cell fate is altered in response to cellular environment remains to be elucidated.  相似文献   

15.
The mammalian secondary palate forms from two shelves of mesenchyme sheathed in a single-layered epithelium. These shelves meet during embryogenesis to form the midline epithelial seam (MES). Failure of MES degradation prevents mesenchymal confluence and results in a cleft palate. Previous studies indicated that MES cells undergo features of epithelial-to-mesenchymal transition (EMT) and may become migratory as part of the fusion mechanism. To detect MES cell movement over the course of fusion, we imaged the midline of fusing embryonic ephrin-B2/GFP mouse palates in real time using two-photon microscopy. These mice express an ephrin-B2-driven green fluorescent protein (GFP) that labels the palatal epithelium nuclei and persists in those cells through the time window necessary for fusion. We observed collective migration of MES cells toward the oral surface of the palatal shelf over 48 hr of imaging, and we confirmed histologically that the imaged palates had fused by the end of the imaged period. We previously reported that ephrin reverse signaling in the MES is required for palatal fusion. We therefore added recombinant EphA4/Fc protein to block this signaling in imaged palates. The blockage inhibited fusion, as expected, but did not change the observed migration of GFP-labeled cells. Thus, we uncoupled migration and fusion. Our data reveal that palatal MES cells undergo a collective, unidirectional movement during palatal fusion and that ephrin reverse signaling, though required for fusion, controls aspects of the fusion mechanism independent of migration.  相似文献   

16.
Mammalian palate development is a multistep process, involving initial bilateral downward outgrowth of the palatal shelves from the oral side of the maxillary processes, followed by stage-specific palatal shelf elevation to the horizontal position above the developing tongue and subsequent fusion of the bilateral palatal shelves at the midline to form the intact roof of the oral cavity. While mutations in many genes have been associated with cleft palate pathogenesis, the molecular mechanisms regulating palatal shelf growth, patterning, and elevation are not well understood. Genetic studies of the molecular mechanisms controlling palate development in mutant mouse models are often complicated by early embryonic lethality or gross craniofacial malformation. We report here the development of a mouse strain for tissue-specific analysis of gene function in palate development. We inserted an IresCre bicistronic expression cassette into the 3' untranslated region of the mouse Osr2 gene through gene targeting. We show, upon crossing to the R26R reporter mice, that Cre expression from the Osr2(IresCre) knockin allele activated beta-galactosidase expression specifically throughout the developing palatal mesenchyme from the onset of palatal shelf outgrowth. In addition, the Osr2(IresCre) mice display exclusive Cre-mediated recombination in the glomeruli tissues derived from the metanephric mesenchyme and complete absence of Cre activity in other epithelial and mesenchymal tissues in the developing metanephric kidney. These data indicate that the Osr2(IresCre) knockin mice provide a unique tool for tissue-specific studies of the molecular mechanisms regulating palate and kidney development.  相似文献   

17.
Malformations in secondary palate fusion will lead to cleft palate, a common human birth defect. Palate fusion involves the formation and subsequent degeneration of the medial edge epithelial seam. The cellular mechanisms underlying seam degeneration have been a major focus in the study of palatogenesis. Three mechanisms have been proposed for seam degeneration: lateral migration of medial edge epithelial cells; epithelial-mesenchymal trans-differentiation; and apoptosis of medial edge epithelial cells. However, there is still a great deal of controversy over these proposed mechanisms. In this study, we established a [Rosa26<-->C57BL/6] chimeric culture system, in which a Rosa26-originated ;blue' palatal shelf was paired with a C57BL/6-derived ;white' palatal shelf. Using this organ culture system, we observed the migration of medial edge epithelial cells to the nasal side, but not to the oral side. We also observed an anteroposterior migration of medial edge epithelial cells, which may play an important role in posterior palate fusion. To examine epithelial-mesenchymal transdifferentiation during palate fusion, we bred a cytokeratin 14-Cre transgenic line into the R26R background. In situ hybridization showed that the Cre transgene is expressed exclusively in the epithelium. However, beta-galactosidase staining gave extensive signals in the palatal mesenchymal region during and after palate fusion, demonstrating the occurrence of an epithelial-mesenchymal transdifferentiation mechanism during palate fusion. Finally, we showed that Apaf1 mutant mouse embryos are able to complete palate fusion without DNA fragmentation-mediated programmed cell death, indicating that this is not essential for palate fusion in vivo.  相似文献   

18.
The distribution of epithelial cells around the perimeter of mouse secondary palatal shelves was observed before and after shelf reorientation in vivo and in vitro. Changes in shelf perimeter, cells per micrometer, and cell layering were measured for each of three shelf regions: anterior and posterior presumptive hard and presumptive soft palate at developmental stages which were 30, 24, and 18 hr prior to expected in vivo elevation, after in vivo elevation, and during the course of in vitro elevation. Pronounced increases in numerical cell density and cell layering accompanying shelf reorientation were noted in the superior nasal and mid-oral portions of the shelf perimeter in all three shelf regions with greatest changes noted in the posterior hard palate region. These changes were not attributable to cell division or to perimeter changes. The localized nature of the changes in cell distribution suggest that the underlying mechanisms may also be localized.  相似文献   

19.
Cleft lip and palate syndromes are among the most common congenital malformations in humans. Mammalian palatogenesis is a complex process involving highly regulated interactions between epithelial and mesenchymal cells of the palate to permit correct positioning of the palatal shelves, the remodeling of the extracellular matrix (ECM), and subsequent fusion of the palatal shelves. Here we show that several matrix metalloproteinases (MMPs), including a cell membrane-associated MMP (MT1-MMP) and tissue inhibitor of metalloproteinase-2 (TIMP-2) were highly expressed by the medial edge epithelium (MEE). MMP-13 was expressed both in MEE and in adjacent mesenchyme, whereas gelatinase A (MMP-2) was expressed by mesenchymal cells neighboring the MEE. Transforming growth factor (TGF)-beta3-deficient mice, which suffer from clefting of the secondary palate, showed complete absence of TIMP-2 in the midline and expressed significantly lower levels of MMP-13 and slightly reduced levels of MMP-2. In concordance with these findings, MMP-13 expression was strongly induced by TGF-beta3 in palatal fibroblasts. Finally, palatal shelves from prefusion wild-type mouse embryos cultured in the presence of a synthetic inhibitor of MMPs or excess of TIMP-2 failed to fuse and MEE cells did not transdifferentiate, phenocopying the defect of the TGF-beta3-deficient mice. Our observations indicate for the first time that the proteolytic degradation of the ECM by MMPs is a necessary step for palatal fusion.  相似文献   

20.
During fusion of the mammalian secondary palate, it has been suggested that palatal medial edge epithelial (MEE) cells disappear by means of apoptosis, epithelial-mesenchymal transformation (EMT) and epithelial cell migration. However, it is widely believed that MEE cells never differentiate unless palatal shelves make contact and the midline epithelial seam is formed. In order to clarify the potential of MEE cells to differentiate, we cultured single (unpaired) palatal shelves of ICR mouse fetuses by using suspension and static culture methods with two kinds of gas-mixtures. We thereby found that MEE cells can disappear throughout the medial edge even without contact and adhesion to the opposing MEE in suspension culture with 95% O2/5% CO2. Careful examination of MEE cell behavior in the culture revealed that apoptosis, EMT, and epithelial cell migration all occurred at various stages of MEE cell disappearance, including the transient formation and disappearance of epithelial triangles and islets. In contrast, MEE cells showed poor differentiation in static culture in a CO2 incubator. Furthermore, mouse and human amniotic fluids were found to prevent MEE cell differentiation in the cultured single palatal shelf, although paired palatal shelves fused successfully even in the presence of amniotic fluid. We therefore conclude that terminal differentiation of MEE cells is not necessarily dependent on palatal shelf contact and midline epithelial seam formation, but such MEE cell differentiation appears to be prevented in utero by amniotic fluid unless palatal shelves make close contact and the midline epithelial seam is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号