首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haploid cells of the fission yeast Schizosaccharomyces pombe exist in one of two mating types, referred to as M and P. Conjugation occurs between cells of opposite mating type and is controlled by the reciprocal action of diffusible pheromones. Loss of function of the sxa2 gene in M cells causes hypersensitivity to the P-factor mating pheromone and a reduction in mating efficiency. Here we demonstrate the secretion of an sxa2-dependent carboxypeptidase that inactivates P-factor by removal of the C-terminal leucine residue.  相似文献   

2.
The yeast KEX1 gene product has homology to yeast carboxypeptidase Y. A mutant replacing serine at the putative active site of the KEX1 protein abolished activity in vivo. A probable site of processing by the KEX1 product is the C-terminus of the alpha-subunit of killer toxin, where toxin is followed in the precursor by 2 basic residues. Processing involves endoproteolysis following these basic residues and trimming of their C-terminal by a carboxypeptidase. Consistent with the KEX1 product being this carboxypeptidase is its role in alpha-factor pheromone production. In wild-type yeast, KEX1 is not essential for alpha-factor production, as the final pheromone repeat needs no C-terminal processing. However, in a mutant in which alpha-factor production requires a carboxypeptidase, pheromone production is KEX1-dependent.  相似文献   

3.
The three-dimensional structure in dodecyl phosphocholine micelles of the 26-mer membrane-permeabilizing bacteriocin-like pheromone plantaricin A (PlnA) has been determined by use of nuclear magnetic resonance spectroscopy. The peptide was unstructured in water but became partly structured upon exposure to micelles. An amphiphilic alpha-helix stretching from residue 12 to 21 (possibly also including residues 22 and 23) was then formed in the C-terminal part of the peptide, whereas the N-terminal part remained largely unstructured. PlnA exerted its membrane-permeabilizing antimicrobial activity through a nonchiral interaction with the target cell membrane because the d-enantiomeric form had the same activity as the natural l-form. This nonchiral interaction involved the amphiphilic alpha-helical region in the C-terminal half of PlnA because a 17-mer fragment that contains the amphiphilic alpha-helical part of the peptide had antimicrobial potency that was similar to that of the l- and d-enantiomeric forms of PlnA. Also the pheromone activity of PlnA depended on this nonchiral interaction because both the l- and d-enantiomeric forms of the 17-mer fragment inhibited the pheromone activity. The pheromone activity also involved, however, a chiral interaction between the N-terminal part of PlnA and its receptor because high concentrations of the l-form (but not the d-form) of a 5-mer fragment derived from the N-terminal part of PlnA had pheromone activity. The results thus reveal a novel mechanism whereby peptide pheromones such as PlnA may function. An initial nonchiral interaction with membrane lipids induces alpha-helical structuring in a segment of the peptide pheromone. The peptide becomes thereby sufficiently structured and properly positioned in the membrane interface, thus enabling it to engage in a chiral interaction with its receptor in or near the membrane water interface. This membrane-interacting mode of action explains why some peptide pheromones/hormones such as PlnA sometimes display antimicrobial activity in addition to their pheromone activity.  相似文献   

4.
Human plasma carboxypeptidase N was purified to homogeneity and its active and inactive subunits were separated. By introducing a novel technique, both forms of the active subunit (Mr = 55,000 and Mr = 48,000) were isolated. N-terminal sequencing of the active subunit of human carboxypeptidase N revealed significant homology with the N-terminal sequence of bovine carboxypeptidase H (43% identity) and to a lesser extent with carboxypeptidase A (29% identity) or carboxypeptidase B (18% identity). The active subunit of carboxypeptidase N was hydrolyzed with trypsin and 4 of the tryptic peptides were isolated by HPLC and sequenced. The sequences of the four peptides were homologous (39-64% identity) with regions of carboxypeptidase H corresponding to the middle (residues 148-175) and C-terminal portion (residues 321-408). These regions had essentially no homology with carboxypeptidase A or B. These data indicate that carboxypeptidase H and the active subunit of carboxypeptidase N may have diverged from a common ancestral gene.  相似文献   

5.
A method is presented for the simple identification of C-terminal fragment of proteins. The method consists of (i) C-terminal processing of a protein by carboxypeptidase and (ii) comparative peptide mapping of the intact and carboxypeptidase-excised protein after fragmentation by endoproteinase or by chemical cleavage. The peptide mapping was performed by means of high-performance reversed-phase chromatography, where the C-terminal fragment was identified as a peptide peak that was lost or decreased in the carboxypeptidase-excised protein. The C-terminal sequence of the protein could be then determined by sequential Edman degradation of the C-terminal fragment collected from the peptide mapping chromatography. The sensitivity of the method depends solely on the peptide detection and subsequent Edman degradation, currently available techniques of which require a nanomole to subnanomole quantity of protein. The present method can be coupled with conventional carboxypeptidase technology because it utilizes a protein portion remaining after carboxypeptidase digestion while released amino acids are needed in the conventional technique. The method would be particularly valuable in finding a gene probe site for a RNA message coding for the C-terminal portion of a molecule.  相似文献   

6.
The mass spectrometric strategy including three steps is presented for primary structure determination of the N-terminally blocked peptides. First, the C-terminal sequencing is performed by using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry coupled with carboxypeptidase Y digestion. Then, the peptide is cleaved according to the obtained C-terminal sequence information and the resulting peptides are identified by mass spectrometry and Edman degradation after fractionation by reverse-phase chromatography. Finally, the N-terminal fragment is sequenced by tandem mass spectrometry. The strategy was successfully applied to the sequence determination of two novel N-terminally blocked peptides named EAFP1 and EAFP2.  相似文献   

7.
The C- and N-terminal fragments of substance P were compared to the parent molecule with respect to their ability to: (a) contract the isolated guinea pig ileum, (b) induce salivation in the rat, (c) excite single cat dorsal horn neurones, and (d) induce scratching by intracranial injections in mice. C-terminal fragments as small as the heptapeptide were potent SP agonists on all assay systems. C-terminal fragments containing five amino acids or less were, at most, only weakly active. The C-terminal hexapeptide was a potent SP receptor stimulant on the isolated guinea pig ileum and, when directly applied by microiontophoresis, on cat dorsal horn neurons. However, the same compound was only 2-5% as potent as substance P in eliciting salivation and scratching in vivo, an indication that this fragment may be especially labile to enzymatic degradation. N-terminal fragments were totally inactive on the isolated guinea pig ileum. On the rat salivation and central nervous system assays, however, N-terminal fragments were capable of weak SP-like activity. It is concluded that SP receptors exist in multiple forms which we have labelled SP1 and SP2 receptors for those insensitive or sensitive to N-terminal fragments, respectively.  相似文献   

8.
The C-terminal regulatory segment of smooth muscle myosin light chain kinase folds back on its catalytic core to inhibit kinase activity. This regulatory segment consists of autoinhibitory residues linking the catalytic core to the calmodulin-binding sequence and perhaps additional C-terminal residues including an immunoglobulin-like motif. However, mutational and biochemical analyses showed no specific involvement of residues C-terminal to the calmodulin-binding sequence. To obtain additional insights on the proposed mechanisms for autoinhibition and Ca(2+)/calmodulin activation of the kinase, the polypeptide backbone chain of myosin light chain kinase was cleaved by genetic means to produce N- and C-terminal protein fragments. The N-terminal fragment containing the catalytic core was catalytically inactive when expressed alone. Co-expression of the N-terminal fragment with the C-terminal fragment containing the regulatory segment restored kinase activity. Deletion of the autoinhibitory linker residues without or with the calmodulin-binding sequence prevented restoration of kinase activity. In the presence or absence of Ca(2+)/calmodulin, regulatory segment binding occurred through the linker region connecting the catalytic core to the calmodulin-binding sequence. Collectively, these results indicate that residues C-terminal to the calmodulin-binding sequence (including the immunoglobulin-like motif) are not functional components of the regulatory segment. Furthermore, the principal autoinhibitory motif is contained in the sequence linking the catalytic core of myosin light chain kinase to the calmodulin-binding sequence.  相似文献   

9.
The proteolipid of rabbit sarcoplasmic reticulum was isolated and characterized. Tyrosine was identified as the C-terminal amino acid by hydrazinolysis and carboxypeptidase A digestion. The N-terminal sequence of proteolipid is: Met-Glx-Arg-Ser-Thr-Arg-Glx-Leu-Cys-Leu-Asp-Phe. The hydrophilic character of the N-terminal portion suggests that it is exposed on the membrane surface.  相似文献   

10.
The breast cancer susceptibility type 1 gene product (BRCA1) is cleaved by caspases upon the activation of apoptotic pathways. After proteolysis the C-terminal fragment has been reported to translocate to the cytoplasm and promote cell death. Here we report that the C-terminal fragment is unstable in cells as it is targeted for degradation by the N-end rule pathway. The data reveals that mutating the wild type N-terminal aspartate, of the C-terminal fragment, to valine stabilizes the fragment. If the N terminus is mutated to another N-terminal destabilizing residue, like arginine, the C-terminal fragment remains unstable in cells. Last, the C-terminal fragment of BRCA1 is stable in cells lacking ATE1, a component of the N-end rule pathway.  相似文献   

11.
Osteocalcin (OC), the major gamma carboxyglutamic acid (Gla)-containing protein of vertebrate bone, has been isolated from bones of the emu (Dromaius novaehollandae) and the primary structure determined by a combination of gas phase N-terminal sequencing of the intact molecule and a proteolytic fragment, and carboxypeptidase Y C-terminal sequencing. Gla residues were located by counting tritium radioactivity in fractions from the N-terminal sequencing of the tritiated/thermally decarboxylated molecule. Emu OC consists of 48 amino acid residues containing 3 Gla residues, and a single disulphide bond. The C-terminal 29 residues are identical to those of the human and sheep OC sequences. Alignment of the N-terminal sequence against those of other OCs reveals greater sequence homology with chicken OC than with mammalian OCs.  相似文献   

12.
A 200 ps MD trajectory of wild type PCI and a 120 ps one for the Pro36Gly putative mutant are studied and compared with the structure of PCI in its complex with carboxypeptidase A (CPA). It is first established that the structures of PCI from X-ray and from MD simulation are essentially equal. Thereafter, data from the PCI-CPA and average MD structures together with available biochemical information are used to identify possible structural factors that may determine the inhibitory power of PCI. These structural determinants are used to analyze the mutant structure. The fold of the mutant protein shows a large degree of stability. The N-terminal tail in PCIm differs from the X-ray structure as it does in PCIw, while the mutant's C-terminal tail (which is the primary binding site with CPA) and residues 13–17 present deviations. Differences in fluctuation patterns exist between PCIm and PCIw in residues 2–4 (the N-terminal tail), 13–17, 22–23, 28–81 (the secondary contact site with CPA), and 37–38 (the C-terminal tail); the latter region is rigidified in PCIm. Results show that the MD method is able to sense long-range as well as local perturbative effects produced by amino-acid substitutions in flexible regions of this protein. The simulations suggest that the conformation of the C-terminal tail is less favorable for interaction with the target protein in the mutant than it is in the wild type protein. The Pro-36-Gly mutant is predicted to be a less potent inhibitor.Abbreviations CPA carboxypeptidase A - MD molecular dynamics - NIS non-inertial solvent - PCI potato carboxypeptidase A inhibitor - PCIm mutated inhibitor - PCIw wild inhibitor  相似文献   

13.
Formin proteins direct the nucleation and assembly of linear actin filaments in a variety of cellular processes using their conserved formin homology 2 (FH2) domain. Diaphanous-related formins (DRFs) are effectors of Rho-family GTPases, and in the absence of Rho activation they are maintained in an inactive state by intramolecular interactions between their regulatory N-terminal region and a C-terminal segment referred to as the DAD domain. Although structures are available for the isolated DAD segment in complex with the interacting region in the N-terminus, it remains unclear how this leads to inhibition of actin assembly by the FH2 domain. Here we describe the crystal structure of the N-terminal regulatory region of formin mDia1 in complex with a C-terminal fragment containing both the FH2 and DAD domains. In the crystal structure and in solution, these fragments form a tetrameric complex composed of two interlocking N+C dimers. Formation of the tetramer is likely a consequence of the particular N-terminal construct employed, as we show that a nearly full-length mDia1 protein is dimeric, as are other autoinhibited N+C complexes containing longer N-terminal fragments. The structure provides the first view of the intact C-terminus of a DRF, revealing the relationship of the DAD to the FH2 domain. Delineation of alternative dimeric N+C interactions within the tetramer provides two general models for autoinhibition in intact formins. In both models, engagement of the DAD by the N-terminus is incompatible with actin filament formation on the FH2, and in one model the actin binding surfaces of the FH2 domain are directly blocked by the N-terminus.  相似文献   

14.
Procarboxypeptidase B is converted to enzymatically active carboxypeptidase B by limited proteolysis catalysed by trypsin, removing the long N-terminal activation segment of 95 amino acids. The three-dimensional crystal structure of procarboxypeptidase B from porcine pancreas has been determined at 2.3 A resolution and refined to a crystallographic R-factor of 0.169. The functional determinants of its enzymatic inactivity and of its activation by limited proteolysis have thus been unveiled. The activation segment folds in a globular region with an open sandwich antiparallel-alpha antiparallel-beta topology and in a C terminal alpha-helix which connects it to the enzyme moiety. The globular region (A7-A82) shields the preformed active site, and establishes specific interactions with residues important for substrate recognition. AspA41 forms a salt bridge with Arg145, which in active carboxypeptidase binds the C-terminal carboxyl group of substrate molecules. The connecting region occupies the putative extended substrate binding site. The scissile peptide bond cleaved by trypsin during activation is very exposed. Its cleavage leads to the release of the activation segment and to exposure of the substrate binding site. An open-sandwich folding has been observed in a number of other proteins and protein domains. One of them is the C-terminal fragment of L7/L12, a ribosomal protein from Escherichia coli that displays a topology similar to the activation domain of procarboxypeptidase.  相似文献   

15.
16.
RNA helicase Brr2 is implicated in multiple phases of pre-mRNA splicing and thus requires tight regulation. Brr2 can be auto-inhibited via a large N-terminal region folding back onto its helicase core and auto-activated by a catalytically inactive C-terminal helicase cassette. Furthermore, it can be regulated in trans by the Jab1 domain of the Prp8 protein, which can inhibit Brr2 by intermittently inserting a C-terminal tail in the enzyme's RNA-binding tunnel or activate the helicase after removal of this tail. Presently it is unclear, whether these regulatory mechanisms functionally interact and to which extent they are evolutionarily conserved. Here, we report crystal structures of Saccharomyces cerevisiae and Chaetomium thermophilum Brr2-Jab1 complexes, demonstrating that Jab1-based inhibition of Brr2 presumably takes effect in all eukaryotes but is implemented via organism-specific molecular contacts. Moreover, the structures show that Brr2 auto-inhibition can act in concert with Jab1-mediated inhibition, and suggest that the N-terminal region influences how the Jab1 C-terminal tail interacts at the RNA-binding tunnel. Systematic RNA binding and unwinding studies revealed that the N-terminal region and the Jab1 C-terminal tail specifically interfere with accommodation of double-stranded and single-stranded regions of an RNA substrate, respectively, mutually reinforcing each other. Additionally, such analyses show that regulation based on the N-terminal region requires the presence of the inactive C-terminal helicase cassette. Together, our results outline an intricate system of regulatory mechanisms, which control Brr2 activities during snRNP assembly and splicing.  相似文献   

17.
Trypsin is shown to generate an insecticidal toxin from the 130-kDa protoxin of Bacillus thuringiensis subsp. kurstaki HD-73 by an unusual proteolytic process. Seven specific cleavages are shown to occur in an ordered sequence starting at the C-terminus of the protoxin and proceeding toward the N-terminal region. At each step, C-terminal fragments of approximately 10 kDa are produced and rapidly proteolyzed to small peptides. The sequential proteolysis ends with a 67-kDa toxin which is resistant to further proteolysis. However, the toxin could be specifically split into two fragments by proteinases as it unfolded under denaturing conditions. Papain cleaved the toxin at glycine 327 to give a 34.5-kDa N-terminal fragment and a 32.3-kDa C-terminal fragment. Similar fragments could be generated by elastase and trypsin. The N-terminal fragment corresponds to the conserved N-terminal domain predicted from the gene-deduced sequence analysis of toxins from various subspecies of B. thuringiensis, and the C-terminal fragment is the predicted hypervariable sequence domain. A double-peaked transition was observed for the toxin by differential scanning calorimetry, consistent with two or more independent folding domains. It is concluded that the N- and C-terminal regions of the protoxin are two multidomain regions which give unique structural and biological properties to the molecule.  相似文献   

18.
The non-membrane-bound lamina-associated polypeptide 2 isoform, LAP2alpha, forms nucleoskeletal structures with A-type lamins and interacts with chromosomes in a cell cycle-dependent manner. LAP2alpha contains a LEM (LAP2, emerin, and MAN1) domain in the constant N terminus that binds to chromosomal barrier-to-autointegration factor, and a C-terminal unique region that is essential for chromosome binding. Here we show that C-terminal LAP2alpha fragment efficiently bound to mitotic chromosomes and inhibited assembly of endogenous LAP2alpha, nuclear membranes, and lamins A/C in in vitro nuclear assembly assays. Full-length recombinant LAP2alpha, which bound to chromosomes, and N-terminal fragment, which did not bind, had no effect on assembly. This suggested an essential role for the LAP2alpha C terminus in chromosome association and for the N-terminal LEM domain in subsequent assembly stages. In vivo analysis upon transient expression of GFP-tagged LAP2alpha fragments confirmed that, unlike the N-terminal fragment, the C-terminal fragment was able to bind to chromosomes during mitosis, if expressed weakly. At higher expression levels, C-terminal LAP2alpha fragment and full-length protein led to cell cycle arrest in interphase and apoptosis, as shown by fluorescence-activated cell sorter analysis, time lapse microscopy, and BrdUrd incorporation assays. These data indicated distinct functions of LAP2alpha in cell cycle progression during interphase and in nuclear reassembly during mitosis.  相似文献   

19.
1. When iron-saturated hen ovotransferrin was treated with subtilisin the N-terminal half was digested at a faster rate than the C-terminal half, allowing the latter to be isolated as a single-chain fragment of mol.wt 35000. 2. In mildly acid conditions iron-ovotransferrin loses iron preferentially from its N-terminal binding site. Trypsin digestion of the resulting monoferric ovotransferrin also gave rise to a C-terminal fragment. 3. Comparison of the N-terminal fragment with the C-terminal fragments shows differences in composition, peptide 'maps', CNBr-cleavage patterns and antigenic structures. The C-terminal fragments carry the carbohydrate group of ovotransferrin. 4. Both N-terminal and C-terminal fragments donate their bound iron to rabbit reticulocytes.  相似文献   

20.
Limited proteolysis with trypsin of smg p21B, a ras p21-like small GTP-binding protein having the same putative effector domain as ras p21s, produced the N-terminal fragment and the C-terminal tail of Lys-Lys-Ser-Ser-geranylgeranyl-Cys methyl ester. The Mr values of the intact smg p21B, the N-terminal fragment, and the C-terminal tail were estimated to be about 22,000, 20,500, and less than 1,000, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both the GDP- and GTP-bound forms of the intact smg p21B bound to various membranes and phosphatidylserine-linked Affi-Gel. However, both the GDP- and GTP-bound forms of the N-terminal fragment failed to bind to membranes and phosphatidylserine-linked Affi-Gel. In contrast, the C-terminal tail bound to membranes and phosphatidylserine-linked Affi-Gel. The N-terminal fragment contained a GDP/GTP-binding and GTPase domain and exhibited these two activities, but the C-terminal tail did not show any such activity. A GTPase-activating protein for smg p21 stimulated the GTPase activity of both the intact smg p21B and the N-terminal fragment. In contrast, a GDP/GTP exchange protein for smg p21, named GDP dissociation stimulator, stimulated the GDP/GTP exchange reaction of the intact smg p21B but not that of the N-terminal fragment. These results indicate 1) that smg p21B is composed of at least two functionally different domains, the N-terminal GDP/GTP-binding and GTPase domain and the C-terminal membrane-binding domain, 2) that smg p21B binds to membranes through its C-terminal hydrophobic and basic domain, and 3) that this C-terminal domain is also essential for the smg p21 GDP dissociation stimulator action but not for the smg p21 GTPase-activating protein action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号