首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyclonal antibodies were raised in rabbits in response to the administration of purified exo- and endoglucanases extracted from cell walls of maize (Zea mays L. B37 × Mo17) coleoptiles. Since the antibodies formed specific conjugates when challenged with the glucanase antigens in immunoblot assays they were employed to evaluate the participation of glucanases in tissue growth. Indole-3-acetic acid induced cell elongation of abraded coleoptile segments was inhibited when the antibodies were supplied as a short term pretreatment (25-200 microgram/milliliter of serum protein). The extent of inhibition of IAA induced cell elongation was additive when endo- and exoglucanase antibodies were applied together. The results suggest that both enzymes have a role in mediating IAA-induced cell elongation. Pretreatment with exo- and endoglucanases antibodies also inhibited IAA induced degradation of noncellulosic β-d-glucans and the increased level of cellulosic polymers in maize coleoptiles. Antibodies also inhibited the expression of the autohydrolytic degradation of glucans in isolated cell walls. The extent of inhibition was dependent on the antibody concentration applied. The results support the contention that enzymatic processes mediated by exo- and endoglucanases are responsible for cell wall autolytic reactions and that these reactions are linked to the mechanism for expressing auxin induced cell elongation in maize coleoptiles.  相似文献   

2.
We tested that the hypothesis that root elongation might be controlled by altering the level of ethylene in intact primary roots of maize(Zea mays L.). We measured root elongation in a short period using a computerized root auxanometer. Compounds which regulate ethylene production were applied to intact primary roots in different time periods. Root elongation was stimulated by the treatment with ethylene antagonists such as Co2+, aminoethoxyvinylglycine (AVG) and L-canaline. This result suggested that root elongation was closely related to ethylene level of intact primary roots. Furthermore, IAA- and 1-aminocyclopropane-1-carboxylic acid (ACC)-induced inhibition of root elongation was reversed by treatment with Co2+. The application of ACC to roots which have been exposed to IAA and Co2+ have no significant effect on root elongation. However, the inhibition of root elongation by ACC in roots previously treated with IAA and AVG became manifest when the applied IAA concentrations were lower. These results were consistent with the hypothesis that the level of ethylene in intact roots functions to moderate root elongation, and suggested that auxin-induced inhibition of root elongation results from auxin induced promotion of ethylene production.  相似文献   

3.
Summary Three pericycle cell types (opposite xylem, opposite phloem and intervening) distinguished by their location in relation to different elements of the vascular system were studied in the adventitious root ofAllium cepa L. Changes in cell length and mitotic index were analysed in these cells along the apical meristem and elongation zone of the root. The opposite phloem and intervening pericycle cells are significantly shorter than the opposite xylem pericycle cells in the apical half of the meristem. Between 1,200 and 1,400 m behind the tip, length became similar in all three pericycle cell types, while in more proximal zones the opposite phloem cells were significantly longer. These results suggest that the number of transverse divisions is different in the three types of pericycle cells. In the apical half of the meristem, mitotic index increased in intervening and opposite xylem cells but remained unchanged in opposite phloem cells, a fact likely to account for the relative lengthening of the latter. In the proximal half of the meristem, mitotic index fell in all three cell types until cell division had ceased. However, mitotic index in opposite xylem cells remained high for longer than in the other two cell types, implying that increase of the mean cell length in the former was slower. These results suggest that differences in mean cell length between the three pericycle cell types are due to different rates of proliferation.  相似文献   

4.
Previous work showed that primary root elongation in maize (Zea mays L.) seedlings at low water potentials (psi(w)) requires the accumulation of abscisic acid (ABA) (R.E. Sharp, Y. Wu, G.S. Voetberg, I.N. Saab, M.E. LeNoble [1994] J Exp Bot 45: 1743-1751). The objective of the present study was to determine whether the inhibition of elongation in ABA-deficient roots is attributable to ethylene. At a psi(w) of -1.6 MPa, inhibition of root elongation in dark-grown seedlings treated with fluridone to impose ABA deficiency was largely prevented with two inhibitors of ethylene synthesis (aminooxyacetic acid and aminoethoxyvinylglycine) and one inhibitor of ethylene action (silver thiosulfate). The fluridone treatment caused an increase in the rate of ethylene evolution from intact seedlings. This effect was completely prevented with aminooxyacetic acid and also when ABA was supplied at a concentration that restored the ABA content of the root elongation zone and the root elongation rate. Consistent results were obtained when ABA deficiency was imposed using the vp5 mutant. Both fluridone-treated and vp5 roots exhibited additional morphological symptoms of excess ethylene. The results demonstrate that an important role of ABA accumulation in the maintenance of root elongation at low psi(w) is to restrict ethylene production.  相似文献   

5.
Effect of osmotic pressure on root growth,cell cycle and cell elongation   总被引:8,自引:0,他引:8  
Summary The paper reports a study of root growth, the duration of the cell division cycle and cell size, inAllium cepa roots grown in mannitol solution, with osmotic pressures of 0–16 atm., at 25° C, with aeration. Root growth decreases markedly as the osmotic pressure rises, at 12 atm. being about 35% of what it is at 0 atm. The rate of the cell cycle, , expressed as the percentage of cells passing through any given point in the cycle in one hour, is a roughly linear function of the osmotic pressure, and at 12 atm. is reduced to 80% of what it is at 0 atm. The reaction of the cell size to osmotic pressure is similar to that of the growth. The relative values of the two diverge progressively as the osmotic pressure increases and at 12 atm. the elongation of the cells has dropped to 40% of normal.The data obtained agree with those given by the equationG = K · · L, in whichK is a constant, is the rate of the cycle (reciprocal of its duration) andL the average size of the mature epidermal cells.  相似文献   

6.
Inhibition of auxin-induced cell elongation by galactose   总被引:1,自引:0,他引:1  
Galactose at concentrations higher than 3 m M inhibited specifically auxin-induced elongation of oat, wheat and rice coleoptile segments but not of pea and mung bean stem segments. Glucose, arabinose, rhamnose, xylose, mannose and glucosamine did not inhibit auxin-induced elongation of coleoptile segments. Galactose inhibited auxin-induced but not hydrogen ion-induced growth.  相似文献   

7.
Nitric oxide (NO) is a highly inducible molecule and overaccumulated during stress responses, such as drought, cold and pathogen infection. Several key developmental processes within a plant life cycle have been reported to be signaled by this gaseous molecule, and among them seed germination, de-etiolation, gravitropic response or root growth are well-characterized. The importance of NO as a plant growth and stress regulator is emerging considerably, despite the current knowledge about its signaling pathway is still limited. Therefore, the identification and characterization at the molecular level of NO targets is essential to get a deeper insight into this pathway. Here we characterize the effect of NO on root development in Arabidopsis and found that NO application reduces cell lengths in differentiation zone. Additionally, the contribution of the gibberellin (GA) signaling pathway to the NO root-related phenotypes, mainly through DELLA repressors, is also depicted.  相似文献   

8.
9.
During the first days of development, maize roots showed considerable variation in the production of ethylene and the rate of elongation. As endogenous ethylene increases, root elongation decreases. When these roots are treated with the precursor of ethylene aminocyclopropane- 1-carboxylic acid (ACC), or inhibitors of ethylene biosynthesis 2-aminoethoxyvinyl glycine (AVG) or cobalt ions, the root elongation is also inhibited. Because of root growth diminishes at high or reduced endogenous ethylene concentrations, it appears that this phytohormone must be maintained in a range of concentrations to support normal root growth. In spite of its known role as inhibitor of ethylene action, silver thiosulphate (STS) does not change significantly the root elongation rate. This suggests that the action of ethylene on root elongation should occur, at least partially, by interaction with other growth regulators.Key words: 2-aminoethoxyvinyl glycine, cobalt, ethylene, root elongation, silver thiosulphate, Zea mays  相似文献   

10.
In maize ( Zea mays L. cv. LG 11) roots cultured in humid air, the presence of hairs was not related to root growth. However, maximum hair length and length of the hair zone could be correlated to the elongation rate of the primary root. Under the growth conditions used, the emergence of root hairs always took place in the extending zone. In more basal regions, rhizodermal cells could not give rise to root hairs. Results were similar for roots preincubated in a buffer solution.  相似文献   

11.
12.
We examined cell length, mitosis, and root meristem “cuticle” in different tissues of geostimulated, red light-exposed primary roots of corn (Zea Mays, Wisconsin hybrid 64A × 22R). The examination was done at 15-minute intervals for a period of 240 minutes. Differences in cell elongation between the upper and lower sides were most prominent between 1.5 and 2.5 mm from the root meristem; the outer cortex had the greatest elongation growth, and the upper cells showed a significant increase in length compared to the lower. A differential mitosis was also found, with the lower tissue being greater. We infer that the mitotic activity is indicative of cell division, and this division occurs strictly in the first 1.5 mm of the root meristem. The combined effect of differential cell elongation and cell division results in the localization of the geotropic curvature in the 1.5- to 2.5-mm region from the root meristem. Mitosis that occurs primarily in the cortex and stele were asynchronous; the peak of cortical division preceded that of the stele. Both peaks occurred before the peak of geotropism. A densely stained layer separates the cap from the root meristem. This layer is thinner at the apex of the root meristem. The area of the thin region increased with time and peaked at 180 minutes after geostimulation, which was coincidental with the peak of the geotropic response.  相似文献   

13.
Roots grown in an applied electric field demonstrate a bidirectional curvature. To further understand the nature of this response and its implications for the regulation of differential growth, we applied an electric field to roots growing in microgravity. We found that growth rates of roots in microgravity were higher than growth rates of ground controls. Immediately upon application of the electric field, root elongation was inhibited. We interpret this result as an indication that, in the absence of a gravity stimulus, the sensitivity of the root to an applied electric stimulus is increased. Further space experiments are required to determine the extent to which this sensitivity is shifted. The implications of this result are discussed in relation to gravitropic signaling and the regulation of differential cell elongation in the root.  相似文献   

14.
Roots grown in an applied electric field demonstrate a bidirectional curvature. To further understand the nature of this response and its implications for the regulation of differential growth, we applied an electric field to roots growing in microgravity. We found that growth rates of roots in microgravity were higher than growth rates of ground controls. Immediately upon application of the electric field, root elongation was inhibited. We interpret this result as an indication that, in the absence of a gravity stimulus, the sensitivity of the root to an applied electric stimulus is increased. Further space experiments are required to determine the extent to which this sensitivity is shifted. The implications of this result are discussed in relation to gravitropic signaling and the regulation of differential cell elongation in the root.  相似文献   

15.
Previous work showed that accumulation of endogenous abscisic acid (ABA) acts both to maintain primary root growth and inhibit shoot growth in maize seedlings at low water potentials (ψw) (IN Saab, RE Sharp, J Pritchard, GS Voetberg [1990] Plant Physiol 93: 1329-1336). In this study, we have characterized the growth responses of the primary root and mesocotyl of maize (Zea mays L. cv FR27 × FRMo 17) to manipulation of ABA levels at low ψw with a high degree of spatial resolution to provide the basis for studies of the mechanism(s) of ABA action. In seedlings growing at low ψw and treated with fluridone to inhibit carotenoid (and ABA) biosynthesis, ABA levels were decreased in all locations of the root and mesocotyl growing zones compared with untreated seedlings growing at the same ψw. In the root, low ψw (−1.6 megapascals) caused a shortening of the growing zone, as reported previously. The fluridone treatment was associated with severe inhibition of root elongation rate, which resulted from further shortening of the growing zone. In the mesocotyl, low ψw (−0.3 megapascal) also resulted in a shortened growing zone. In contrast with the primary root, however, fluridone treatment prevented most of the inhibition of elongation and the shortening of the growing zone. Final cell length measurements indicated that the responses of both root and mesocotyl elongation to ABA manipulation at low ψw involve large effects on cell expansion. Measurements of the relative changes in root and shoot water contents and dry weights after transplanting to a ψw of −0.3 megapascal showed that the maintenance of shoot elongation in fluridone-treated seedlings was not attributable to increased water or seed-reserve availability resulting from inhibition of root growth. The results suggest a developmental gradient in tissue responsiveness to endogenous ABA in both the root and mesocotyl growing zones. In the root, the capacity for ABA to protect cell expansion at low ψw appears to decrease with increasing distance from the apex. In the mesocotyl, in contrast, the accumulation of ABA at low ψw appears to become increasingly inhibitory to expansion as cells are displaced away from the meristematic region.  相似文献   

16.
We tested that the hypothesis that root elongation might be controlled by altering the level of ethylene in intact primary roots of maize(Zea mays L.). We measured root elongation in a short period using a computerized root auxanometer. Compounds which regulate ethylene production were applied to intact primary roots in different time periods. Root elongation was stimulated by the treatment with ethylene antagonists such as Co2+, aminoethoxyvinylglycine (AVG) and L-canaline. This result suggested that root elongation was closely related to ethylene level of intact primary roots. Furthermore, IAA- and 1-aminocyclopropane-1-carboxylic acid (ACC)-induced inhibition of root elongation was reversed by treatment with Co2+. The application of ACC to roots which have been exposed to IAA and Co2+ have no significant effect on root elongation. However, the inhibition of root elongation by ACC in roots previously treated with IAA and AVG became manifest when the applied IAA concentrations were lower. These results were consistent with the hypothesis that the level of ethylene in intact roots functions to moderate root elongation, and suggested that auxin-induced inhibition of root elongation results from auxin induced promotion of ethylene production.  相似文献   

17.
To identify the region in which a root perceives a decrease in the ambient water potential and changes its elongation rate, we applied two agar blocks (1 x 1 x 1 mm(3)) with low water potential bilaterally to primary roots of maize (Zea mays) at various positions along the root. When agar blocks with a water potential of -1.60 MPa (-1.60-MPa blocks) or lower were attached to a root tip, the rate of elongation decreased. This decrease did not result from any changes in the water status of elongating cells and was not reversed when the -1.60-MPa blocks were replaced by -0.03-MPa blocks. The rate decreased slightly and was unaffected, respectively, when -1.60-MPa blocks were applied to the so-called decelerating region of the elongating zone and the mature region. However, the rate decreased markedly and did not recover for several hours at least when such blocks were attached to the accelerating region. In this case, the turgor pressure of the elongating cells decreased immediately after the application of the blocks and recovered thereafter. The decrease in elongation rate caused by -1.60-MPa blocks applied to the root tip was unaffected by additional -0.03-MPa blocks applied to the accelerating region and vice versa. We concluded that a significant reduction in root growth could be induced by water stress at the root tip, as well as in the accelerating region of the elongating zone, and that transmission of some signal from these regions to the decelerating region might contribute to the suppression of cell elongation in the elongation region.  相似文献   

18.
This report investigates physical changes associated with the short-term inhibition of root elongation in intact maize seedlings (Zea mays L. vs. Halamish) by exogenous auxin. Movement of root tips was assayed by video microscopy in control roots, roots grown for 45 min in 10–6 M indole3-acetic acid (IAA), or roots chilled for 3 min at 11°C. IAA and chilling treatments similarly reduced root elongation rates (from 29 ± 6 m min–1 to 6 ± 2 m min–1). Initial rates of root tip contraction induced by 300 mOsmol mannitol were used to calculate tissue contractibility values. These allowed a comparison of effects of IAA and chilling treatments on apparent rates of water transport out of the root tip tissues. Chilling treatment reduced root tip contractibility by 66%, whereas IAA had much less effect (26% reduction). Roots were also exposed to an osmotic jump treatment; the initial osmotically induced increase in elongation rate was used to determine root tip extensibility values. Both IAA and chilling treatments reduced root tip extensibilities by 57%. Inhibition of wall-yielding properties, rather than hydraulic limitations, appeared to be primarily associated with inhibition of intact root tip elongation by exogenous IAA.  相似文献   

19.
In the range 16 to 29°C, increases in temperature caused large (two-to threefold) increases in growth velocity, growth strain rate, and biomass deposition rate in primary roots of maize, Zea mays L. Temperature had small effects on root diameter, fresh weight density, and dry weight density, and negligible effects on length of the growth zone and growth strain at particular positions.  相似文献   

20.
Effect of boron on elongation of tomato root tips   总被引:9,自引:9,他引:0       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号