首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Genetic analysis of Myxococcus xanthus is greatly facilitated by the ability to introduce cloned DNA into M. xanthus to generate gene replacement and merodiploid strains. However, gene replacement strains are difficult to obtain when the region(s) of homology between the cloned DNA and the M. xanthus chromosome is limited (less than 1 kilobase). We found that gene replacements can be obtained at an increased frequency by a two-step procedure involving the use of bacteriophage P1 to isolate merodiploid strains followed by generalized transduction to another M. xanthus strain by using phage Mx4.  相似文献   

4.
Protein S is an abundant spore coat protein produced during fruiting body formation (development) of the bacterium Myxococcus xanthus. We have cloned the DNA which codes for protein S and have found that this DNA hybridizes to three protein S RNA species from developmental cells but does not hybridize to RNA from vegetative cells. The half-life of protein S RNA was found to be unusually long, about 38 minutes, which, at least in part, accounts for the high level of protein S synthesis observed during development. Hybridization of restriction fragments from cloned M. xanthus DNA to the developmental RNAs enabled us to show that M. xanthus has two directly repeated genes for protein S (gene 1 and gene 2) which are separated by about 10(3) base-pairs on the bacterial chromosome. To study the expression of the protein S genes in M. xanthus, eight M. xanthus strains were isolated with Tn5 insertions at various positions in the DNA which codes for protein S. The strains which contained insertions in gene 1 or between gene 1 and gene 2 synthesized all three protein S RNA species and exhibited normal levels of protein S on spores. In contrast, M. xanthus strains exhibited normal levels of protein S on spores. In contrast, M. xanthus strains with insertions in gene 2 had no detectable protein S on spores and lacked protein S RNA. Thus, gene 2 is responsible for most if not all of the production of protein S during M. xanthus development. M. xanthus strains containing insertions in gene 1, gene 2 or both genes, were found to aggregate and sporulate normally even though strains bearing insertions in gene 2 contained no detectable protein S. We examined the expression of gene 1 in more detail by constructing a fusion between the lacZ gene of Escherichia coli and the N-terminal portion of protein S gene 1 of M. xanthus. The expression of beta-galactosidase activity in an M. xanthus strain containing the gene fusion was shown to be under developmental control. This result suggests that gene 1 is also expressed during development although apparently at a much lower level than gene 2.  相似文献   

5.
T Yee  T Furuichi  S Inouye  M Inouye 《Cell》1984,38(1):203-209
A gram-negative bacterium, Myxococcus xanthus, was found to contain 500 to 700 copies per chromosome of a short single-stranded linear DNA fragment. When this DNA (multicopy single-stranded DNA; msDNA) labeled at the 5' end with kinase was used as a probe against total chromosomal blots, it hybridized to unique high molecular weight bands, which were cloned and sequenced. Labeling of msDNA was also possible using the Klenow fragment of DNA polymerase I as well as terminal deoxynucleotidyl transferase, permitting direct sequencing. The 5' end of msDNA was found to be primed by a short RNA segment. The DNA portion of msDNA consisted of 163 bases. Exact correspondence was seen between the msDNA sequence and the sequence of a chromosomal clone. An elaborate secondary structure is postulated for the msDNA sequence. A similar satellite DNA was also found in another myxobacterium, Stigmatella aurantiaca.  相似文献   

6.
A physical map of 330 x 10(3) base-pairs near the replication origin of Myxococcus xanthus chromosome has been established already. Using DNA fragments from this region, Northern blot hybridization analysis was carried out in order to identify the genes expressed during vegetative growth. One of the genes, tentatively designated as vegA, was cloned and its entire DNA sequence was determined. The amino acid sequence of the gene product deduced from the DNA sequence reveals that the VegA protein is a very basic protein with a molecular weight of 18,700. The gene was expressed in Escherichia coli using an expression vector, and its gene product was identified using SDS/polyacrylamide gel electrophoresis. From the results of S1 nuclease mapping, the vegA promoter was found to contain the sequence TAGACA at the -35 region and the sequence AAGGGT at the -10 region. These two regions are separated by 18 nucleotides. Genetic analysis suggests that the vegA gene may be essential for the growth of M. xanthus. From a computer-aided search for homologies to know protein structures, it was found that the VegA protein has homologies to histone H4 of Tetrahymena thermophila and histone H2B of sea urchin.  相似文献   

7.
K Nakahama  T Miyazaki  M Kikuchi 《Gene》1985,36(1-2):179-182
A 117-bp EcoRI-PstI fragment with strong promoter activity (P1 promoter) was cloned from Bacillus subtilis chromosomal DNA and sequenced. The P1 promoter was shown to contain a putative -35 region (TTTACT) and -10 region (TAGATT), and promotes expression of cloned human interleukin-2 (IL-2) and human interferon-gamma (IFN-gamma) genes in B. subtilis.  相似文献   

8.
Recent studies have provided evidence to implicate involvement of the core oligosaccharide region of Pseudomonas aeruginosa lipopolysaccharide (LPS) in adherence to host tissues. To better understand the role played by LPS in the virulence of this organism, the aim of the present study was to clone and characterize genes involved in core biosynthesis. The inner-core regions of P. aeruginosa and Salmonella enterica serovar Typhimurium are structurally very similar; both contain two main chain residues of heptose linked to lipid A-Kdo2 (Kdo is 3-deoxy-D-manno-octulosonic acid). By electrotransforming a P. aeruginosa PAO1 library into Salmonella waaC and waaF (formerly known as rfaC and rfaF, respectively) mutants, we were able to isolate the homologous heptosyltransferase I and II genes of P. aeruginosa. Two plasmids, pCOREc1 and pCOREc2, which restored smooth LPS production in the waaC mutant, were isolated. Similarly, plasmid pCOREf1 was able to complement the Salmonella waaF mutant. Sequence analysis of the DNA insert of pCOREc2 revealed one open reading frame (ORF) which could code for a protein of 39.8 kDa. The amino acid sequence of the deduced protein exhibited 53% identity with the sequence of the WaaC protein of S. enterica serovar Typhimurium. pCOREf1 contained one ORF capable of encoding a 38.4-kDa protein. The sequence of the predicted protein was 49% identical to the sequence of the Salmonella WaaF protein. Protein expression by the Maxicell system confirmed that a 40-kDa protein was encoded by pCOREc2 and a 38-kDa protein was encoded by pCOREf1. Pulsed-field gel electrophoresis was used to determine the map locations of the cloned waaC and waaF genes, which were found to lie between 0.9 and 6.6 min on the PAO1 chromosome. Using a gene-replacement strategy, we attempted to generate P. aeruginosa waaC and waaF null mutants. Despite multiple attempts to isolate true knockout mutants, all transconjugants were identified as merodiploids.  相似文献   

9.
Retroviral proteins can encapsidate RNAs without retroviral cis-acting sequences. Such RNAs are reverse transcribed and inserted into the genomes of infected target cells to form cDNA genes. Previous investigations by Southern blot analysis of such cDNA genes suggested that they were truncated at the 3' and the 5' ends (R. Dornburg and H. M. Temin, Mol. Cell. Biol. 8:2328-2334, 1988). To analyze such cDNA genes further, we cloned three cDNA genes (derived from a hygromycin B phosphotransferase gene) in lambda vectors and analyzed them by DNA sequencing. We found that they did not correspond to the full-length mRNA: they were truncated at both the 3' and the 5' ends, did not contain a poly(A) tract, and were not flanked by direct repeats. The 3'-end junctions to chromosomal DNA of five more cDNA genes were amplified by polymerase chain reaction, cloned in pUC vectors, and sequenced. All of these cDNA genes had 3'-end truncations, and no poly(A) tracts were found. Further polymerase chain reaction experiments were performed to detect hygromycin B phosphotransferase cDNA genes with a poly(A) tract in DNA extracted from a pool of about 500 colonies of cells containing cDNA genes. No hygromycin B phosphotransferase cDNA gene with a poly(A) tract was found. Investigation of two preintegration sites by Southern analysis revealed that deletions were present in chromosomal DNA at the site of the integration of the cDNA genes. Naturally occurring processed pseudogenes correspond to the full-length mRNA, contain a poly(A) sequence, and are flanked by direct repeats. Our data indicate that cDNA genes formed by infection with retrovirus particles lack the hallmarks or natural processed pseudogenes. Thus, it appears that natural processed pseudogenes were not generated by retrovirus proteins.  相似文献   

10.
11.
Summary A number of deletions in the glucose kinase (glk) region of the Streptomyces coelicolor chromosome were found among spontaneous glk mutants. The deletions were identified by probing Southern blots of chromosomal DNA from glk mutants with cloned glk DNA. The deletions ranged in size from 0.3 kb to greater than 2.9 kb. When cloned glk DNA was introduced on a C31 phage vector into a glk mutant that contained a deletion of the entire homolgous chromosomal glk region, glucose kinase activity was detected in extracts of these cells. The entire coding information for at least a subunit of glucose kinase is there-fore present on the cloned glk DNA. The 0.3 kb glk chromosomal deletion was used to demonstrate that transfer of chromosomal glk mutations on the the C31::glk phage could occur by recombination in vivo. Since glk mutations frequently arise from deletion events, a method was devised for inserting the cloned glk DNA at sites in the chromosome for which cloned DNA is available, and thus facilitating the isolation of deletions in those DNA regions. C31::glk vectors containing a deletion of the phage att site cannot lysogenize S. coelicolor recipients containing a deletion of the glk chromosomal gene unless these phages contain S. coelicolor chromosomal DNA. In such lysogens, the glk gene becomes integrated into the chromosome by homologous recombination directed by the chromosomal insert on the phage DNA. In appropriate selective conditions, mutants which contain deletions of the glk gene that extend into the adjacent host DNA can be easily isolated. This method was used to insert glk into the methylenomycin biosynthetic genes, and isolate derivatives with deletions of host DNA from within the prophage into the adjacent host DNA. Phenotypic and Southern blot analysis of the deletions showed that there are no genes essential for methylenomycin biosynthesis for at least 13 kb to the left of a region concerned with negative regulation of methylenomycin biosynthesis. Many of the deletions also removed part of the C31 prophage.  相似文献   

12.
A 9.9-kilobase (kb) BamHI restriction endonuclease fragment encoding the catA and catBC gene clusters was selected from a gene bank of the Pseudomonas aeruginosa PAO1c chromosome. The catA, catB, and catC genes encode enzymes that catalyze consecutive reactions in the catechol branch of the beta-ketoadipate pathway: catA, catechol-1,2-dioxygenase (EC 1.13.11.1); catB, muconate lactonizing enzyme (EC 5.5.1.1); and catC, muconolactone isomerase (EC 5.3.3.4). A recombinant plasmid, pRO1783, which contains the 9.9-kb BamHI restriction fragment complemented P. aeruginosa mutants with lesions in the catA, catB, or catC gene; however, this fragment of chromosomal DNA did not contain any other catabolic genes which had been placed near the catA or catBC cluster based on cotransducibility of the loci. Restriction mapping, deletion subcloning, and complementation analysis showed that the order of the genes on the cloned chromosomal DNA fragment is catA, catB, catC. The catBC genes are tightly linked and are transcribed from a single promoter that is on the 5' side of the catB gene. The catA gene is approximately 3 kb from the catBC genes. The cloned P. aeruginosa catA, catB, and catC genes were expressed at basal levels in blocked mutants of Pseudomonas putida and did not exhibit an inducible response. These observations suggest positive regulation of the P. aeruginosa catA and catBC cluster, the absence of a positive regulatory element from pRO1783, and the inability of the P. putida regulatory gene product to induce expression of the P. aeruginosa catA, catB, and catC genes.  相似文献   

13.
Myxococcus xanthus was pulse-labeled with [3H]thymidine immediately after germination of dimethyl sulfoxide-induced spores. The restriction enzyme digests of the total chromosomal DNA from the pulse-labeled cells were analyzed by one-dimensional as well as two-dimensional agarose gel electrophoresis. Four PstI fragments preferentially labeled at a very early stage of germination were cloned into the unique PstI site of pBR322. By using these clones as probes, a restriction enzyme map was established covering approximately 6% of the total M. xanthus genome (330 X 10(3) base pairs). The distribution of the specific activities of the restriction fragments pulse-labeled after germination suggests a bidirectional mode of DNA replication from a fixed origin.  相似文献   

14.
Mutants of Pseudomonas putida mt-2 that are unable to convert benzoate to catechol were isolated and grouped into two classes: those that did not initiate attack on benzoate and those that accumulated 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid (benzoate diol). The latter mutants, represents by strain PP0201, were shown to lack benzoate diol dehydrogenase (benD) activity. Mutants from the former class were presumed either to carry lesions in one or more subunit structural genes of benzoate dioxygenase (benABC) or the regulatory gene (benR) or to contain multiple mutations. Previous work in this laboratory suggested that benR can substitute for the TOL plasmid-encoded xylS regulatory gene, which promotes gene expression from the OP2 region of the lower or meta pathway operon. Accordingly, structural and regulatory gene mutations were distinguished by the ability of benzoate-grown mutant strains to induce expression from OP2 without xylS by using the TOL plasmid xylE gene (encoding catechol 2,3-dioxygenase) as a reporter. A cloned 12-kb BamHI chromosomal DNA fragment from the P. aeruginosa PAO1 chromosome complemented all of the mutations, as shown by restoration of growth on benzoate minimal medium. Subcloning and deletion analyses allowed identification of DNA fragments carrying benD, benABC, and the region possessing xylS substitution activity, benR. Expression of these genes was examined in a strain devoid of benzoate-utilizing ability, Pseudomonas fluorescens PFO15. The disappearance of benzoate and the production of catechol were determined by chromatographic analysis of supernatants from cultures grown with casamino acids. When P. fluorescens PFO15 was transformed with plasmids containing only benABCD, no loss of benzoate was observed. When either benR or xylS was cloned into plasmids compatible with those plasmids containing only the benABCD regions, benzoate was removed from the medium and catechol was produced. Regulation of expression of the chromosomal structural genes by benR and xylS was quantified by benzoate diol dehydrogenase enzyme assays. The results obtained when xylS was substituted for benR strongly suggest an isofunctional regulatory mechanism between the TOL plasmid lower-pathway genes (via the OP2 promoter) and chromosomal benABC. Southern hybridizations demonstrated that DNA encoding the benzoate dioxygenase structural genes showed homology to DNA encoding toluate dioxygenase from the TOL plasmid pWW0, but benR did not show homology to xylS. Evolutionary relationships between the regulatory systems of chromosomal and plasmid-encoded genes for the catabolism of benzoate and related compounds are suggested.  相似文献   

15.
A cDNA coding thioredoxin (TRX) was isolated from a cDNA library of Schizosaccharomyces pombe by colony hybridization. The 438 bp EcoRI fragment, which was detected by Southern hybridization, reveals an open reading frame which encodes a protein of 103 amino acids. The genomic DNA encoding TRX was also isolated from S. pombe chromosomal DNA using PCR. The cloned sequence contains 1795 bp and encodes a protein of 103 amino acids. However, the C-terminal region obtained from the cDNA clone is -Val-Arg-Leu-Asn-Arg-Ser-Leu, whereas the C-terminal region deduced from the genomic DNA appears to contain -Ala-Ser-Ile-Lys-Ala-Asn-Leu. This indicates that S. pombe cells contain two kinds of TRX genes which have dissimilar amino acid sequences only at the C-terminal regions. The heterologous TRX 1C produced from the cDNA clone could be used as a subunit of T7 DNA polymerase, while the TRX 1G from the genomic DNA could not. The upstream sequence and the region encoding the N-terminal 18 amino acids of the genomic DNA were fused into the promoterless beta-galactosidase gene of the shuttle vector YEp357 to generate the fusion plasmid pYKT24. Synthesis of beta-galactosidase from the fusion plasmid was found to be enhanced by hydrogen peroxide, menadione and aluminum chloride. It indicates that the expression of the cloned TRX gene is induced by oxidative stress.  相似文献   

16.
Several complementary procedures were used to identify and characterize DNA sequences which are repeated within a 44 kilobase (kb) segment of rabbit chromosomal DNA containing four different rabbit β-like globin genes (β1–β4). Cross-hybridization between cloned DNAs from different regions of the gene cluster indicates the presence of a complex array of repeat sequences interspersed with the globin genes. We classified 20 different repeat sequences into five families whose members cross-hybridize. Electron microscopy was used to determine the location, size and relative orientations of many of the repeat sequences. Both direct and inverted repeats were identified, with sizes ranging from 140 to 1400 base pairs (bp). Each of the four closely linked globin genes is flanked by at least one pair of inverted repeats of 140–400 bp, and the entire set of four genes is flanked by an inverted repeat of 1400 bp. Two of the five repeat families contain repeat sequences of different sizes. We found that the smaller sequence elements can occur individually or in association with the larger repeat sequences, suggesting that the larger repeats may be composed of more than one smaller repeat sequence. The restriction fragments containing the intracluster repeats also contain sequences which are repeated many times in total rabbit genomic DNA, but it is not known whether the genomic and intracluster repeats are the same sequences. The results provide the first demonstration of the relationship between single-copy and repetitive DNA sequences in a large segment of chromosomal DNA containing a well characterized set of developmentally regulated genes.  相似文献   

17.
Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have been serendipitously observed in early studies of bacterial transformation. Natural bacterial transformation involves internalization of exogenous donor DNA and its subsequent integration into the recipient genome by homology. It contributes to the remarkable plasticity of the human pathogen Streptococcus pneumoniae through intra and interspecies genetic exchange. We report that lethal cassette transformation produced merodiploids possessing both intact and cassette-inactivated copies of the essential target gene, bordered by repeats (R) corresponding to incomplete copies of IS861. We show that merodiploidy is transiently stimulated by transformation, and only requires uptake of a ∼3-kb DNA fragment partly repeated in the chromosome. We propose and validate a model for merodiploid formation, providing evidence that tandem-duplication (TD) formation involves unequal crossing-over resulting from alternative pairing and interchromatid integration of R. This unequal crossing-over produces a chromosome dimer, resolution of which generates a chromosome with the TD and an abortive chromosome lacking the duplicated region. We document occurrence of TDs ranging from ∼100 to ∼900 kb in size at various chromosomal locations, including by self-transformation (transformation with recipient chromosomal DNA). We show that self-transformation produces a population containing many different merodiploid cells. Merodiploidy provides opportunities for evolution of new genetic traits via alteration of duplicated genes, unrestricted by functional selective pressure. Transient stimulation of a varied population of merodiploids by transformation, which can be triggered by stresses such as antibiotic treatment in S. pneumoniae, reinforces the plasticity potential of this bacterium and transformable species generally.  相似文献   

18.
We have isolated recombinant DNA clones which include cDNA and chromosomal DNA sequences of the major heat shock-inducible gene of Drosophila. With the cDNA fragments used as specific hybridization probes, DNA:DNA reassociation and in situ hybridization analysis demonstrated that the DNA sequences are repeated approximately 7 times in the haploid Drosophila genome, and that gene sequences are present at both the 87A and 87C loci on the cytological map. The cloned cDNA and homologous cloned chromosomal DNA hybridized to mRNA which translated in vitro into the major 70K heat shock-specific protein. Here we summarize a study of the organization of genes coding for the 70K heat shock-specific protein contained in the two recombinant chromosomal DNA plasmids pG3 and pG5. On the basis of R loop hybridization experiments and restriction enzyme analysis, we conclude that a 14 kb fragment, G3, contains three copies of the gene coding for the 70K protein. A second 9.2 kb fragment, G5, contains one copy of the gene coding for the 70K protein. Hybridization of labeled poly(A)-containing RNA to restriction endonuclease-cleaved DNA indicates that the mRNA coding regions in G3 and G5 are each approximately 2100 bp long. The three tandemly repeated genes of G3 are separated by approximately 1400 bp of spacer DNA. The two internal spacer regions in G3 appear to be identical, whereas differences in restriction enzyme sites indicate that the sequences adjacent to the cluster differ from the internal spacer and from each other.  相似文献   

19.
20.
The gene encoding the outer membrane phosphate-selective porin protein P from Pseudomonas aeruginosa was cloned into Escherichia coli. The protein product was expressed and transported to the outer membrane of an E. coli phoE mutant and assembled into functional trimers. Expression of a product of the correct molecular weight was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analysis, using polyclonal antibodies to protein P monomer and trimer forms. Protein P trimers were partially purified from the E. coli clone and shown to form channels with the same conductance as those formed by protein P from P. aeruginosa. The location and orientation of the protein P-encoding (oprP) gene on the cloned DNA was identified by three methods: (i) mapping the insertion point of transposon Tn501 in a previously isolated P. aeruginosa protein P-deficient mutant; (ii) hybridization of restriction fragments from the cloned DNA to an oligonucleotide pool synthesized on the basis of the amino-terminal protein sequence of protein P; and (iii) fusion of a PstI fragment of the cloned DNA to the amino terminus of the beta-galactosidase gene of pUC8, producing a fusion protein that contained protein P-antigenic epitopes. Structural analysis of the cloned DNA and P. aeruginosa chromosomal DNA revealed the presence of two adjacent PstI fragments which cross-hybridized, suggesting a possible gene duplication. The P-related (PR) region hybridized to the oligonucleotide pool described above. When the PstI fragment which contained the PR region was fused to the beta-galactosidase gene of pUC8, a fusion protein was produced which reacted with a protein P-specific antiserum. However, the restriction endonuclease patterns of the PR region and the oprP gene differed significantly beyond the amino-terminal one-third of the two genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号