首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The structure of mouse class II alcohol dehydrogenase (ADH2) has been determined in a binary complex with the coenzyme NADH and in a ternary complex with both NADH and the inhibitor N-cyclohexylformamide to 2.2 A and 2.1 A resolution, respectively. The ADH2 dimer is asymmetric in the crystal with different orientations of the catalytic domains relative to the coenzyme-binding domains in the two subunits, resulting in a slightly different closure of the active-site cleft. Both conformations are about half way between the open apo structure and the closed holo structure of horse ADH1, thus resembling that of ADH3. The semi-open conformation and structural differences around the active-site cleft contribute to a substantially different substrate-binding pocket architecture as compared to other classes of alcohol dehydrogenase, and provide the structural basis for recognition and selectivity of alcohols and quinones. The active-site cleft is more voluminous than that of ADH1 but not as open and funnel-shaped as that of ADH3. The loop with residues 296-301 from the coenzyme-binding domain is short, thus opening up the pocket towards the coenzyme. On the opposite side, the loop with residues 114-121 stretches out over the inter-domain cleft. A cavity is formed below this loop and adds an appendix to the substrate-binding pocket. Asp301 is positioned at the entrance of the pocket and may control the binding of omega-hydroxy fatty acids, which act as inhibitors rather than substrates. Mouse ADH2 is known as an inefficient ADH with a slow hydrogen-transfer step. By replacing Pro47 with His, the alcohol dehydrogenase activity is restored. Here, the structure of this P47H mutant was determined in complex with NADH to 2.5 A resolution. His47 is suitably positioned to act as a catalytic base in the deprotonation of the substrate. Moreover, in the more closed subunit, the coenzyme is allowed a position closer to the catalytic zinc. This is consistent with hydrogen transfer from an alcoholate intermediate where the Pro/His replacement focuses on the function of the enzyme.  相似文献   

2.
The gene encoding a novel short-chain alcohol dehydrogenase in the thermophilic bacterium, Carboxydothermus hydrogenoformans, was identified and overexpressed in Escherichia coli. The enzyme was thermally stable and displayed the highest activity at 70 °C and pH 6.0. It preferred NAD(H) over NADP(H) as a cofactor and exhibited broad substrate specificity towards aliphatic ketones, cycloalkanones, aromatic ketones, and ketoesters. Furthermore, ethyl benzoylformate was asymmetrically reduced by the purified enzyme, using an additional coupled NADH regeneration system, with 95 % conversion and in an enantiomeric excess of (99.9 %). The results of this study may lead to the discovery of a novel method for asymmetric reduction of alcohols, which is an important tool in organic synthesis.  相似文献   

3.
Alcohol dehydrogenase of tomato (Lycopersicon esculentum) has been purified to homogeneity, using affinity chromatography on Cibacron F3GA-agarose. The enzyme is a dimer, Mr 90,000–100,000. The coenzyme is NAD+; no NADP+-dependent activity was detected even in crude extracts. Among saturated substrates, ethanol and acetaldehyde show the lowest apparent Km values (2.67 and 0.174 mm, respectively) and highest V values, supporting a primary role in acetaldehyde metabolism, with action also on “flavor aldehydes”; 2-unsaturated alcohols show still lower Km values, probably due to a more favorable Keq. This enzyme and other plant alcohol dehydrogenases form a definite class, intermediate in specificity between liver and yeast alcohol dehydrogenases: they differ from the former in being essentially inactive on secondary and aromatic substrates, from the latter in showing only a mild decrease in V with increasing chain length of alkyl substrates, and from both in showing the lowest Km as well as highest V on ethanol and acetaldehyde. The tomato enzyme differs from other reported plant enzymes in showing substantial activity on geraniol. Kinetic studies are in agreement with an ordered sequential mechanism. The enzyme is inhibited slowly by iodoacetamide, and reversibly by acetamide and zinc-chelating compounds.  相似文献   

4.
The crystal structure of a ternary complex of the alcohol dehydrogenase from the archaeon Sulfolobus solfataricus (SsADH) has been determined at 2.3 A. The asymmetric unit contains a dimer with a NADH and a 2-ethoxyethanol molecule bound to each subunit. The comparison with the apo structure of the enzyme reveals that this medium chain ADH undergoes a substantial conformational change in the apo-holo transition, accompanied by loop movements at the domain interface. The extent of domain closure is similar to that observed for the classical horse liver ADH, although some differences are found which can be related to the different oligomeric states of the enzymes. Compared to its apo form, the SsADH ternary complex shows a change in the ligation state of the active site zinc ion which is no longer bound to Glu69, providing additional evidence of the dynamic role played by the conserved glutamate residue in ADHs. In addition, the structure presented here allows the identification of the substrate site and hence of the residues that are important in the binding of both the substrate and the coenzyme.  相似文献   

5.
Aldehyde dehydrogenases catalyze the oxidation of aldehyde substrates to the corresponding carboxylic acids. Lactaldehyde dehydrogenase from Escherichia coli (aldA gene product, P25553) is an NAD(+)-dependent enzyme implicated in the metabolism of l-fucose and l-rhamnose. During the heterologous expression and purification of taxadiene synthase from the Pacific yew, lactaldehyde dehydrogenase from E. coli was identified as a minor (相似文献   

6.
Glutamate dehydrogenases (EC 1.4.1.2-4) catalyse the oxidative deamination of l-glutamate to α-ketoglutarate using NAD(P) as a cofactor. The bacterial enzymes are hexamers and each polypeptide consists of an N-terminal substrate-binding (Domain I) followed by a C-terminal cofactor-binding segment (Domain II). The reaction takes place at the junction of the two domains, which move as rigid bodies and are presumed to narrow the cleft during catalysis. Distinct signature sequences in the nucleotide-binding domain have been linked to NAD(+) vs. NADP(+) specificity, but they are not unambiguous predictors of cofactor preferences. Here, we have determined the crystal structure of NAD(+)-specific Peptoniphilus asaccharolyticus glutamate dehydrogenase in the apo state. The poor quality of native crystals was resolved by derivatization with selenomethionine, and the structure was solved by single-wavelength anomalous diffraction methods. The structure reveals an open catalytic cleft in the absence of substrate and cofactor. Modeling of NAD(+) in Domain II suggests that a hydrophobic pocket and polar residues contribute to nucleotide specificity. Mutagenesis and isothermal titration calorimetry studies of a critical glutamate at the P7 position of the core fingerprint confirms its role in NAD(+) binding. Finally, the cofactor binding site is compared with bacterial and mammalian enzymes to understand how the amino acid sequences and three-dimensional structures may distinguish between NAD(+) vs. NADP(+) recognition.  相似文献   

7.
8.
The structural framework of cod liver alcohol dehydrogenase is similar to that of horse and human alcohol dehydrogenases. In contrast, the substrate pocket differs significantly, and main differences are located in three loops. Nevertheless, the substrate pocket is hydrophobic like that of the mammalian class I enzymes and has a similar topography in spite of many main-chain and side-chain differences. The structural framework of alcohol dehydrogenase is also present in a number of related enzymes like glucose dehydrogenase and quinone oxidoreductase. These enzymes have completely different substrate specificity, but also for these enzymes, the corresponding loops of the substrate pocket have significantly different structures. The domains of the two subunits in the crystals of the cod enzyme further differ by a rotation of the catalytic domains by about 6 degrees. In one subunit, they close around the coenzyme similarly as in coenzyme complexes of the horse enzyme, but form a more open cleft in the other subunit, similar to the situation in coenzyme-free structures of the horse enzyme. The proton relay system differs from the mammalian class I alcohol dehydrogenases. His 51, which has been implicated in mammalian enzymes to be important for proton transfer from the buried active site to the surface is not present in the cod enzyme. A tyrosine in the corresponding position is turned into the substrate pocket and a water molecule occupies the same position in space as the His side chain, forming a shorter proton relay system.  相似文献   

9.
A structure determination in combination with a kinetic study of the steroid converting isozyme of horse liver alcohol dehydrogenase, SS-ADH, is presented. Kinetic parameters for the substrates, 5beta-androstane-3beta,17beta-ol, 5beta-androstane-17beta-ol-3-one, ethanol, and various secondary alcohols and the corresponding ketones are compared for the SS- and EE-isozymes which differ by nine amino acid substitutions and one deletion. Differences in substrate specificity and stereoselectivity are explained on the basis of individual kinetic rate constants for the underlying ordered bi-bi mechanism. SS-ADH was crystallized in complex with 3alpha,7alpha,12alpha-trihydroxy-5beta-cholan -24-acid (cholic acid) and NAD(+), but microspectrophotometric analysis of single crystals proved it to be a mixed complex containing 60-70% NAD(+) and 30-40% NADH. The crystals belong to the space group P2(1) with cell dimensions a = 55.0 A, b = 73.2 A, c = 92.5 A, and beta = 102.5 degrees. A 98% complete data set to 1.54-A resolution was collected at 100 K using synchrotron radiation. The structure was solved by the molecular replacement method utilizing EE-ADH as the search model. The major structural difference between the isozymes is a widening of the substrate channel. The largest shifts in C(alpha) carbon positions (about 5 A) are observed in the loop region, in which a deletion of Asp115 is found in the SS isozyme. SS-ADH easily accommodates cholic acid, whereas steroid substrates of similar bulkiness would not fit into the EE-ADH substrate site. In the ternary complex with NAD(+)/NADH, we find that the carboxyl group of cholic acid ligates to the active site zinc ion, which probably contributes to the strong binding in the ternary NAD(+) complex.  相似文献   

10.
Alcohol dehydrogenase (E. C. 1.1.1.1) from Thermoanaerobium brockii at 25 degrees C and at 65 degrees C is more active with secondary than primary alcohols. The enzyme utilizes NADP and NADPH as cosubstrates better than NAD and NADH. The maximum velocities (V(m)) for secondary alcohols at 65 degrees C are 10 to 100 times higher than those at 25 degrees C, whereas the K(m) values are more comparable.At both 25 degrees C and 65 degrees C the substrate analogue 1,1,1,3,3,3-hexafluoro-2-propanol inhibited the oxidation of alcohol competitively with respect to cyclopentanol, and uncompetitively with respect to NADP. Dimethylsulfoxide inhibited the reduction of cyclopentanone competitively with respect to cyclopentanone, and uncompetitively with respect to NADPH. As a product inhibitor, NADP was competitive with respect to NADPH. These results demonstrate that the enzyme binds the nucleotide and then the alcohol or ketone to form a ternary complex which is converted to a product ternary complex that releases product and nucleotide in that order.At 25 degrees C, all aldehydes and ketones examined inhibited the enzyme at concentrations above their Michaelis constants. The substrate inhibition by cyclopentanone was incomplete, and it was uncompetitive with respect to NADPH. Furthermore, cyclopentanone as a product inhibitor showed intercept-linear, slope-parabolic inhibition with respect to cyclopentanol. These results indicate that cyclopentanone binds to the enzyme-NADP complex at high concentrations. The resulting ternary complex slowly dissociates NADP and cyclopentanone.At 65 degrees C, all of the secondary alcohols, with the exception of cyclohexanol, show substrate activation at high concentration. Experiments in which NADP was the variable substrate and cyclopentanol as the constant-variable substrate over a wide range of concentrations gave double reciprocal plots in which the intercepts showed substrate activation and the slopes showed substrate inhibition. These results indicate that the secondary alcohols bind to the enzyme-NADPH complex at high concentrations and that the resulting ternary complex dissociates NADPH faster than the enzyme-NADPH complex. (c) 1993 John Wiley & Sons, Inc.  相似文献   

11.
海因酶热稳定性及底物特异性研究进展   总被引:2,自引:0,他引:2  
海因酶是在微生物中广泛分布的能水解5-取代海因衍生物制备光学纯氨基酸的关键生物催化剂,在各种氨基酸的酶法生产中具有良好的应用前景。着重概述了海因酶的热稳定性、底物特异性研究及应用,并讨论了其发展方向。  相似文献   

12.
4-alpha-Glucanotransferase (GTase) is an essential enzyme in alpha-1,4-glucan metabolism in bacteria and plants. It catalyses the transfer of maltooligosaccharides from an 1,4-alpha-D-glucan molecule to the 4-hydroxyl group of an acceptor sugar molecule. The crystal structures of Thermotoga maritima GTase and its complex with the inhibitor acarbose have been determined at 2.6A and 2.5A resolution, respectively. The GTase structure consists of three domains, an N-terminal domain with the (beta/alpha)(8) barrel topology (domain A), a 65 residue domain, domain B, inserted between strand beta3 and helix alpha6 of the barrel, and a C-terminal domain, domain C, which forms an antiparallel beta-structure. Analysis of the complex of GTase with acarbose has revealed the locations of five sugar-binding subsites (-2 to +3) in the active-site cleft lying between domain B and the C-terminal end of the (beta/alpha)(8) barrel. The structure of GTase closely resembles the family 13 glycoside hydrolases and conservation of key catalytic residues previously identified for this family is consistent with a double-displacement catalytic mechanism for this enzyme. A distinguishing feature of GTase is a pair of tryptophan residues, W131 and W218, which, upon the carbohydrate inhibitor binding, form a remarkable aromatic "clamp" that captures the sugar rings at the acceptor-binding sites +1 and +2. Analysis of the structure of the complex shows that sugar residues occupying subsites from -2 to +2 engage in extensive interactions with the protein, whereas the +3 glucosyl residue makes relatively few contacts with the enzyme. Thus, the structure suggests that four subsites, from -2 to +2, play the dominant role in enzyme-substrate recognition, consistent with the observation that the smallest donor for T.maritima GTase is maltotetraose, the smallest chain transferred is a maltosyl unit and that the smallest residual fragment after transfer is maltose. A close similarity between the structures of GTase and oligo-1,6-glucosidase has allowed the structural features that determine differences in substrate specificity of these two enzymes to be analysed.  相似文献   

13.
Carnitine acyltransferases have crucial functions in fatty acid metabolism. Members of this enzyme family show distinctive substrate preferences for short-, medium- or long-chain fatty acids. The molecular mechanism for this substrate selectivity is not clear as so far only the structure of carnitine acetyltransferase has been determined. To further our understanding of these important enzymes, we report here the crystal structures at up to 2.0-A resolution of mouse carnitine octanoyltransferase alone and in complex with the substrate octanoylcarnitine. The structures reveal significant differences in the acyl group binding pocket between carnitine octanoyltransferase and carnitine acetyltransferase. Amino acid substitutions and structural changes produce a larger hydrophobic pocket that binds the octanoyl group in an extended conformation. Mutation of a single residue (Gly-553) in this pocket can change the substrate preference between short- and medium-chain acyl groups. The side chains of Cys-323 and Met-335 at the bottom of this pocket assume dual conformations in the substrate complex, and mutagenesis studies suggest that the Met-335 residue is important for catalysis.  相似文献   

14.
Quinoprotein alcohol dehydrogenases are redox enzymes that participate in distinctive catabolic pathways that enable bacteria to grow on various alcohols as the sole source of carbon and energy. The x-ray structure of the quinohemoprotein alcohol dehydrogenase from Comamonas testosteroni has been determined at 1.44 A resolution. It comprises two domains. The N-terminal domain has a beta-propeller fold and binds one pyrroloquinoline quinone cofactor and one calcium ion in the active site. A tetrahydrofuran-2-carboxylic acid molecule is present in the substrate-binding cleft. The position of this oxidation product provides valuable information on the amino acid residues involved in the reaction mechanism and their function. The C-terminal domain is an alpha-helical type I cytochrome c with His(608) and Met(647) as heme-iron ligands. This is the first reported structure of an electron transfer system between a quinoprotein alcohol dehydrogenase and cytochrome c. The shortest distance between pyrroloquinoline quinone and heme c is 12.9 A, one of the longest physiological edge-to-edge distances yet determined between two redox centers. A highly unusual disulfide bond between two adjacent cysteines bridges the redox centers. It appears essential for electron transfer. A water channel delineates a possible pathway for proton transfer from the active site to the solvent.  相似文献   

15.
Kim SJ  Jeong DG  Yoon TS  Son JH  Cho SK  Ryu SE  Kim JH 《Proteins》2007,66(1):239-245
The testis- and skeletal-muscle-specific dual-specificity phosphatase (TMDP) is a member of the dual-specificity phosphatase (DSP) subgroup of protein tyrosine phosphatases. TMDP has similar activities toward both tyrosine and threonine phosphorylated substrates, and is supposed to be involved in spermatogenesis. Here, we report the crystal structure of human TMDP at a resolution of 2.4 A. In spite of high sequence similarity with other DSPs, the crystal structure of TMDP shows distinct structural motifs and surface properties. In TMDP, the alpha1-beta1 loop, a substrate recognition motif is located further away from the active site loop in comparison to prototype DSP Vaccinia H1 related phophatase (VHR), which preferentially dephosphorylates tyrosine phosphorylated substrates and down-regulates MAP kinase signaling. Residues in the active site residues of TMDP are smaller in size and more hydrophobic than those of VHR. In addition, TMDP cannot be aligned with VHR in loop beta3-alpha4. These differences in the active site of TMDP result in a flat and wide pocket structure, allowing equal binding of phosphotyrosine and phosphothreonine substrates.  相似文献   

16.
Inositol polyphosphates perform essential functions as second messengers in eukaryotic cells, and their cellular levels are regulated by inositol phosphate kinases. Most of these enzymes belong to the inositol phosphate kinase superfamily, which consists of three subgroups, inositol 3-kinases, inositol phosphate multikinases, and inositol hexakisphosphate kinases. Family members share several strictly conserved signature motifs and are expected to have the same backbone fold, despite very limited overall amino acid sequence identity. Sequence differences are expected to play important roles in defining the different substrate selectivity of these enzymes. To investigate the structural basis for substrate specificity, we have determined the crystal structure of the yeast inositol phosphate multikinase Ipk2 in the apoform and in a complex with ADP and Mn(2+) at up to 2.0A resolution. The overall structure of Ipk2 is related to inositol trisphosphate 3-kinase. The ATP binding site is similar in both enzymes; however, the inositol binding domain is significantly smaller in Ipk2. Replacement of critical side chains in the inositolbinding site suggests how modification of substrate recognition motifs determines enzymatic substrate preference and catalysis.  相似文献   

17.
Flap endonuclease 1 (FEN1) is a structure-specific nuclease that cleaves substrates containing unannealed 5'-flaps during Okazaki fragment processing. Cleavage removes the flap at or near the point of annealing. The preferred substrate for archaeal FEN1 or the 5'-nuclease domains of bacterial DNA polymerases is a double-flap structure containing a 3'-tail on the upstream primer adjacent to the 5'-flap. We report that FEN1 in Saccharomyces cerevisiae (Rad27p) exhibits a similar specificity. Cleavage was most efficient when the upstream primer contained a 1-nucleotide 3'-tail as compared with the fully annealed upstream primer traditionally tested. The site of cleavage was exclusively at a position one nucleotide into the annealed region, allowing human DNA ligase I to seal all resulting nicks. In contrast, a portion of the products from traditional flap substrates is not ligated. The 3'-OH of the upstream primer is not critical for double-flap recognition, because Rad27p is tolerant of modifications. However, the positioning of the 3'-nucleotide defines the site of cleavage. We have tested substrates having complementary tails that equilibrate to many structures by branch migration. FEN1 only cleaved those containing a 1-nucleotide 3'-tail. Equilibrating substrates containing 12-ribonucleotides at the end of the 5'-flap simulates the situation in vivo. Rad27p cleaves this substrate in the expected 1-nucleotide 3'-tail configuration. Overall, these results suggest that the double-flap substrate is formed and cleaved during eukaryotic DNA replication in vivo.  相似文献   

18.
A homology-built structural model of 17beta-hydroxysteroid dehydrogenase from the fungus Cochliobolus lunatus, a member of the short-chain dehydrogenase/reductase family, was worked out using the known three-dimensional structure of trihydroxynaphthalene reductase (EC 1.3.1.50) from Magnaporthe grisea as a template. Due to 61% sequence identity, the model also revealed a similar backbone trace. On the basis of qualitative thin-layer chromatography and comparative kinetic tests of the activity toward various potential steroid substrates, we conclude that androgens are more efficiently converted than estrogens. Their specific oxidoreduction predominantly occurs at the C17 position while no significant conversion at C3 and C20 was determined. Additionally, a thousand times effective inhibition by 5-methyl-(1,2,4)-triazolo[3,4-b]benzothiazole and no activity toward 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one indicate distinct specificies of 17beta-hydroxysteroid dehydrogenase from the fungus C. lunatus and trihydroxynaphthalene reductase. The results of the analysis of progress curve measurements for the forward and backward reactions are consistent with the Theorell-Chance reaction mechanism also predicted from the structural model. In accordance with these results, 4-androstene-3,17-dione was docked into the enzyme active site using molecular modeling and dynamics calculations.  相似文献   

19.
Fms1 is a rate-limiting enzyme for the biosynthesis of pantothenic acid in yeast. Fms1 has polyamine oxidase (PAO) activity, which converts spermine into spermidine and 3-aminopropanal. The 3-aminopropanal is further oxidized to produce beta-alanine, which is necessary for the biosynthesis of pantothenic acid. The crystal structures of Fms1 and its complex with the substrate spermine have been determined using the single-wavelength anomalous diffraction (SAD) phasing method. Fms1 consists of an FAD-binding domain, with Rossmann fold topology, and a substrate-binding domain. The active site is a tunnel located at the interface of the two domains. The substrate spermine binds to the active site mainly via hydrogen bonds and hydrophobic interactions. In the complex, C11 but not C9 of spermine is close enough to the catalytic site (N5 of FAD) to be oxidized. Therefore, the products are spermidine and 3-aminopropanal, rather than 3-(aminopropyl) 4-aminobutyraldehyde and 1,3-diaminoprone.  相似文献   

20.
Dipeptidyl peptidase IV (DPPIV) is a member of the prolyl oligopeptidase family of serine proteases. DPPIV removes dipeptides from the N terminus of substrates, including many chemokines, neuropeptides, and peptide hormones. Specific inhibition of DPPIV is being investigated in human trials for the treatment of type II diabetes. To understand better the molecular determinants that underlie enzyme catalysis and substrate specificity, we report the crystal structures of DPPIV in the free form and in complex with the first 10 residues of the physiological substrate, Neuropeptide Y (residues 1-10; tNPY). The crystal structure of the free form of the enzyme reveals two potential channels through which substrates could access the active site-a so-called propeller opening, and side opening. The crystal structure of the DPPIV/tNPY complex suggests that bioactive peptides utilize the side opening unique to DPPIV to access the active site. Other structural features in the active site such as the presence of a Glu motif, a well-defined hydrophobic S1 subsite, and minimal long-range interactions explain the substrate recognition and binding properties of DPPIV. Moreover, in the DPPIV/tNPY complex structure, the peptide is not cleaved but trapped in a tetrahedral intermediate that occurs during catalysis. Conformational changes of S630 and H740 between DPPIV in its free form and in complex with tNPY were observed and contribute to the stabilization of the tetrahedral intermediate. Our results facilitate the design of potent, selective small molecule inhibitors of DPPIV that may yield compounds for the development of novel drugs to treat type II diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号