首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
采用超声波(UAE)辅助提取-离子色谱(IC)法测定了大白口蘑中F?、Cl?、NO2?、NO3?、PO43? 5种阴离子。选用NaOH溶液(3.0mmol/L)超声渗提30min后进样100μL,通过流速为1.2mL/min的淋洗液Na2CO3+NaHCO3(3.5mmol/L+1.0mmol/L)洗脱。F?、Cl?、NO2?、NO3?、PO43? 5种离子线性范围分别为2-25mg/L、2-20mg/L、2-100mg/L、10-55mg/L、10-100mg/L,峰面积RSD分别为0.58%、1.27%、0.73%、0.92%、2.33%,检出限在0.0976-1.0984mg/L之间。大白口蘑样品中未检出NO2?,其余F?、Cl?、NO3?、PO43? 4种离子加标回收率在95%-110%之间。  相似文献   

2.
Harris (Biochemistry 24 (1985) 7412) reports that inorganic anions bind to human apotransferrin in such a way as to perturb the ultraviolet spectrum. The locus of binding is thought to involve the specific metal/anion-binding sites since no perturbation is observed with Fe3+-transferrin-CO3(2-). Paradoxically, we were unable to demonstrate the formation of Fe3+-transferrin-inorganic anion complexes despite the presence of high concentrations of SO4(2-), H2PO4-, Cl-, ClO4- or NO3-. Similar results were found for human lactoferrin. Electron paramagnetic resonance spectroscopy and visible spectrophotometry were used to monitor the results. An attempt to form the H2PO4- complex by displacement of glycine from Fe3+-transferrin-glycine resulted only in the disruption of the ternary complex. A series of inorganic anions varied in their ability to release iron from Fe3+-transferrin-CO3(2-) at pH 5.5, the approximate pH of endosomes where iron release takes place within cells. The order of effectiveness was H2P2O7(2-) much greater than H2PO4- greater than SO4(2-) greater than NO3- greater than Cl- greater than ClO4-. The rate of iron removal from Fe3+-transferrin-CO3(2-) at pH 5.5 by a 4-fold excess of pyrophosphate was greatly enhanced by physiological NaCl concentration. Iron removal was complete within 10 min, the approximate time for iron release from Fe3+-transferrin-CO3(2-) in developing erythroid cells. Thus, inorganic anions may have a significant effect on the release of iron under physiological conditions despite the fact that such inorganic anions cannot act as synergistic anions. The results are discussed in relation to a special role for the carboxylate group in allowing ternary complex formation.  相似文献   

3.
The criteria for elution of proteins from hydroxyapatite columns were examined as a function of (1) protein isoelectric point (22 proteins with isoelectric points between 3.5 and 11.0); (2) ionic nature of eluant (Na salts of PO4, F-, Cl-, SCN-, ClO-4, and CaCl2); and (3) structural differences between related proteins. It was found that proteins can be classified into three groups: (1) basic proteins, which elute at similar, moderate molarities of PO4, F-, Cl-, SCN-, and ClO-4, and low (less than 0.003 M) Ca2+; (2) acidic proteins which elute at about equal moderate molarities of PO4 and F-, but do not elute with Ca2+ and usually not with Cl-; (3) neutral proteins, which elute with PO4, F-, and Cl-, but show a strong anion specificity, and do not elute with Ca2+ or SCN-. Furthermore, individual specific polar groups are not in general crucial to binding or desorption, and variations in structure, other than major loosening, do not influence strongly the pattern of protein-hydroxyapatite interaction.  相似文献   

4.
The dependence of active transport of H+ on the presence of anions in synaptic vesicle membranes from rat brain was studied. The H+ transport was measured by monitoring the acidification of the vesicles with a permeant weak base-acridine orange. The fluorescence changes in the latter were proportional to the magnitude of artificially imposed pH gradients (delta pH). The ATP-dependent generation of delta pH was completely dependent on the presence of a permeant anion, was maximal at 150 mM Cl- and was inhibited, when the medium osmolarity was further increased by sucrose or KCl. At 150 mM only Br-, similar to Cl-, behaved as permeant anions, whereas I- was effective only at low (5-20 mM) concentrations. The anions--SCN-, ClO4-, HSO3- and I-(10-20 mM) as well as 4-acetamido-4'-isothiocyanatostilbene-2.2'-disulfonate (K0.5 = 14 microM) blocked the ATP-dependent generation of delta pH observed in the presence of Cl-, while other anions tested (F-, phosphate, bicarbonate, some organic anions) were virtually without effect and did not support the H+ transport. The dependence of the rate and extent of H+ accumulation on Cl- concentration was sigmoidal with a Hill coefficient of 2.8 and a Km value of 85-90 mM. The effects of anions point to the presence in the membrane of synaptic vesicles of an anion (chloride) channel whose conductance can regulate the H+ transport by switching it from an electrogenic to an electroneutral (coupled entry of H+ and Cl-) mode of operation.  相似文献   

5.
We have utilized a highly sensitive radiationless energy transfer (RET) assay to investigate the effect of anions on the activity of carboxypeptidase A (CPD-A). The RET kinetic method visualizes the ES complex directly and thus enables both the mode of action of anions and the quantitation of their effect to be determined at a single substrate concentration. In marked contrast to the activating effect of anions on the closely related metalloprotease, angiotensin converting enzyme, Cl-, and other anions inhibit CPD-A catalysis. NaCl inhibits the hydrolysis of Dns-Ala-Ala-Phe throughout the pH range 6-10. Other di- and tripeptides are similarly inhibited while their ester analogues are affected only slightly. Changes in the type of cation [e.g., Na+, Li+, K+, Ca2+, and (CH3)4N+] at a constant [Cl-1] of 0.1 M showed no difference in the extent of inhibition, whereas with anion substitution the differences were marked. In all cases, the inhibition was partially competitive. At pH 5.9, the Ki values for the free enzyme are 51 (Cl-), 17 (N3-), 2.1 (SO4(2-)), and 0.21 mM (H2PO4-), and for the ES complex, the KI' values are 1000, 720, 42, and 13 mM, respectively. The other anions were shown to act at the chloride site. The results indicate that investigations of anion inhibition in 1 M NaCl, a typical assay condition, may be greatly hindered by the presence of Cl-. Thus, the competitive binding mode of phenylacetate toward peptide hydrolysis is greatly decreased by the presence of 1 M Cl- ion while its noncompetitive component is unaffected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Ionic regulation of glutamate binding sites   总被引:4,自引:0,他引:4  
Cl- and Ca2+ increase glutamate binding to rat synaptic plasma membranes (SPMs) by revealing a distinct class of L-glutamate (L-Glu) binding sites. The present study was conducted to examine both the anion specificity of this response and the nature of the interaction between Cl- and Ca2+. Of the anions tested, Br- was the most effective in increasing the levels of L-Glu binding. Other effective anions were Cl-, NO3- and formate while F-, HCO3-CIO4-, propionate, SO42- and PO43- were ineffective. The anion specificity was similar to that observed for the Cl- membrane channel, suggesting that this binding site and the ion channel may be related. In the absence of Cl-, Ca2+ has little effect on L-Glu binding. Increasing the Cl- concentration increased the apparent affinity (decreased KCa2+) of the Ca2+-stimulated, L-Glu binding component and also increased the maximal amount of the enhancement. Conversely, increasing Ca2+ levels increased the maximal enhancement of L-Glu binding brought about by Cl- without affecting the KCl- of the effect. Prior incubation of membranes with Ca2+ did not raise the level of L-Glu binding. Furthermore, EGTA was able to reverse the stimulation of L-Glu binding due to Ca2+. The results indicate that Ca2+ acts ionically to enhance L-Glu binding to rat SPMs.  相似文献   

7.
The mechanism for HCO3-(-)independent proton permeability in microvillus membrane vesicles (MVV) isolated from human placenta was examined by using the entrapped pH indicator 6-carboxyfluorescein (6CF). Proton fluxes (JH) across MVV were determined in response to induced pH and anion gradients from the time course of 6CF fluorescence, the MVV buffer capacity, and the 6CF vs. pH calibration. In the absence of anions, JH was 12 +/- 2 nequiv s-1 (mg of protein)-1 (pHin 7.4, pHout 6.0, MVV voltage-clamped with K+/valinomycin, 23 degrees C), corresponding to a proton permeability coefficient of 0.02 cm/s, with an activation energy of 9.1 +/- 0.3 kcal/mol. JH was inhibited 20% by dihydro-4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (H2DIDS) with KI = 8 microM [( Cl-]out = 0 mM). For a 0.5-unit pH gradient JH increased from 1.5 to 4.6 nequiv s-1 (mg of protein)-1 as the internal MVV pH was increased (5.5-7.5). External Cl-, Br-, and I- (but not SO4(2-) and PO4-) increased JH 1.3-2.5-fold for both inwardly and outwardly directed pH gradients with KD = 1.0 +/- 0.4 mM (Br-) and greater than 100 mM (Cl-). This increase was blocked by 100 microM H2DIDS but not by amiloride or furosemide. Internal Cl- did not alter JH induced by pH gradients nor were proton fluxes induced by anion gradients in the absence of a pH gradient. Experiments in which JH was driven by membrane potentials (induced by valinomycin and K+ gradients) indicated that proton transport was voltage-sensitive. These experiments demonstrate a stilbene-sensitive electrogenic proton transport mechanism in MVV that is regulated allosterically by anions at an external binding site.  相似文献   

8.
Isolated human neutrophils possess three distinct pathways by which Cl- crosses the plasma membrane of steady state cells: anion exchange, active transport, and electrodiffusion. The purpose of the present work was to investigate the selectivity of each of these separate processes with respect to other external halide ions. (a) The bulk of total anion movements represents transport through an electrically silent anion-exchange mechanism that is insensitive to disulfonic stilbenes, but which can be competitively inhibited by alpha-cyano-4-hydroxycinnamate (CHC; Ki approximately 0.3 mM). The affinity of the external translocation site of the carrier for each of the different anions was determined (i) from substrate competition between Cl- and either Br-, F-, or I-, (ii) from trans stimulation of 36Cl- efflux as a function of the external concentrations of these anions, (iii) from changes in the apparent Ki for CHC depending on the nature of the replacement anion in the bathing medium, and (iv) from activation of 82Br- and 125I- influxes by their respective ions. Each was bound and transported at roughly similar rates (Vmax values all 1.0-1.4 meq/liter cell water.min); the order of decreasing affinities is Cl- greater than Br- greater than F- greater than I- (true Km values of 5, 9, 23, and 44 mM, respectively). These anions undergo 1:1 countertransport for internal Cl-. (b) There is a minor component of total Cl- influx that constitutes an active inward transport system for the intracellular accumulation of Cl- [( Cl-]i approximately 80 meq/liter cell water), fourfold higher than expected for passive distribution. This uptake is sensitive to intracellular ATP depletion by 2-deoxy-D-glucose and can be inhibited by furosemide, ethacrynic acid, and CHC, which also blocks anion exchange. This active Cl- uptake process binds and transports other members of the halide series in the sequence Cl- greater than Br- greater than I- greater than F- (Km values of 5, 8, 15, and 41 mM, respectively). (c) Electrodiffusive fluxes are small. CHC-resistant 82Br- and 125I- influxes behave as passive leak fluxes through low-conductance ion channels: they are nonsaturable and strongly voltage dependent. These anions permeate the putative Cl- channel in the sequence I- greater than Br- greater than Cl- with relative permeability ratios of 2.2:1.4:1, respectively, where PCl approximately 5 X 10(-9) cm/s.  相似文献   

9.
D McLaggan  M Keyhan    A Matin 《Journal of bacteriology》1990,172(3):1485-1490
The protonophore-mediated collapse of the large delta pH that acidophiles maintain across their cytoplasmic membranes was augmented by the presence of Cl-, and Cl- influx into the cells occurred evidently in response to the protonophore-induced increase in the inside-positive membrane potential (+ delta psi). In respiring cells, the addition of Cl- but not SO4(2-) salts caused a rapid and precipitous decrease in the + delta psi. A Nernstian relationship between the imposed transmembrane K+ gradient and the valinomycin-induced K+ diffusion potentials was observed when everted membrane vesicles were loaded with K2SO4 or KH2PO4 but not when loaded with KCl or KNO3. Thus, electrogenic Cl- transport occurred in Bacillus coagulans. In addition, a nonelectrogenic temperature-sensitive Cl- transport mechanism, with the net Cl- efflux coefficient (PCl-) ranging from 1.5 x 10(-4) to 6.1 x 10(-6) cm/s, accounted for the massive Cl- efflux from Cl(-)-loaded cells. Thus, B. coagulans, despite its dependence on the + delta psi and therefore the need to exclude anions, apparently possesses specific mechanisms for Cl- permeation. Active cells of B. coagulans prevented Cl- accumulation from attaining an electrochemical equilibrium, maintaining a delta micro Cl- of ca. -63 mV. B. coagulans therefore also possesses an energy-dependent mechanism for Cl- exclusion from the cells.  相似文献   

10.
The effects of various anions on decreasing the solubility of acidic Hypoderma lineatum collagenase at pH 7.2 and 18 degrees C were qualitatively defined by replacing the crystallizing agent of known crystallization conditions by various ammonium salts. The solubility curves measured in the presence of the sulfate, phosphate, citrate, and chloride ammonium salts gave the following ranking of anions: HPO4(2-)/H2PO4- > SO4(2-) > citrate 3-/citrate2- >> Cl-. This order is in agreement with the Hofmeister series. In a previous study on the solubility at pH 4.5 of lysozyme, a basic protein, the effectiveness of anions in decreasing the solubility was found to be in the reverse order. This suggests that the effectiveness of anions in the crystallization of proteins is dependent on the net charge of the protein, i.e., depending on whether a basic protein is crystallized at acidic pH or an acidic protein at basic pH.  相似文献   

11.
The microelectrophoresis technique was used to determine the dependence of human erythrocyte surface potential on the concentration of various cations and anions. The interpretation of the results is based on the Gouy--Chapman--Stern theory. Values of pK, characterizing the binding of ions to the external surface of erythrocytes, as well as numbers of binding sites per unit area were determined. The affinities of ions for the red cell membrane were shown to decrease in the sequence: H+ greater than Ca2+ greater than Sr2+ greater than Mg2+ greater than Ba2+ greater than Li+ greater than Na+ congruent to congruent to K+ congruent to NH4+ and trinitrophenol greater than IO4- greater than CIO4- greater than salicylate congruent to I- greater than greater than SCN- greater than H2PO4- greater than Br- greater than Cl- greater than HPO4(2-). Changes in the ionic strength of the medium resulted in changes in numbers of exposed ion-binding sites. This phenomenon is interpreted in terms of ionic strength-dependent structural transformations of the cell surface coat.  相似文献   

12.
'Ghosts' of bovine chromaffin granules, in which the complex mixture of proteins and solutes normally found in the granule matrix is replaced by buffered sucrose are osmotically sensitive. They shrink when the osmotic pressure of the suspension medium is increased, and swell if solute entry is facilitated by the addition of ionophores. Swelling in the presence of ionophores has been used to investigate the passive ion permeability of these membranes. They have a very low permeability to K+ ions (of the order of 10(-10) cm/s); their permeability to protons, Na+ and choline ions is too low to be detected by these methods. Their passive permeability to anions decreases in the order: CNS- greater than I- greater than CCl3CO2- greater than Br- greater than Cl- greater than SO4(2)- greater than CH3CO2-, HCO3-, F-, PO4(3)- the permeability to hiocyanate being of the order of 10(-7) cm/s. Coupled proton and anion entry is extremely slow, except for weak acids. Fluoride, unexpectedly, also appears to enter rapidly when proton/K+ exchange is facilitated by nigericin. In the presence of K+ salts, nigericin, like valinomycin, induces lysis of intact granules, an effect that is not dependent on the presence of a permeant anion, but is dependent on the pH gradient across the membrane.  相似文献   

13.
Recently, we showed that at constant extracellular osmolarity, the volume of NG108-15 cells was dependent on the external NaCl concentration and we assumed that the responsible mechanism was mediated by background channels (Rouzaire-Dubois et al. 1999). In order to confirm this view, the mean cell volume and the background current of NG108-15 cells were measured under different experimental conditions, after blockade of specific volume regulating mechanisms and ion channels. When the external NaCl concentration was decreased, the reversal potential of the background current was shifted toward negative values and the membrane conductance decreased. Opposite effects were observed when the NaCl concentration was increased. Substitution of external Na+ with various monovalent cations altered the mean cell volume by: Rb+, +17%; Cs+, +15%; K+, +10%; Li+, -6%; choline, -9%; N-methylglucamine, -25% . The reversal potential of the background current and the membrane conductance were altered by these Na+ substitutes in such a way that the cell volume increased linearly with the background current at -60 mV. Substitution of external Cl- with various monovalent anions altered the mean cell volume by: I-, +4%; Br-, 0%; NO-, -3%; F-, -5%; isethionate, -30%; gluconate, -50%. Cl- substitutes did not significantly alter the background current at -60 mV, except F- which increased it by 39%. These results suggest that 1. the cell volume is dependent on ion fluxes through background channels; 2. electrogenic cation fluxes are larger than anionic ones and the background current is proportional to the difference between these fluxes; 3. whereas external cations do not interfere with anion fluxes, external anions alter cation fluxes.  相似文献   

14.
A rapid simple technique for the measurement of Na+, K+, Mg2+, Ca2+, PO4(3-), and Cl- was developed to analyze ion contents in the choroid plexus of the rat. The technique involves digestion in piperidine, precipitation of proteins with HClO4, and analysis of Na+, K+, Ca2+, and Mg2+ by atomic absorption spectroscopy and Cl- and PO4(3-) by visible spectroscopy. The coefficient of variation for the measurement of eight replicates was 1-3% for all ions. Analysis of choroid plexuses from eight rats yielded coefficients of variation of about 6% and the values for Na+, K+, and Cl- compared favorably to previous works. The analytical procedure described in this paper allows the determination of six major physiologic ions in rat choroid plexus (4 mg wet wt).  相似文献   

15.
The effect of Cl- and other anions on the tonoplast H+-translocating ATPase (H+-ATPase) from Hevea brasiliensis (rubber tree) latex was investigated. Cl- and other anions stimulated the ATPase activity of tightly sealed vesicles prepared from Hevea tonoplast, with the following decreasing order of effectiveness: Cl- greater than Br- greater than SO4(2-) greater than NO3-. As indicated by the changes of the protonmotive potential difference, anion stimulation of tonoplast H+-ATPase was caused in part by the ability of these anions to dissipate the electrical potential. This interpretation assumes not a channelling of these anions against a membrane potential, negative-inside, but a modification of the permeability of these ions through the tonoplast membrane. In addition, Cl- and the other anions stimulated the ATPase activity solubilized from the tonoplast membrane. Consequently, the tonoplast H+-pumping ATPase can be considered as an anion-stimulated enzyme. These results are discussed in relation to various models described in the literature for the microsomal H+-ATPase systems claimed as tonoplast entities.  相似文献   

16.
Discoidal complexes of phosphatidylcholine (PC) . apolipoprotein A-I . cholesterol were prepared with egg PC, palmitoyloleoylPC, dipalmitoylPC, or dimyristoylPC, and were used as substrates of purified lecithin-cholesterol acyltransferase to investigate the effects of neutral salts on the enzymatic reaction. Sodium fluoride, chloride and bromide concentrations up to 1 M, did not affect the properties of the substrate particles, but caused marked and distinct changes in the activity of the enzyme with the various PC particles. The effects of salts were largely due to the anions, which followed the order of the lyotropic series in their inactivating capacity: F- less than Cl- less than Br- less than NO3- less than I- less than SCN-. Sodium salts (F-, Cl-, and Br-) produced a very large increase in the pH optimum of the enzymatic reaction (7.4 to at least 8.5) essentially obliterating the ionization of a functional group with pK of 8.1. The kinetics of the enzymatic reaction revealed major differences among the PC particles, and different responses of their kinetic parameters with increasing salt concentrations. The conclusions reached in this work are the following: (1) The relative reactivity of PC substrates, in discoidal particles, with lecithin-cholesterol acyltransferase depends strongly on the concentration and type of salts in the medium. (2) Anions (in lyotropic series) rather than cations affect the enzymatic reaction. (3) There are functional groups with pK of 8.1 which are affected markedly in their ionization behavior by anion binding. (4) The active site of lecithin-cholesterol acyltransferase and its interaction with anions are affected by the exact nature of the PC-apolipoprotein interface.  相似文献   

17.
Lysosomal H+-translocating ATPase (H+-ATPase) was solubilized with lysophosphatidylcholine and reconstituted into liposomes (Moriyama, Y., Takano, T. and Ohkuma, S. (1984) J. Biochem. (Tokyo) 96, 927-930). In this study, the sensitivities of membrane-bound, solubilized and liposome-incorporated ATPase to various anions and drugs were measured in comparison with those of similar forms of mitochondrial H+-ATPase (mitochondrial F0F1-ATPase) with the following results. (1) Bicarbonate and sulfite activated solubilized lysosomal H+-ATPase, but not the membrane-bound ATPase or ATPase incorporated into liposomes. All three forms of mitochondrial F0F1-ATPase were activated by these anions. (2) All three forms of both lysosomal H+-ATPase and mitochondrial F0F1-ATPase were strongly inhibited by SCN-, NO3- and F-, but scarcely affected by Cl-, Br- and SO2-4. (3) The solubilized lysosomal H+-ATPase was strongly inhibited by azide, quercetin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and oligomycin. Its sensitivity was almost the same as that of mitochondrial F0F1-ATPase. Neither membrane-bound ATPase nor ATPase incorporated into liposomes was affected appreciably by these drugs. These results indicate that the sensitivity to anions and drugs of lysosomal H+-ATPase depends on the form of the enzyme and that the sensitivity of the solubilized lysosomal H+-ATPase is very similar to that of mitochondrial F0F1-ATPase. On the other hand, the two ATPases differ in their sensitivity to N-ethylmaleimide and pyridoxal phosphate: only the mitochondrial ATPase is inhibited by pyridoxal phosphate whereas only the lysosomal ATPase is inhibited by N-ethylmaleimide.  相似文献   

18.
Anion inhibition of the proton pump in rat liver multivesicular bodies   总被引:3,自引:0,他引:3  
Rat liver multivesicular bodies (MVB), as well as other hepatic subcellular organelles, are acidified by an electrogenic ATP-dependent proton pump that requires Cl- for maximal acidification (Van Dyke, R. W., Hornick, C. A., Belcher, J., Scharschmidt, B. F., and Havel, R.J. (1985) J. Biol. Chem. 260, 11021-11026), suggesting that Cl- serves as a permeable charge-compensating anion. However, we have observed that NO3- is unable to substitute for Cl-. This study was undertaken therefore to examine more closely the effects of Cl- on MVB acidification and to determine whether NO3- and other anions interact with the proton pump. ATP-dependent vesicle acidification and membrane potential (psi) were measured using the fluorescent dyes acridine orange and Oxonol V (bis(3-phenyl-5-oxoisoxasol-4-yl)pentamethine oxonol), respectively. Cl- both stimulated acidification (Km = 23.2 +/- 4.2 mM) and decreased psi (IC50 = 3.4 +/- 0.6 mM) in a concentration-dependent, nonlinear fashion. In the presence of saturating Cl- (100 mM), however, NO3- (shown to be more permeable than Cl-) and the impermeant anions SO4(2-) and PO4(2-), inhibited both ATP-dependent acidification and psi in a concentration-dependent manner. Other anions, including gluconate and HCO3-, had no effect. The inhibitory effect of NO3- was reversible. Neither SO4(2-) nor PO4(2-) appeared to block Cl- movement across the vesicle membrane as assessed by the ability of Cl- to decrease an established psi. In additional experiments, the effects of anions on relaxation of a previously established pH gradient were measured. Compared to Cl- or gluconate, NO3- had no significant effect on pH gradient relaxation, even when MVB were preloaded with NO3-, indicating that rapid cycling of NO3-/HNO3 across the MVB membrane does not occur. The organic nitrate, isosorbide dinitrate, also inhibited both acidification and psi and, similar to NO3-, had no effect on pH gradient relaxation. By contrast, NO2- potently inhibited both MVB acidification and psi but also rapidly relaxed a pre-established pH gradient, suggesting that NO2- increases MVB membrane proton permeability. Finally, MVB exhibited N-ethylmaleimide-sensitive ATPase activity that was inhibited 23.9% by NO3- (100 mM). In conclusion, although MVB are permeable to a variety of anions (Cl-, Br-, NO3-, NO2-), only Cl- and Br- support maximal rates of acidification by the proton pump.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Synaptic vesicles contain a H+-ATPase that generates a proton electrochemical gradient (delta mu H+) required for the uptake of neurotransmitters into the organelles. In this study, the synaptic vesicle H+-ATPase was examined for structural and functional similarities with other identified ATPases that generate a delta mu H+ across membranes. The synaptic vesicle H+-ATPase displayed immunological similarity with the 115-, 72-, and 39-kDa subunits of a vacuolar-type H+-ATPase purified from chromaffin granules. Functionally, the ATP-dependent H+ pumping across synaptic vesicles and ATP hydrolysis were sensitive to the sulfhydryl-modifying reagents, N-ethylmaleimide and 4-chloro-7-nitrobenz-2-oxa-1,3-diazole, at concentrations known to affect vacuolar-type H+-ATPases. In addition, as with vacuolar-type H+-ATPases, the presence of NO3-, SO4(2-), or F- inhibited the generation of a delta mu H+, but addition of vanadate or oligomycin had no effect. The delta mu H+ is a function of the pH gradient (delta pH) and membrane potential (delta psi sv) across the synaptic vesicle. Acidification (delta pH) of the synaptic vesicle interior was enhanced in the presence of permeant anions, such as Cl-, or the K+ ionophore, valinomycin. In the absence of permeant anions, the H+-ATPase generated a delta psi sv that effected the transport of L-glutamate into the synaptic vesicles. Dissipation of delta psi sv by incubation with increased external Cl- or nigericin resulted in the abolition of glutamate uptake, despite the continued maintenance of a delta mu H+ across the synaptic vesicle as a substantial delta pH. The results suggest that the synaptic vesicle H+-ATPase is of a vacuolar type and energizes the uptake of anionic glutamate by virtue of the delta psi sv component of the delta mu H+ it generates.  相似文献   

20.
Two hypotheses have recently been proposed for the thiocyanate inhibition of gastric acid secretion--a protonophore mechanism and an uncoupling model. The mechanistic aspects for the latter scheme have been examined on the following basis: capability of generating verifiable predictions, supporting evidence that is unambiguous, and compatibility with experimental realities. Gastric microsomes bind 5 nmol of SCN-/mg, and a "pure" and highly active fraction of H+,K+-ATPase prepared from gastric microsomes binds about 15 nmol of SCN-/mg. The affinity of SCN- binding to gastric microsomes changes from 10 to 25 mM in the presence of 20 mM K+ suggesting competition between K+ and SCN-. Potassium also displaces the bound SCN- from "pure" H+,K+-ATPase with a Ki of about 25 mM. Of the cations tested--Tl+, K+, Rb+, Cs+, NH4+, Na+, and Li+--Tl+ was the most effective in displacing bound SCN- while Na+ and Li+ were without effect. The effects of anions such as Cl-, NO3-, and gluconate were found to be nonspecific and absolutely dependent on K+ as cocation. Sulfate and OCN-, on the other hand, showed an ability to displace SCN- as both K+ and Na+ salts. For SO4(-2) the K+ form was much more effective than the Na+ salt. Besides these antagonistic effects of K+ and congeners with the H+,K+-ATPase-bound SCN-, a competition between K+ and SCN- was also observed at the level of gastric K+-stimulated pNPPase reaction. The effects of SCN- and two other unrelated anions, F- and NO2-, on artificial delta pH across the microsomal vesicles exhibited a lack of appreciable change up to 5 mM and a small (about 13%) reduction between 10 and 20 mM. However, a combination of CCCP and nigericin or valinomycin completely abolished the delta pH under identical conditions. The present data in conjunction with other reports suggest that the proton impediment model best explains the gastric antisecretory effects of SCN-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号