首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We studied the transport of the fluorescent cholesterol analog dehydroergosterol (DHE) in polarized HepG2 human hepatoma cells. DHE delivered via methyl-beta-cyclodextrin was delivered to both the apical and basolateral membranes and became concentrated in the apical membrane within 1 min. Intracellular DHE was targeted mainly to vesicles of the subapical compartment or apical recycling compartment (SAC/ARC), where it colocalized with fluorescent transferrin and fluorescent analogs of phosphatidylcholine and sphingomyelin. In contrast, transport of DHE from the plasma membrane to the trans-Golgi network was found to be very low. Vesicles containing DHE traversed the cells in both directions, but vesicular export of DHE from the SAC/ARC to the plasma membrane domains was low. Disruption of the microtubule cytoskeleton disturbed vesicular transport of DHE but not its enrichment in the apical (canalicular) membrane. Transport of DHE to the canalicular membrane after photobleaching was very rapid (t(12) = 1.6 min) and was largely ATP-independent in contrast to enrichment of DHE in the SAC/ARC. Release of DHE from the canalicular membrane was also ATP-independent but slower than the enrichment of sterol in the biliary canaliculus (t(12) = 5.4 min). Canalicular DHE could completely redistribute to the basolateral plasma membrane but could not transfer from one cell to the other cell of an HepG2 couplet. We conclude that sterol shuttles rapidly among the plasma membrane domains and other membrane organelles and that this nonvesicular pathway includes fast transbilayer migration.  相似文献   

2.
Transport of the fluorescent cholesterol analog dehydroergosterol (DHE) from the plasma membrane was studied in J774 macrophages (Mphis) with normal and elevated cholesterol content. Cells were labeled with DHE bound to methyl-beta-cyclodextrin. In J774, Mphis with normal cholesterol, intracellular DHE became enriched in recycling endosomes, but was not highly concentrated in the trans-Golgi network or late endosomes and lysosomes. After raising cellular cholesterol by incubation with acetylated low-density lipoprotein (AcLDL), DHE was transported to lipid droplets, and less sterol was found in recycling endosomes. Transport of DHE to droplets was very rapid (t1/2 = 1.5 min after photobleaching) and did not require metabolic energy. In cholesterol-loaded J774 Mphis, the initial fraction of DHE in the plasma membrane was reduced, and rapid DHE efflux from the plasma membrane to intracellular organelles was observed. This rapid sterol transport was not related to plasma membrane vesiculation, as DHE did not become enriched in endocytic vesicles formed after sphingomyelinase C treatment of cells. When cells were incubated with DHE ester incorporated into AcLDL, fluorescence of the sterol was first found in punctate endosomes. After a chase, this DHE colocalized with transferrin in a distribution similar to cells labeled with DHE delivered by methyl-beta-cyclodextrin. Our results indicate that elevation of sterol levels in Mphis enhances transport of sterol from the plasma membrane by a non-vesicular pathway.  相似文献   

3.
Olsher M  Yoon SI  Chong PL 《Biochemistry》2005,44(6):2080-2087
We developed a new fluorescence assay for sterol oxidation and used it to study the relationship between free radical-induced sterol oxidation and membrane sterol lateral organization. This assay used dehydroergosterol (DHE) as both a membrane probe and a membrane component. Sterol oxidation was induced by a free radical generator, AAPH (2,2'-azobis(2-amidinopropane)dihydrochloride). Using this new assay, we found that, in unilamellar vesicles composed of DHE and 1-palmitoyl-2-oleoyl-l-alpha-phosphatidylcholine (POPC), the initial rate of DHE oxidation induced by AAPH changed with membrane sterol content in an alternating manner, exhibiting a local maximum at 20.3, 22.2, 25.0, 32.3, and 40.0 mol % DHE. These mole fractions correspond to the critical sterol mole fractions C(r) predicted for maximal sterol superlattice formation. In three-component bilayers composed of POPC, cholesterol, and DHE (fixed at 1 and 5 mol %), the initial rate of AAPH-induced DHE oxidation exhibited a biphasic change whenever the total sterol mole fraction, irrespective of the DHE content, was near C(r), indicating that the correlation between sterol oxidation and sterol superlattice formation revealed in this study is not an artifact due to the use of the fluorescent cholesterol analogue DHE. The alternating variation of AAPH-induced sterol oxidation with sterol content also appeared in multicomponent unilamellar vesicles containing bovine brain sphingomyelins (bbSPM), POPC, and DHE. The present work and our previous study on cholesterol oxidase-induced sterol oxidation [Wang et al. (2004) Biochemistry 43, 2159-2166] suggest that sterol oxidation in general, either by reactive oxygen species or by enzymes, may be regulated by the extent of sterol superlattice in the membrane and thus regulated by the membrane sterol content in a fine-tuning manner.  相似文献   

4.
Distribution and dynamics of cholesterol in the plasma membrane as well as internalization pathways for sterol from the cell surface are of great cell biological interest. Here, UV-sensitive wide field microscopy of the intrinsically fluorescent sterols, dehydroergosterol (DHE) and cholestatrienol (CTL) combined with advanced image analysis were used to study spatiotemporal sterol distribution in living macrophages, adipocytes and fibroblasts. Sterol endocytosis was directly visualized by time-lapse imaging and noise-robust tracking revealing confined motion of DHE containing vesicles in close proximity to the cell membrane. Spatial surface intensity patterns of DHE as well as that of the lipid marker DiIC12 being assessed by statistical image analysis persisted over several minutes in cells having a constant overall curvature. Sites of sterol endocytosis appeared indistinguishable from other regions of the cell surface, and endocytosis contributed by 62% to total sterol uptake in J774 cells. DHE co-localized with fluorescent transferrin (Tf) in vesicles right after onset of endocytosis and in deepened surface patches of energy depleted cells. Surface caveolae labeled with GFP-tagged caveolin were not particularly enriched in DHE or CTL. Some sterol co-localized with internalized caveolin suggesting that caveolar endocytosis contributes to vesicular sterol uptake. These findings demonstrate that plasma membrane sterol is internalized by several endocytic pathways. Sterol endocytosis does not require formation of microscopically resolvable sterol clusters or enrichment of sterol in surface caveolae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Cholesterol with BODIPY at carbon-24 of the side chain (BCh2) has recently been introduced as new cholesterol probe with superior fluorescence properties. We compare BCh2 with the intrinsically fluorescent dehydroergosterol (DHE), a well-established marker for cholesterol, by introducing simultaneous imaging of both sterols in model membranes and living cells. BCh2 had a lower affinity than DHE for the biologically relevant liquid-ordered phase in model membranes. Still, DHE and BCh2 trafficked from the plasma membrane to the endocytic recycling compartment (ERC) of BHK cells with identical kinetics. This transport pathway was strongly reduced after energy depletion of cells or expression of the dominant-negative clathrin heavy chain. The partitioning into lipid droplets of BHK and HeLa cells was higher for BCh2 than for DHE. Within droplets, the photodegradation of BCh2 was enhanced and followed a stretched exponential decay, while the fluorescence lifetime of BCh2 was comparable in various cellular regions. Our results indicate that BCh2 is suitable for analyzing sterol uptake pathways and inter-organelle sterol flux in living cells. The BODIPY-moiety affects lipid phase preference of the sterol probe and causes some differential targeting of BCh2 and DHE in cells with high fat content.  相似文献   

6.
F Liu  I P Sugar    P L Chong 《Biophysical journal》1997,72(5):2243-2254
We have examined the fractional sterol concentration dependence of dehydroergosterol (DHE) fluorescence in DHE/cholesterol/dimyristoyl-L-alpha-phosphatidylcholine (DMPC), DHE/ergosterol/DMPC and DHE/cholesterol/dipalmitoyl-L-alpha-phosphatidylcholine (DPPC) liquid-crystalline bilayers. Fluorescence intensity and lifetime exhibit local minima (dips) whenever the total sterol mole fraction, irrespective of the DHE content, is near the critical mole fractions predicted for sterols being regularly distributed in hexagonal superlattices. This result provides evidence that all three of these naturally occurring sterols (e.g., cholesterol, ergosterol, and DHE) can be regularly distributed in the membrane and that the bulky tetracyclic ring of the sterols is the cause of regular distribution. Moreover, at the critical sterol mole fractions, the steady-state anisotropy of DHE fluorescence and the calculated rotational relaxation times exhibit distinct peaks, suggesting that membrane free volume reaches a local minimum at critical sterol mole fractions. This, combined with the well-known sterol condensing effect on lipid acyl chains, provides a new understanding of how variations in membrane sterol content change membrane free volume. In addition to the fluorescence dips/peaks corresponding to hexagonal superlattices, we have observed intermediate fluorescence dips/peaks at concentrations predicted by the centered rectangular superlattice model. However, the 22.2 mol% dip for centered rectangular superlattices in DHE/ergosterol/DMPC mixtures becomes diminished after long incubation (4 weeks), whereas on the same time frame the 22.2 mol% dip in DHE/cholesterol/DMPC mixtures remains discernible, suggesting that although all three of these sterols can be regularly distributed, subtle differences in sterol structure cause changes in lateral sterol organization in the membrane.  相似文献   

7.
We examined the intracellular transport of sterol in living cells using a naturally fluorescent cholesterol analog, dehydroergosterol (DHE), which has been shown to mimic many of the properties of cholesterol. By using DHE loaded on methyl-beta-cyclodextrin, we followed this cholesterol analog in pulse-chase studies. At steady state, DHE co-localizes extensively with transferrin (Tf), a marker for the endocytic recycling compartment (ERC), and redistributes with Tf in cells with altered ERC morphology. Expression of a dominant-negative mutation of an ERC-associated protein, mRme-1 (G429R), results in the slowing of both DHE and Tf receptor return to the cell surface. [3H]Cholesterol is found in the same fraction as 125I-Tf on sucrose density gradients, and this fraction can be specifically shifted to a higher density based on the presence of horseradish peroxidase-conjugated Tf in the same organelle. Whereas vesicular transport of Tf and efflux of DHE from the ERC are entirely blocked in energy-depleted cells, delivery of DHE to the ERC from the plasma membrane is only slightly affected. Biochemical studies performed using [3H]cholesterol show that the energy dependence of cholesterol transport to and from the ERC is similar to DHE transport. We propose that a large portion of intracellular cholesterol is localized in the ERC, and this pool might be important in maintaining cellular cholesterol homeostasis.  相似文献   

8.
Uptake of external sterols in the yeast Saccharomyces cerevisiae is a multistep process limited to anaerobiosis or heme deficiency. It includes crossing the cell wall, insertion of sterol molecules into plasma membrane and their internalization and integration into intracellular membranes. We applied the fluorescent ergosterol analog dehydroergosterol (DHE) to monitor the initial steps of sterol uptake by three independent approaches: fluorescence spectroscopy, fluorescence microscopy and sterol quantification by HPLC. Using specific fluorescence characteristics of DHE we showed that the entry of sterol molecules into plasma membrane is not spontaneous but requires assistance of two ABC (ATP-binding cassette) pumps – Aus1p or Pdr11p. DHE taken up by uptake-competent hem1ΔAUS1PDR11 cells could be directly visualized by UV-sensitive wide field fluorescence microscopy. HPLC analysis of sterols revealed significant amounts of exogenous ergosterol and DHE (but not cholesterol) associated with uptake-deficient hem1Δaus1Δpdr11Δ cells. Fluorescent sterol associated with these cells did not show the characteristic emission spectrum of membrane-integrated DHE. The amount of cell-associated DHE was significantly reduced after enzymatic removal of the cell wall. Our results demonstrate that the yeast cell wall is actively involved in binding and uptake of ergosterol-like sterols.  相似文献   

9.
Cholesterol is an important constituent of cellular membranes. It has been suggested that cholesterol segregates into sterol-rich and -poor domains in the plasma membrane, although clear evidence for this is lacking. By fluorescence imaging of the natural sterol dehydroergosterol (DHE), the lateral sterol distribution has been visualized in living cells. The spatial labeling pattern of DHE coincided with surface structures such as ruffles, microvilli, and filopodia with correlation lengths in the range of 0.8-2.5 microm. DHE staining of branched tubules and of nanotubes connecting two cells was detected. Dynamics of DHE in folded and plane membrane regions was comparable as determined by fluorescence recovery after photobleaching. DHE colocalized with fluid membrane-preferring phospholipids in surface structures and at sites of cell attachment as well as in the cleavage furrow of dividing cells, but it was not particularly enriched in those regions. Fluorescent sterol showed homogeneous staining in membrane blebs induced by F-actin disruption. Cross-linking the ganglioside GM1--a putative raft marker--did not affect the cell surface distribution of DHE. The results suggest that spatial heterogeneities of plasma membrane staining of DHE resolvable by light microscopy reflect the cell surface topography but not phase-separated sterol domains in the bilayer plane.  相似文献   

10.
Although plasma membrane (PM) cholesterol-rich and -poor domains have been isolated by subcellular fractionation, the real-time arrangement of cholesterol in such domains in living cells is still unclear. Therefore, dehydroergosterol (DHE), a naturally occurring fluorescent sterol, was incorporated into cultured L-cell fibroblasts. Two PM markers, the enhanced cyan fluorescent protein (ECFP-Mem) and 3'-dioctadecyloxacarbocyanine perchlorate [DiOC(18)(3)], were used to distinguish DHE localized at the PM of living cells. Spatial enrichment of DHE in the PM of living cells was visualized in real time by multiphoton laser scanning microscopy (MPLSM). Quantitative models and image-processing techniques were developed for statistical analysis of the distribution of DHE within the PM. The PM was resolved from the cytoplasm in a two-step process, and a smooth trajectory reference of the PM was refined by statistical regression and moments-based techniques. Thus, DHE intensities over the PM were measured following the major DHE intensity distributions. Spatial distributions of DHE within the PM were examined by a statistical inference technique, complete spatial randomness (CSR). For PM regions densely populated with DHE, the distributions of DHE exhibited statistical arrangements that were not spatial random (i.e., homogeneous Poisson process) or regular but, instead, exhibited strong cluster patterns. In effect, real-time MPLSM imaging data for the first time demonstrated that sterol enrichment occurred in clustered regions in the PM, consistent with the existence of cholesterol-rich domains in the plasma membrane of living cells.  相似文献   

11.
The fluorescent sterol dehydroergosterol (DHE) is often used as a marker for cholesterol in cellular studies. We show by vesicle fluctuation analysis that DHE has a lower ability than cholesterol to stiffen lipid bilayers suggesting less efficient packing with phospholipid acyl chains. Despite this difference, we found by fluorescence and atomic force microscopy, that DHE induces liquid-ordered/-disordered coexistent domains in giant unilamellar vesicles (GUVs) and supported bilayers made of dipalmitoylphosphatidylcholine (DPPC), dioleylphosphatidylcholine (DOPC) and DHE or cholesterol. DHE-induced phases have a height difference of 0.9-1 nm similar as known for cholesterol-containing domains. DHE not only promotes formation of liquid-liquid immiscibility but also shows strong partition preference for the liquid-ordered phase further supporting its suitability as cholesterol probe.  相似文献   

12.
We describe a simple but sensitive fluorescence method to accurately detect the esterification activity of lecithin:cholesterol acyltransferase (LCAT). The new assay protocol employs a convenient mix, incubate, and measure scheme. This is possible by using the fluorescent sterol dehydroergosterol (DHE) in place of cholesterol as the LCAT substrate. The assay method is further enhanced by incorporation of an amphiphilic peptide in place of apolipoprotein A-I as the lipid emulsifier and LCAT activator. Specific fluorescence detection of DHE ester synthesis is achieved by employing cholesterol oxidase to selectively render unesterified DHE nonfluorescent. The assay accurately detects LCAT activity in buffer and in plasma that is depleted of apolipoprotein B lipoproteins by selective precipitation. Analysis of LCAT activity in plasmas from control subjects and sickle cell disease (SCD) patients confirms previous reports of reduced LCAT activity in SCD and demonstrates a strong correlation between plasma LCAT activity and LCAT content. The fluorescent assay combines the sensitivity of radiochemical assays with the simplicity of nonradiochemical assays to obtain accurate and robust measurement of LCAT esterification activity.  相似文献   

13.
Sterols play a significant role in many physiological processes affecting membrane organization, transport, permeability, and signal transduction. The development of fluorescent sterol analogs that have immediate functional relevance to the natural biomolecules is one approach to understanding the sterol-driven physiological processes. Visualizing cellular compartments with tailor-made fluorescent molecules through specific labeling methods enables organelle targeting and reveals dynamic information. In this review, we focus on the recent literature published between 2020 and 2022, with particular emphasis on extrinsic fluorophores and their investigations of sterol-driven biological processes involving sterol transport, biomolecular interactions, and biological imaging.  相似文献   

14.
Accumulation of excess non-esterified free cholesterol (FC) in macrophages is a key factor in macrophage death during late stages of atheroslerosis. Raising FC content in macrophages has been shown to trigger Rac activation and actin polymerisation and to inhibit cell migration. Here, the plasma membrane distribution of the fluorescent cholesterol-mimicking sterol dehydroergosterol (DHE) was investigated in FC-loaded J774 macrophages. Wide field fluorescence and deconvolution microscopy were combined with quantitative assessment of sterol distribution in straightened plasma membrane image segments. DHE's surface distribution matched exactly large ruffles and membrane protrusions which were pronounced in FC-loaded cells. Plasma membrane blebs, however, formed in FC-loaded J774 cells had a homogenous staining along the membrane bilayer at 20 degrees C. The results show that even in FC-loaded cells with increased membrane cholesterol content, sterols do not form a separate phase in the plasma membrane.  相似文献   

15.
16.
McCauliff LA  Xu Z  Storch J 《Biochemistry》2011,50(34):7341-7349
Niemann--Pick C disease is an inherited disorder in which cholesterol and other lipids accumulate in the late endosomal/lysosomal compartment. Recently, cyclodextrins (CD) have been shown to reduce symptoms and extend lifespan in animal models of the disease. In the present studies we examined the mechanism of sterol transport by CD using in vitro model systems and fluorescence spectroscopy and NPC2-deficient fibroblasts. We demonstrate that cholesterol transport from the lysosomal cholesterol-binding protein NPC2 to CD occurs via aqueous diffusional transfer and is very slow; the rate-limiting step appears to be dissociation of cholesterol from NPC2, suggesting that specific interactions between NPC2 and CD do not occur. In contrast, the transfer rate of the fluorescent cholesterol analogue dehydroergosterol (DHE) from CD to phospholipid membranes is very rapid and is directly proportional to the acceptor membrane concentration, as is DHE transfer from membranes to CD. Moreover, CD dramatically increases the rate of sterol transfer between membranes, with rates that can approach those mediated by NPC2. The results suggest that sterol transfer from CD to membranes occurs by a collisional transfer mechanism involving direct interaction of CD with membranes, similar to that shown previously for NPC2. For CD, however, absolute rates are slower compared to NPC2 for a given concentration, and the lysosomal phospholipid lysobisphosphatidic acid (LBPA) does not stimulate rates of sterol transfer between membranes and CD. As expected from the apparent absence of interaction between CD and NPC2, the addition of CD to NPC2-deficient fibroblasts rapidly rescued the cholesterol accumulation phenotype. Thus, the recent observations of CD efficacy in mouse models of NPC disease are likely the result of CD enhancement of cholesterol transport between membranes, with rapid sterol transfer occurring during CD--membrane interactions.  相似文献   

17.
We analyzed the intracellular transport of HDL and its associated free sterol in polarized human hepatoma HepG2 cells. Using pulse-chase protocols, we demonstrated that HDL labeled with Alexa 488 at the apolipoprotein (Alexa 488-HDL) was internalized by a scavenger receptor class B type I (SR-BI)-dependent process at the basolateral membrane and became enriched in a subapical/apical recycling compartment. Most Alexa 488-HDL was rapidly recycled to the basolateral cell surface and released from cells. Within 30 min of chase at 37 degrees C, approximately 3% of the initial cell-associated Alexa 488-HDL accumulated in the biliary canaliculus (BC) formed at the apical pole of polarized HepG2 cells. Even less Alexa 488-HDL was transported to late endosomes or lysosomes. The fluorescent cholesterol analog dehydroergosterol (DHE) incorporated into Alexa 488-HDL was delivered to the BC within a few minutes, independent of the labeled apolipoprotein. This transport did not require metabolic energy and could be blocked by antibodies against SR-BI. The fraction of cell-associated DHE transported to the BC was comparable when cells were incubated with either Alexa 488-HDL containing DHE or with DHE bound to methyl-beta-cyclodextrin. We conclude that rapid, nonvesicular transport of sterol to the BC and efficient recycling of HDL particles underlies the selective sorting of sterol from HDLs in hepatocytes.  相似文献   

18.
Analysis of sterol distribution and transport in living cells has been hampered by the lack of bright, photostable fluorescent sterol derivatives that closely resemble cholesterol. In this study, we employed atomistic simulations and experiments to characterize a cholesterol compound with fluorescent boron dipyrromethene difluoride linked to sterol carbon-24 (BODIPY-cholesterol). This probe packed in the membrane and behaved similarly to cholesterol both in normal and in cholesterol-storage disease cells and with trace amounts allowed the visualization of sterol movement in living systems. Upon injection into the yolk sac, BODIPY-cholesterol did not disturb zebrafish development and was targeted to sterol-enriched brain regions in live fish. We conclude that this new probe closely mimics the membrane partitioning and trafficking of cholesterol and, because of its excellent fluorescent properties, enables the direct monitoring of sterol movement by time-lapse imaging using trace amounts of the probe. This is, to our knowledge, the first cholesterol probe that fulfills these prerequisites.  相似文献   

19.
Wang MM  Olsher M  Sugár IP  Chong PL 《Biochemistry》2004,43(8):2159-2166
Here, the interplay between membrane cholesterol lateral organization and the activity of membrane surface-acting enzymes was addressed using soil bacteria cholesterol oxidase (COD) as a model. Specifically, the effect of the membrane cholesterol mole fraction on the initial rate of cholesterol oxidation catalyzed by COD was investigated at 37 degrees C using cholesterol/1-palmitoyl-2-oleoyl-l-alpha-phosphatidylcholine (POPC) large unilamellar vesicles (LUVs, approximately 800 nm in diameter). In the three concentration ranges examined (18.8-21.2, 23.6-26.3, and 32.2-34.5 mol % cholesterol), the initial activity of COD changed with cholesterol mole fraction in a biphasic manner, exhibiting a local maximum at 19.7, 25.0, and 33.4 mol %. Within the experimental errors, these mole fractions agree with the critical cholesterol mole fractions (C(r)) (20.0, 25.0, and 33.3) theoretically predicted for maximal superlattice formation. The activity variation with cholesterol content was correlated well with the area of regular distribution (A(reg)) in the plane of the membrane as determined by nystatin fluorescence. A similar biphasic change in COD activity was detected at the critical sterol mole fraction 20 mol % in dehydroergosterol (DHE)/POPC LUVs (approximately 168 nm in diameter). These results indicate that the activity of COD is regulated by the extent of sterol superlattice for both sterols (DHE and cholesterol) and for a wide range of vesicle sizes (approximately 168-800 nm). The present work on COD and the previous study on phospholipase A(2) (sPLA(2)) [Liu and Chong (1999) Biochemistry 38, 3867-3873] suggest that the activities of some surface-acting enzymes may be regulated by the extent of sterol superlattice in the membrane in a substrate-dependent manner. When the substrate is a sterol, as it is with COD, the enzyme activity reaches a local maximum at C(r). When phospholipid is the substrate, the minimum activity is at C(r), as is the case with sPLA(2). Both phenomena are in accordance with the sterol superlattice model and manifest the functional importance of membrane cholesterol content.  相似文献   

20.
Although cell-penetrating peptides (CPP) facilitate endocytic uptake of proteins, little is known regarding the extent to which CPPs facilitate protein cargo exit from endocytic vesicles for targeting to other intracellular sites. Since the plasma membrane and less so intracellular membranes contain cholesterol, the fluorescent sterol analogues dansyl-cholestanol (DChol) and dehydroergosterol (DHE) were used to monitor the uptake and intracellular distribution of fluorescent-tagged acyl coenzyme A binding protein (ACBP) into COS-7 cells and rat hepatoma cells. Confocal microscopy colocalized DChol and Texas Red-ACBP (TR-ACBP) with markers for the major endocytosis pathways, especially fluorescent-labeled cholera toxin (marker of ganglioside GM1 in plasma membrane lipid rafts) and dextran (macropinocytosis marker), but less so with transferrin (clathrin-mediated endocytosis marker). These findings were confirmed by multiphoton laser scanning microscopy colocalization of TR-ACBP with DHE (naturally-fluorescent sterol) and by double immunofluorescence labeling of native endogenous ACBP. Serum greatly and Pep-1 further 2.4-fold facilitated uptake of TR-ACBP, but neither altered the relative proportion of TR-ACBP colocalized with membranes/organelles (nearly 80%) vs cytoplasm and/or nucleoplasm (20%). Interestingly, Pep-1 selectively increased TR-ACBP associated with mitochondria while concomitantly decreasing that in endoplasmic reticulum. In summary, fluorescent sterols (DChol, DHE) were useful markers for comparing the distributions of both transported and endogenous proteins. Pep-1 modestly enhanced the translocation and altered the intracellular targeting of exogenous-delivered (TR-ACBP) in living cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号