首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Human erythrocyte phosphofructokinase has been subjected to active band centrifugation and stability measurements over a broad range of conditions. The enzyme behaves differently in-Tris buffer containing ATP and phosphate buffer containing fructose 6-phosphate. In the first buffer, dissociation is favoured and after prolonged storage of the enzyme tetramers represent the highest state of association. At 4 degrees C the enzyme exhibits the phenomenon of reversible cold-inactivation. This property is attributed to slow dissociation of the active associated states of the enzyme to dimers. The cold-inactivated enzyme can be reactivated by fructose 1,6-bisphosphate. Inorganic phosphate and fructose 6-phosphate have been found to protect the enzyme from cold-inactivation. Under these conditions, the sedimentation coefficient and the specific activity depend on the enzyme concentration only. The specific activity does not change on storage of the diluted enzyme at 4 degrees C. At 20 degrees C, however, a slow activation proceeds during incubation of the diluted enzyme. The correlations between the association state and the enzymic activity are discussed.  相似文献   

2.
J W Ogilvie 《Biochemistry》1985,24(2):317-321
The smallest enzymatically active form of rabbit muscle phosphofructokinase is a tetramer of four identical or nearly identical monomers. The enzyme is inhibited by ATP, and this inhibition by ATP is relieved by the activating adenine nucleotides adenosine cyclic 3',5'-phosphate, AMP, and ADP. Each monomer contains one binding site specific for the inhibitor ATP and another site specific for the activating adenine nucleotides. The enzyme can also be activated by covalently labeling the activating adenine nucleotide binding sites with the affinity label 5'-[p-(fluorosulfonyl)benzoyl]adenosine. These activator binding sites on the enzyme have been covalently labeled to various degrees, ranging from an average value of less than one label per tetramer to four labels per tetramer, and the free-energy coupling, delta Gxy, between the covalently bound affinity label and ATP binding at the inhibitory site was determined. For enzyme preparations containing four labels per tetramer, delta Gxy is approximately 1 kcal/mol at pH 6.95 and 25 degrees C. A very significant free-energy coupling is observed in those preparations containing an average of one label per tetramer and less, and the change in delta Gxy in going from native tetramers to ones containing an average of two labels per tetramer is twice as great as the change in delta Gxy observed in going from tetramers containing an average of two labels per tetramer to ones containing four labels per tetramer, suggesting that modification of the final two monomers in the tetramer contributes much less to the antagonistic effect on ATP binding than does modification of the first two monomers in the tetramer.  相似文献   

3.
Unfolding and refolding of heterooctameric phosphofructokinase-1 from Saccharomyces cerevisiae were investigated by application of kinetic, hydrodynamic, and spectroscopic methods and by use of guanidinium chloride (GdmCl) as denaturant. Inactivation of the enzyme starts at about 0.3 M GdmCl and undergoes a sharp unfolding transition in a narrow range of the denaturant concentration. The inactivation is accompanied by a dissociation of the enzyme into dimers (at 0.6 M GdmCl), which could be detected by changes of the circular dichroism and intrinsic fluorescence. Protein aggregates were observed from 0.7 to 1.5 M GdmCl that unfold at higher denaturant concentrations. Refolding of chemically denatured phosphofructokinase proceeds as a stepwise process via the generation of elements of secondary structure, the formation of assembly-competent monomers that associate to heterodimers and the assembly of dimers to heterotetramers and heterooctamers. The assembly reactions seem to be rate-limiting. Recovery of the enzyme activity (maximum 65%) competes with an nonproductive aggregation of the subunits. alpha-Cyclodextrin functions as an artificial chaperone by preventing aggregation of the subunits, whereas ATP is suggested to support the generation of heterodimers that are competent to a further assembly.  相似文献   

4.
The allosteric effectors of aspartate transcarbamoylase from Escherichia coli, CTP and ATP, associate with both the regulatory and the catalytic moieties of the enzyme. Studies with isolated, active subunits yield one binding site per regulatory dimer and one per catalytic trimer. Investigations of effector association with hybrid enzymes, containing either the three regulatory dimers or the two catalytic trimers in inactivated forms, indicate that the data obtained with isolated subunits can be used to analyze the binding patterns of these ligands to the native hexamer. Thus, the nonlinear Scatchard plots, characteristic of the binding of CTP and ATP to the native enzyme, can be interpreted in terms of three effector molecules associating with the regulatory subunits, and two binding to the catalytic moiety of the enzyme. Results with native protein in the presence of saturating concentrations of active site ligands support these assignments. The differences between the binding isotherms of CTP and ATP to the enzyme are due to their different affinities to the two types of subunits. The apparent half-of-the-site saturation of the regulatory moiety of aspartate transcarbamoylase supports the concept that this protein has a tendency to exist in an asymmetric state.  相似文献   

5.
The specific activity of chicken liver pyruvate carboxylase has been shown to decrease with decreasing enzyme concentration, even at 100 microM, which is close to the estimated physiological concentration. The kinetics of the loss of enzyme specific activity following dilution were biphasic. Incubation of dilution-inactivated enzyme with ATP, acetyl CoA, Mg2+ + ATP or, to a lesser degree, with Mg2+ alone resulted in a high degree of reactivation, while no reactivation occurred in the presence of pyruvate. The association state of the enzyme before, during, and after dilution inactivation has been assessed by gel filtration chromatography. These studies indicate that on dilution, there is dissociation of the catalytically active tetrameric enzyme species into inactive dimers. Reactivation of the enzyme resulted in reassociation of enzymic dimers into tetramers. The enzyme was shown to form high molecular weight aggregates at high enzyme concentrations.  相似文献   

6.
Aliev MK  Saks VA 《Biofizika》2003,48(6):1075-1085
The kinetics of exchange of adenine nucleotides in a system with reconstituted mitochondrial adenine nucleotide translocase (ANT) was simulated mathematically to analyze the basic mechanisms of ANT functioning. Two known alternative kinetic schemes were analyzed, the ping-pong type scheme with single-center substrate binding and the scheme of sequential two-center substrate binding at opposite sides of ANT. According to our modeling, both schemes can explain the experimental data on the adenine nucleotide exchange in the reconstituted ANT system. However, the characteristic kinetic pattern of ADP exchanges in the mono exchange mode was reproduced only by the sequential binding scheme. This scheme is consistent with the data on the tetrameric structure of ANT. On the other hand, only the single-center binding scheme was compatible with recent data on possible translocation of ATP and ADP by the carrier that has no bound adenine nucleotide on its opposite side. Based on the analysis of the literature data on ANT properties, a compromise scheme of ANT operation was proposed. In the framework of this scheme, the ANT dimers function by the single-center binding mechanism: however, in tetramers they are integrated into a substructure with two oppositely oriented binding centers working by the mechanism of sequential substrate binding. Labile bonds between the ANT-forming dimers could allow conformational rearrangements of ANT induced by various influences on mitochondrial membrane structure, including those leading to the induction of permeability transition pores in apoptosis.  相似文献   

7.
The reversible inactivation and dissociation of the allosteric phosphofructokinase from Escherichia coli has been studied in relatively mild conditions, i.e., in the presence of the chaotropic agent KSCN. At moderate KSCN concentration, the loss of enzymatic activity involves two separated phases: first, a rapid dissociation of part of the tetramer into dimers, second, a slower displacement of the dimer-tetramer equilibrium upon further dissociation of the dimer into monomers. These two reactions can no longer be distinguished above 0.3 M KSCN since complete inactivation occurs in a single reaction. Different changes are observed for the fluorescence and the activity of the enzyme in KSCN: the fluorescence is not affected by the dissociation into dimers which is responsible for inactivation. The decrease in fluorescence reflects the change in environment of the unique tryptophan residue, Trp 311, during the dimer to monomer dissociation. This residue belongs to the interface containing the regulatory site, and its native fluorescence indicates that this interface is still present in the dimer. The substrate fructose 6-phosphate protects phosphofructokinase from inactivation by binding to the tetramer and prevents its dissociation into dimers. The presence of phosphoenolpyruvate prevents the slow dissociation of the dimer into monomers, which shows the ability of the dimer to bind the inhibitor. Two successive processes can be observed during reassociation of the protein upon KSCN dilution. First, a fast reaction (k1 = 2 x 10(5) M-1.s-1) is accompanied by a fluorescence increase and results in the formation of the dimeric species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In nematode sperm cell motility, major sperm protein (MSP) filament assembly results in dynamic membrane protrusions in a manner that closely resembles actin-based motility in other eukaryotic cells. Paradoxically, whereas actin-based motility is driven by addition of ATP-bound actin subunits onto actin filament plus-ends located at the cell membrane, MSP dimers assemble from solution into nonpolar filaments that lack a nucleotide binding site. Thus, filament polarity and on-filament ATP hydrolysis, although essential for actin-based motility, appear to be unnecessary for membrane protrusions by MSP. As a potential resolution to this paradox, we propose a model for MSP filament assembly and force generation by MSP filament end-tracking proteins. In this model, ATP hydrolysis drives affinity-modulated, processive interactions between membrane-associated proteins and elongating filament ends. However, in contrast to the "actoclampin" model for actin filament end-tracking motors, ATP activates the tracking protein (or a soluble cofactor) rather than the MSP subunits themselves (in contrast to activation of actin subunits by ATP binding). The MSP end-tracking model predicts properties that are consistent with several key observations of MSP-based motility, including persistent membrane attachment, polymerization of filament ends at the membrane with depolymerization of free-filament ends away from the membrane, as well as a saturating dependence of polymerization rate on the concentration of non-MSP soluble cytoplasmic components.  相似文献   

9.
1. Incubation of soluble spinach Coupling Factor 1 (CF1) with dicyclohexylcarbodiimide (DCCD) results in the inactivation of the ATPase. The DCCD inactivation is time- and concentration-dependent. Complete inactivation of the CF1-ATPase activity requires the binding of 2 mol of DCCD/mol of CF1. The binding sites of DCCD are located on the beta subunit of CF1. 2. DCCD modification of soluble CF1 eliminates one adenine nucleotide binding site which is exposed by dithiothreitol activation or by incubation with tentoxin. The inactivation of both the ATPase activity and the adenine nucleotide binding site are pH-dependent. The inactivation of both the ATPase activity and the adenine nucleotide binding site are pH-dependent. Half-maximal inhibition occurs at about pH 7.5. 3. The DCCD-modified CF1, reconstituted with EDTA-treated chloroplasts, is fully active is restoring proton uptake but not in restoring ATP synthesis or light-dependent adenine nucleotide exchange.  相似文献   

10.
The effect of aldolase on the concentration-dependent kinetic behaviour of phosphofructokinase was investigated by means of covalently attached fluorescent probe and by using a kinetic approach. The dimeric form of kinase in equilibrium with the active tetramer interacts with the native aldolase with an apparent dissociation constant of 2.5 microM. Within this heterologous enzyme complex the phosphofructokinase is catalytically active probably because the aldolase binding to nascent kinase dimers might protect them against inactivation.  相似文献   

11.
Recently, it has been demonstrated that fructose-2,6-bisphosphate (F2,6BP) protects skeletal muscle 6-phosphofructo-1-kinase (PFK) from thermal inactivation (50 degrees C) and against the deleterious effects of guanidinium hydrochloride (GdmCl). On the other hand, ATP, when added at its inhibitory concentrations, that is, >1 mM, enhanced either the thermal- or GdmCl-induced inactivation of PFK. Moreover, we concluded that these phenomena were probably due to the stabilization of PFK tetrameric structure by F2,6BP, and the dissociation of this structure into dimers induced by ATP. Aimed at elucidating the effects of F2,6BP and ATP on PFK at the structural and functional levels, the present work correlates the effects of these metabolites on the equilibrium between PFK dimers and tetramers to the regulation promoted on the enzyme catalytic activity. We show that ATP present a dual effect on PFK structure, favoring the formation of tetramer at stimulatory concentrations (up to 1 mM), and dissociating tetramers into dimers at inhibitory concentrations (>1 mM). Furthermore, F2,6BP counteracted this later ATP effect at either the structural or catalytic levels. Additionally, the effects of both F2,6BP or ATP on the equilibrium between PFK tetramers and dimers and on the enzyme activity presented a striking parallelism. Therefore, we concluded that modulation of PFK activity by ATP and F2,6BP is due to the effects of these ligands on PFK quaternary structure, altering the oligomeric equilibrium between PFK tetramers and dimers.  相似文献   

12.
An adenine analog 8-[m-(m-fluorosulfonylbenzamido)benzylthio]adenine (FSB-adenine) reacts covalently with sheep heart phosphofructokinase. Under conditions optimal for allosteric kinetics the modified enzyme is less sensitive to inhibition by ATP and insensitive to activation by AMP, cyclic AMP, and ADP. The concentration of fructose-6-P necessary for half-maximal activity is markedly decreased, while the cooperativity to the same substrate is not changed under the same conditions. The modified enzyme is more stable at pH 6.5 when compared with the native enzyme. Changes in the allosteric kinetics of the enzyme are proportional to the extent of modification reaching maximal effect when 3.2 mol of the reagent were bound/mol of tetrameric enzyme. Affinity labeling of the enzyme by the adenine derivative does not affect significantly the catalytic site. This is evidenced by the demonstration that under assay conditions optimal for Michaelian kinetics neither the Km for ATP nor for fructose-6-P is significantly changed following chemical modification. Maximal activity of the modified enzyme was 60% of the native enzyme. ADP gives the best protection, while AMP gives less protection against modification by the reagent. ATP slows the rate of the reaction and causes a slight decrease in maximum binding of the reagent to the enzyme. Modification of the enzyme caused a marked reduction of AMP and ADP binding. The evidence indicates that the modified site is a nucleotide mono- and diphosphate activation site.  相似文献   

13.
14.
Many of the effects of ANP are mediated through the elevation of cellular cGMP levels by the activation of particulate guanylate cyclase. While the stimulation of this enzyme is receptor-mediated, the molecular mechanism of activation remains unknown. In this study we present evidence that ATP as well as its analogues adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) and adenylylimidophosphate (AMPPNP) activates guanylate cyclase from rat lung membranes and markedly potentiates the effect of ANP on the enzyme. The order of potency is ATP gamma S greater than ATP greater than AMPPNP. The enzyme activation by adenine nucleotide and ANP together is much more than the sum of the individual activations, suggesting that ATP may be the physiological component essential for the ANP-stimulated guanylate cyclase activation. The ATP gamma S-stimulated guanylate cyclase activity diminishes in the presence of various kinds of detergents, suggesting either that the conformation of an ATP binding site in guanylate cyclase is altered by detergents or that protein-protein interaction may be involved in the activation of guanylate cyclase by ATP. Guanylate cyclase from rat lung membranes is poorly activated by ANP and/or ATP gamma S after removing the cytosolic and weakly membrane-associated proteins or factors by centrifugation. Pre-incubation of the membranes with ATP gamma S retains enzyme activation after membrane washing. These results suggest either that ATP gamma S stabilizes the conformation of nucleotide binding site in guanylate cyclase from denaturation by membrane washing, or that the stimulatory effect of ATP on guanylate cyclase activity may be mediated by accessory proteins or non-protein cofactors which are lost during membrane washing, but remain bound to membranes by ATP gamma S pretreatment.  相似文献   

15.
ATP-sensitive potassium (K(ATP)) channels are composed of four pore-forming Kir6.2 subunits and four regulatory SUR1 subunits. Binding of ATP to Kir6.2 leads to inhibition of channel activity. Because there are four subunits and thus four ATP-binding sites, four binding events are possible. ATP binds to both the open and closed states of the channel and produces a decrease in the mean open time, a reduction in the mean burst duration, and an increase in the frequency and duration of the interburst closed states. Here, we investigate the mechanism of interaction of ATP with the open state of the channel by analyzing the single-channel kinetics of concatenated Kir6.2 tetramers containing from zero to four mutated Kir6.2 subunits that possess an impaired ATP-binding site. We show that the ATP-dependent decrease in the mean burst duration is well described by a Monod-Wyman-Changeux model in which channel closing is produced by all four subunits acting in a single concerted step. The data are inconsistent with a Hodgkin-Huxley model (four independent steps) or a dimer model (two independent dimers). When the channel is open, ATP binds to a single ATP-binding site with a dissociation constant of 300 microM.  相似文献   

16.
The influence of urea on the allosteric phosphofructokinase from Escherichia coli has been studied by measuring the changes in enzymatic activity, protein fluorescence, circular dichroism, and retention in size-exclusion chromatography. Tetrameric, dimeric, and monomeric forms of the protein can be discriminated by their elution from a high-performance liquid chromatography gel filtration column. Three successive steps can be detected during the urea-induced denaturation of phosphofructokinase: (i) the dissociation of the native tetramer into dimers which abolishes the activity; (ii) the dissociation of dimers into monomers which exposes the unique tryptophan, Trp-311, to the aqueous solvent; (iii) the unfolding of the monomers which disrupts most of the secondary structure. This pathway involves the ordered dissociation of the interfaces between subunits and supports a previous hypothesis (Deville-Bonne et al., 1989). Phosphofructokinase can be quantitatively renatured from urea solutions, provided that precautions are taken to avoid the aggregation of one insoluble monomeric state. The renaturation of phosphofructokinase from urea implies three steps: an initial folding reaction within the monomeric state is followed by two successive association steps. The faster association step restores the native fluorescence, and the slower regenerates the active enzyme. The renaturation and denaturation of phosphofructokinase correspond to the complex pathway: tetramer in equilibrium dimer in equilibrium folded monomer in equilibrium unfolded monomer. It is found that the subunit interface which forms the regulatory site is more stable and associates 40 times more rapidly than the subunit interface which forms the active site.  相似文献   

17.
Significance of phosphorylation of phosphofructokinase   总被引:1,自引:0,他引:1  
In order to understand the effect of phosphorylation on phosphofructokinase, the allosteric kinetic behavior, ligand binding at various pHs, and pH-dependent cold inactivation of phosphofructokinase phosphorylated to different extents were studied. A subtilisin-digested phosphofructokinase from which a COOH-terminal peptide containing a phosphorylation site has been cleaved (Riquelme, P. T., and Kemp, R. G. (1980) J. Biol. Chem. 255, 4367-4371) was also included in these studies in order to investigate the possible role of this region of the molecule. Allosteric kinetics and direct binding experiments have shown that increasing phosphorylation of phosphofructokinase results in increased sensitivity to ATP inhibition and stronger binding of ATP to the inhibitory site of the enzyme. Ths subtilisin-cleaved phosphofructokinase is the least sensitive to the inhibition and shows the weakest binding of ATP. The opposite effect is observed with the binding isotherms of fructose-6-P. There is no difference in the binding of fructose-2,6-P2 among these enzymes. Binding of ATP to the inhibitory site of these enzymes as determined by fluorescence quenching (Pettigrew, D. W., and Frieden, C. (1979) J. Biol. Chem. 254, 1887-1895) is affected by pH; the binding is greatly enhanced at lower pH. Moreover, there is little difference in the binding among the modified enzymes at pH 8, but at lower pHs the binding to the phosphorylated enzyme is much more enhanced than the dephosphoenzyme. A pH-dependent cold inactivation study has shown that the phosphorylation of the enzyme causes an increase in the pK value for the inactivation, and the extent of the pK shift depends upon the degree of phosphorylation. Based on these results, a model originally proposed by Frieden et al. (Frieden, C., Gilbert, H. R., and Bock, P. E. (1976) J. Biol. Chem. 251, 5644-5647) can be applied to explain a possible role for the phosphorylation and the peptide portion of phosphofructokinase in its complex allosteric kinetic behavior.  相似文献   

18.
The alpha- and beta-subunits of membrane-bound ATP synthase complex bind ATP and ADP: beta contributes to catalytic sites, and alpha may be involved in regulation of ATP synthase activity. The sequences of beta-subunits are highly conserved in Escherichia coli and bovine mitochondria. Also alpha and beta are weakly homologous to each other throughout most of their amino acid sequences, suggesting that they have common functions in catalysis. Related sequences in both alpha and beta and in other enzymes that bind ATP or ADP in catalysis, notably myosin, phosphofructokinase, and adenylate kinase, help to identify regions contributing to an adenine nucleotide binding fold in both ATP synthase subunits.  相似文献   

19.
D E Hill  G G Hammes 《Biochemistry》1975,14(2):203-213
Equilibrium binding studies of the interaction of rabbit muscle phosphofructokinase with fructose 6-phosphate and fructose 1,6-bisphosphate have been carried out at 5 degrees in the presence of 1-10 mM potassium phosphate (pH 7.0 and 8.0), 5 mM citrate (pH 7.0), or 0.22 mm adenylyl imidodiphosphate (pH 7.0 and 8.0). The binding isotherms for both fructose 6-phosphate and fructose 1,6-bisphosphate exhibit negative cooperativity at pH 7.0 and 8.0 in the presence of 1-10 mM potassium phosphate at protein concentrations where the enzyme exists as a mixture of dimers and tetramers (pH 7.0) or as tetramers (pH 8.0) and at pH 7.0 in the presence of 5 mM citrate where the enzyme exists primarily as dimers. The enzyme binds 1 mol of either fructose phosphate/mol of enzyme monomer (molecular weight 80,000). When enzyme aggregation states smaller than the tetramer are present, the saturation of the enzyme with either ligand is paralleled by polymerization of the enzyme to tetramer, by an increase in enzymatic activity and by a quenching of the protein fluorescence. At protein concentrations where aggregates higher than the tetramer predominate, the fructose 1,6-bisphosphate binding isotherms are hyperbolic. These results can be quantitatively analyzed in terms of a model in which the dimer is associated with extreme negative cooperativity in binding the ligands, the tetramer is associated with less negative cooperativity, and aggregates larger than the tetramer are associated with little or no cooperativity in the binding process. Phosphate is a competitive inhibitor of the fructose phosphate sites at both pH 7.0 and 8.0, while citrate inhibits binding in a complex, noncompetitive manner. In the presence of the ATP analog adenylyl imidodiphosphate, the enzyme-fructose 6-phosphate binding isotherm is sigmoidal at pH 7.0, but hyperbolic at pH 8.0. The characteristic sigmoidal initial velocity-fructose 6-phosphate isotherms for phosphofructokinase at pH 7.0, therefore, are due to an heterotropic interaction between ATP and fructose 6-phosphate binding sites which alters the homotropic interactions between fructose 6-phosphate binding sites. Thus the homotropic interactions between fructose 6-phosphate binding sites can give rise to positive, negative, or no cooperativity depending upon the pH, the aggregation state of the protein, and the metabolic effectors present. The available data suggest the regulation of phosphofructokinase involves a complex interplay between protein polymerization and homotropic and heterotropic interactions between ligand binding sites.  相似文献   

20.
Cold labile extramitochondrial acetyl-CoA hydrolase (dimeric form) purified from rat liver was activated by various nucleoside triphosphates and inhibited by various nucleoside diphosphates. Activation of acetyl-CoA hydrolase by ATP was inhibited by a low concentration of ADP (Ki congruent to 6.8 microM) or a high concentration of AMP (Ki congruent to 2.3 mM). ADP and AMP were competitive inhibitors of ATP. A Scatchard plot of the binding of ATP to acetyl-CoA hydrolase (dimer) at room temperature gave a value of 25 microM for the dissociation constant with at least 2 binding sites/mol of dimer. Cold-treated monomeric enzyme also associated with ATP-agarose, suggesting that the monomeric form of the enzyme also has a nucleotide binding site(s), probably at least 1 binding site/mol of monomer. Phenylglyoxal or 2,3-butanedione, both of which modify arginyl residues of protein, inactivated acetyl-CoA hydrolase. ATP (an activator) greatly protected acetyl-CoA hydrolase from inactivation by these reagents, while ADP (an inhibitor) greatly (a substratelike, competitive inhibitor), and CoASH (a product) were less effective. However, addition of ADP plus valeryl-CoA (or CoASH) effectively prevented the inactivation by 2,3-butanedione, but that is not the case for phenylglyoxal. These results suggest that one or more arginyl residues are involved in the nucleotide binding site of extramitochondrial acetyl-CoA hydrolase and that their nucleotide binding sites locate near the substrate binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号