首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Andrew P. Beckerman 《Oikos》2005,110(3):591-601
We studied reproductive and somatic investments in >700 female Richardson's ground squirrels ( Spermophilus richardsonii ) of known age over a 14-year period to evaluate three hypotheses, restraint, senescence, and residual reproductive value, proposed to explain age-specific life history patterns in iteroparous vertebrates. We found that reproductive investment, measured as litter mass at first emergence from the natal nest, did not differ among age classes. Although yearling female Richardson's ground squirrels made a greater somatic investment during reproduction than older females, they produced similar numbers and mass of offspring as older females. Reproductive investment did not decline with age, though active season somatic investment was lowest in the oldest females. Somatic investment during reproduction was highest in yearlings. This combination of age-related changes in somatic investment unaccompanied by changes in reproductive investment was not well explained by any of the hypotheses examined, though the senescence hypothesis best explained the combination of declining somatic investment and declining survival of the oldest females. Our results supported the ideas that reproductive and somatic senescence evolve independently, and that somatic senescence may be more common in relatively smaller species.  相似文献   

2.
Parasitic infections may cause alterations in host life history, including changes in reproductive investment (absolute amount of energy allocated to reproduction) and reproductive effort (proportion of available energy allocated to reproduction). Such changes in host life history may reflect: 1) a parasite tactic: the parasite adaptively manipulates energy flow within the host so that the host is induced to make a reduction in reproductive effort and reproductive investment, making more energy available to the parasite; 2) no tactic: there is no change in host reproductive effort and reproductive investment simply decreases as a side effect of the parasite depleting host energy stores; 3) a host tactic: the host adaptively increases reproductive effort in the face of infection and loss of body condition, reproductive investment possibly being reduced despite the increased reproductive effort. Females in Alaskan lake populations of threespine sticklebacks ( Gasterosteus aculeatus ) are capable of clutch production when parasitized by the cestode Schistocephalus solidus despite large relative parasite masses. We analyzed the somatic energy reserves, maturation stage and ovarian mass of female sticklebacks collected from an Alaska lake during a single reproductive season. We found that parasitized females were less likely to carry fully-matured gametes, had smaller ovarian masses, and had lower somatic energy stores than unparasitized females. The relationship between reproductive investment and energy storage did not differ between parasitized and unparasitized females. Thus, reproductive effort did not change in response to parasitic infection. We conclude there was no indication of either a parasite tactic or a host tactic. Simple nutrient theft is involved in the parasite's influence on host reproduction, consistent with an earlier hypothesis that reproductive curtailment in threespine sticklebacks is a side effect.  相似文献   

3.
Reproductive effort, factors affecting reproductive output and costs of reproduction were studied in primiparous yearling compared to multiparous older female European ground squirrels (Spermophilus citellus). Yearling females weaned smaller litters than older ones. Litter size increased with posthibernation body mass at the expense of slightly lighter young for yearling but not for older mothers. In older females, on the other hand, emergence body mass influenced offspring mass, whereas litter size was affected by oestrus date. High reproductive effort entailed reproductive costs in terms of reduced subsequent fecundity but not subsequent survival for both yearling and older females. The production of large litters and long duration of lactation delayed subsequent oestrus, which, in turn, correlated negatively with litter size. During the second half of lactation, oestradiol levels were significantly elevated, indicating the initiation of follicular maturation processes. Oestradiol levels during that time correlated negatively with current, but positively with subsequent litter size. We therefore assume that inhibitory effects of lactation on gonadal development may mediate the negative relationship between reproductive effort and subsequent reproductive timing in adults. This effect is absent in yearlings because they are reproducing for the first time. Reproductive output in yearlings was influenced by interactions between structural growth and puberty. Received: 22 March 1999 / Accepted: 7 June 1999  相似文献   

4.
Summary Reproductive effort by yearling and older female Richardson's ground squirrels was studied over a 4-year period in southern Alberta by obtaining serial weight records from marked individuals to compare the mother's mass at critical points in the annual cycle (emergence from hibernation, estrus, parturition, and litter emergence) with her litter's mass at birth and weaning. Yearlings weighed only 80% of older adults at emergence from hibernation, but they mated at the same time as older females, attained adult mass coincident with pregnancy, and weaned litters that were not significantly smaller in size or mass than those of older females. Age and maternal mass were weak predictors of litter size and litter mass. Of the net increase in mass of the combined mother-litter unit during gestation, over half (60% of 139 g for yearlings; 52% of 127 g for older females) was attributable to an increase in the mother's own mass, whereas during lactation almost all of the net increase (93% of 545 g for yearlings; 96% of 567 g for older females) was attributable to an increase in the litter's mass. On a daily basis, deposition of mass in the litter was 6 times greater during lactation than gestation. On average, neonates weighed 2.3% (6.5 g) of maternal mass at birth and 23.1% (81 g) at emergence from the natal burrow; offspring masses at birth and at emergence were significantly negatively correlated with litter size. On average, litters weighed 16.3% (48 g) of maternal mass at birth and 157.5% (578 g) at emergence from the natal burrow. Compared with other hibernating sciurids, Richardson's ground squirrels have a similar offspring mass relative to maternal mass both at birth and at emergence from the natal burrow. However, because of the large litter size (typically 6–8), absolute reproductive effort, measured either as litter mass at birth or at natal emergence, is large for the body size of the species.  相似文献   

5.
Increasing returns in the life history of Columbian ground squirrels   总被引:5,自引:1,他引:4  
1. We examined positive associations and trade-offs of maternal and reproductive traits in a population of Columbian ground squirrels, Spermophilus columbianus .
2. Structural size, body condition, mother's personal allocation to body mass during reproduction, and timing of littering were estimated for live-trapped reproductive females that were observed during an 8-year period, and were compared to litter mass, litter size, and average pup mass using path analyses.
3. Mothers exhibited age-structured traits that influenced reproductive patterns. Yearling mothers were significantly smaller, bred later, and had smaller litters than older females. Mothers that gained more body mass during reproduction and older mothers in good body condition that were structurally large had larger litters.
4. Early seasonal timing of littering was an important positive influence on successful reproduction by older mothers only in early breeding seasons and in years when conditions for reproduction were good for all females.
5. The number of offspring that survived to 1 year of age was most strongly associated with litter mass and litter size; date of breeding was of secondary influence, with earlier litters exhibiting greater success.
6. In general, mothers that gained the most in body mass during reproduction were concurrently more successful in weaning large litters (perhaps due to better quality of foraging habitat).
7. In addition to expected reproductive trade-offs, reproduction by Columbian ground squirrels exhibited positive associations of life-history traits that may reflect evolutionary increasing returns.  相似文献   

6.
Williams predicted that reproductive effort should increase as individuals age and their reproductive value declines. This simple prediction has proven difficult to test because conventional measures of energy expenditure on reproduction may not be a true reflection of reproductive effort. We investigated age-specific variation in female reproductive effort in a stable population of North American red squirrels where energy expenditure on reproduction is likely to reflect actual reproductive effort. We used seven measures of reproductive effort spanning conception to offspring weaning. We found that females completed growth by age 3 and that reproductive value decreased after this age likely because of reproductive and survival senescence. We therefore, predicted that reproductive effort would increase from age 3 onwards. The probability of breeding, litter mass at weaning, and likelihood of territory bequeathal were all lower for 1- and 2-year-old females than for females older than 3 years, the age at which growth is completed. That growing females are faced with additional energetic requirements might account for their lower allocation to reproduction as compared with older females. The probability of attempting a second reproduction within the same breeding season and the propensity to bequeath the territory to juveniles increased from 3 years of age onwards, indicating an increase in reproductive effort with age. We think this increase in reproductive effort is an adaptive response of females to declining reproductive values when ageing, thereby supporting Williams' prediction.  相似文献   

7.
Energy investment in reproduction and somatic growth was investigated for summer spawners of the Argentinean shortfin squid Illex argentinus in the southwest Atlantic Ocean. Sampled squids were examined for morphometry and intensity of feeding behavior associated with reproductive maturation. Residuals generated from length‐weight relationships were analyzed to determine patterns of energy allocation between somatic and reproductive growth. Both females and males showed similar rates of increase for eviscerated body mass and digestive gland mass relative to mantle length, but the rate of increase for total reproductive organ weight relative to mantle length in females was three times that of males. For females, condition of somatic tissues deteriorated until the mature stage, but somatic condition improved after the onset of maturity. In males, there was no correlation between somatic condition and phases of reproductive maturity. Reproductive investment decreased as sexual maturation progressed for both females and males, with the lowest investment occurring at the functionally mature stage. Residual analysis indicated that female reproductive development was at the expense of body muscle growth during the immature and maturing stages, but energy invested in reproduction after onset of maturity was probably met by food intake. However, in males both reproductive maturation and somatic growth proceeded concurrently so that energy allocated to reproduction was related to food intake throughout the process of maturation. For both males and females, there was little evidence of trade‐offs between the digestive gland and reproductive growth, as no significant correlation was found between dorsal mantle length‐digestive gland weight residuals. The role of the digestive gland as an energy reserve for gonadal growth should be reconsidered. Additionally, feeding intensity by both males and females decreased after the onset of sexual maturity, but feeding never stopped completely, even during spawning.  相似文献   

8.
Physiological and behavioural parameters associated with reproductive effort and success were investigated in female European ground squirrels Spermophilus citellus . The proportion of reproductive (lactating) females in the study population was over 90% and was not related to age. Timing of oestrus and ovulation was found to be affected by the female's emergence date and condition. Females with low emergence mass showed delayed oestrus. Differences in ovulation dates were shown to affect reproductive output in terms of litter size and sex ratio. Early litters were larger and male biased. X-ray techniques were used to determine intrauterine litter size in individual females. The results indicated that litter size and sex ratio were fixed prenatally. Lactation costs were reflected in the intensity of mass loss and duration of lactation. Mass loss varied with litter size, in that females with large litters showed a more rapid loss than others. The second parental investment parameter, lactation duration, varied among individual females and was dependent on the timing of reproduction and litter size (except yearlings). Early born litters, which were, in most cases, larger than later ones, were nursed longer. Prolonged lactation periods affected female condition in that they started prehibernation fattening later and entered hibernation with a lower mass than individuals that had shorter lactation periods. Yearling females probably could not afford the energetic costs of long lactation, independent of their offspring number. These results indicated that females with higher reproductive output and higher investment were unable to compensate these costs before hibernation. Consequences for these individuals could therefore be lower over-winter survival or a delayed oestrus in the following season.  相似文献   

9.
Food stress in the katydid Requena veriicalis (Orthoptera: Tettigoniidae)decreases the relative availability of males able to supplynutritious spermatophores to females and increases the valueof the male courtship meal (i.e., relative male parental investment).These changes cause female sexual competition in katydid populations.Here we examine the effect of food stress on male and femaleinvestment in single offspring and test the prediction thatmale-derived nutrients in eggs increase relative to nutrientsfrom the female's reserves. We varied the diet of female R.veriicalis and determined the fate of nutrients from male andfemale sources using I4C and 3H radiolabeled amino acids. Low-dietfemales retained more nutrients from male and female sourcesin somatic tissues and invested less in reproduction both becausethey produced fewer eggs and because they invested less peroffspring (egg) than females maintained on a high-quality diet.Moreover, opposite to our prediction, relative male investmentin individual eggs decreased in foodstressed females; femalesretained more nutrients in somatic tissues from the male sourcethan the female source. Food-stressed females may retain nutrientreserves, particularly those from the male, as an adaptive trategyfor immediate survival needs and future reproduction. Such afemale strategy is unlikely to compromise male reproductivesuccess; first-male sperm precedence means that males matingwith virgin females are likely to father most eggs laid, evenin future reproductive bouts. The decrease in male investmentin eggs of low-diet females does not conflict with the contentionthat relative parental investment controls male intrasexualcompetition because, in mate-feeding species, male investmentinfluencing this competition includes more than investment incurrent offspring; females should compete for males if courtshipgifts aid survival and later reproduction.  相似文献   

10.
Estimates of the sex ratio and cost of reproduction in plant populations have implications for resource use by animals, reserve design, and mechanisms of species coexistence, but may be biased unless all potentially reproductive individuals are censused over several flowering seasons. To investigate mechanisms maintaining dioecy in tropical forest trees, we recorded the flowering activity, sexual expression, and reproductive effort of all 2209 potentially reproductive individuals within 16 species of Myristicaceae over 4 years on a large forest plot in Amazonian Ecuador. Female trees invested >10 times more biomass than males in total reproduction. Flowering sex ratios were male-biased in four species in ≥1 year, and cumulative 4-year sex ratios were male-biased in two species and for the whole family, but different mechanisms were responsible for this in different species. Annual growth rates were equivalent for both sexes, implying that females can compensate for their greater reproductive investment. There was no strict spatial segregation of the sexes, but females were more often associated with specific habitats than males. We conclude that male-biased sex ratios are not manifested uniformly even after exhaustive sampling and that the mechanisms balancing the higher cost of female reproduction are extremely variable.  相似文献   

11.
D. S. Glazier 《Oecologia》2000,122(3):335-345
Relationships between body storage (estimated as fat content and residuals of body mass regressed against body length) and offspring investment [brood mass, brood size (number of embryos per brood) and embryo mass] were examined within and among populations of the amphipod Gammarus minus in ten cold springs in central Pennsylvania, USA. Two major hypotheses and six corollary hypotheses were tested. Total reproductive investment (brood mass and brood size) was usually strongly positively correlated with maternal body length and body storage both within and among populations. These positive associations between reproductive and somatic investments are expected if individual variation in resource acquisition exceeds that of resource allocation. That is, individuals or populations that are able to acquire more resources should also be able to allocate more resources to both reproduction and somatic reserves than those acquiring fewer resources. This hypothesis is consistent with evidence showing that individual differences in body storage in G. minus and other amphipods are related to differences in resource acquisition. Positive associations between reproductive and somatic investments do not mean that energy costs of reproduction do not exist in G. minus. Evidence for reproductive energy costs included the lower body-fat contents of brooding versus nonbrooding females and the relatively low body mass per length of females who had just deposited eggs in their brood pouch. Unlike brood mass and brood size, individual embryo mass was usually unrelated to maternal body length and body storage. This pattern is largely consistent with optimal offspring investment theory, which predicts that offspring size should be insensitive to variation in parental resource status. However, in contrast to theory, embryo mass increased in winter when brooding females were significantly ”fatter”, presumably due to the availability of autumn-shed leaf food. This seasonal change in offspring size may be a maternally mediated effect of increased resource availability, though other explanations are possible. Overall, this study suggests that ”fatter” female amphipods are fitter than ”thinner” ones, though both the costs and benefits of increased body storage and brood size require investigation to substantiate this claim. This study also suggests that effects of individual variation in resource acquisition on life-history patterns deserve more theoretical and empirical attention by ecologists than they have received. It should be recognized that positive and/or nonsignificant correlations between life-history traits are just as interesting and important as are the negative correlations predicted by many theoretical models. Received: 20 January 1999 / Accepted: 26 September 1999  相似文献   

12.
In dioecious clonal plants, the reproductive effort required to set seeds will be responsible for the larger investment in sexual reproduction by females. If there will be a trade-off in resource allocation between sexual and clonal reproduction, this differential sexual reproduction will lead to sexual differentiation in the relative amount of clonal reproduction. To test this prediction, we studied differences between the sexes in their phenologies and investments in sexual and vegetative reproduction (clonal reproduction by means of bulbils) with respect to ramet size in a dioecious clonal plant, Dioscorea japonica Thunb. The period of bulbil production overlapped the period during which infructescences developed. Females flowered later, produced heavier inflorescences, and fewer flowers per inflorescence than did males. Regression analysis using the size of the individual plants demonstrated that large females made smaller investments in inflorescences and larger investments in sexual reproduction than did large males. In contrast, females invested fewer resources in vegetative reproduction than did males. However, the total investments in sexual and vegetative reproduction did not differ between the sexes. These results supported our hypothesis on the sexual differentiation in sexual and clonal reproduction.  相似文献   

13.
Reproductive investment and somatic growth rates in longear sunfish   总被引:1,自引:0,他引:1  
Synopsis Allocation of energy to current reproduction at the expense of other functions, such as growth, can limit future reproductive potential. This cost of reproduction is a central concept of life history theory but has been difficult to verify in comparative field studies. Three levels of comparison of growth rates and reproductive investments were evaluated within and among populations of longear sunfish,Lepomis megalotis. All three demonstrated high levels of reproductive investment associated with reduced somatic growth. Within populations of central longear sunfish there are precociously mature sneaker makes and later maturing parental makes; sneakers have greater gonadosomatic index (GSI) values and slower somatic growth rates than parental makes. Between subspecies of longear sunfish grown under common conditions, there are differences in age at maturity and in the level of physiological reproductive investment that are associated with distinct differences in growth rates. Between populations of central longear sunfish inhabiting different sites, there are differences in the level of reproductive investment that are also associated with differences in somatic growth. Each comparison produced evidence that trade-offs occur between these life history traits, supporting the hypothesis that there is a cost of reproduction among male sunfish and suggesting that differences in strategies of reproductive investment contribute to variation in somatic growth.  相似文献   

14.
Age at primiparity plays a crucial role in population dynamics and life-history evolution. Long-term data on female North American red squirrels were analysed to study the fitness consequences of delaying first reproduction. Early breeders were born earlier, had a higher breeding success and achieved a higher lifetime reproductive success than females who delayed their first reproduction, which suggests a higher quality of early breeders. However, early breeders had similar mass when tagged, and similar number of food caches available at one year of age as late breeders. Nevertheless, we found evidence of survival costs of early primiparity. Early breeders had a lower survival between one and two years of age than late breeders and a lower lifespan. Our study points out that two reproductive tactics co-occurred in this population: a tactic based on early maturity at the cost of a lower survival versus a tactic based on delayed maturity and long lifespan. High quality individuals express the most profitable tactic by breeding early whereas low quality individuals do the best of a bad job by delaying their first reproduction.  相似文献   

15.
Despite the recent interest in animal personality and behavioral syndromes, there is a paucity of explanations for why distinct behavioral traits should evolve to correlate. We investigate whether such correlations across apparently distinct behavioral traits may be explained by variation in life history strategy among individual ant colonies. Life history theory predicts that the way in which individuals allocate energy towards somatic maintenance or reproduction drives several distinct traits in physiology, morphology, and energy use; it also predicts that an individual's willingness to engage in risky behaviors should depend on reproductive strategy. We use Temnothorax ants, which have been shown to exhibit ‘personalities’ and a syndrome that may reflect risk tolerance at the colony level. We measure colonies' relative investment in growth rate (new workers produced) compared to reproductive effort (males and queens produced). Comparing sterile worker production to reproductive alate production provides a direct measure of how colonies are investing their energy, analogous to investment in growth versus reproduction in a unitary organism. Consistently with this idea, we found that behavioral type of ant colonies was associated with their life history strategy: risk‐tolerant colonies grew faster and invested more in reproduction, whereas risk‐averse colonies had lower growth rate but invested relatively more in workers. This provides evidence that behavioral syndromes can be a consequence of life‐history strategy variation, linking the two fields and supporting the use of an integrative approach.  相似文献   

16.
According to life-history theory age-dependent investments into reproduction are thought to co-vary with survival and growth of animals. In polygynous species, in which size is an important determinant of reproductive success, male reproduction via alternative mating tactics at young age are consequently expected to be the less frequent in species with higher survival. We tested this hypothesis in male Alpine ibex (Capra ibex), a highly sexually dimorphic mountain ungulate whose males have been reported to exhibit extremely high adult survival rates. Using data from two offspring cohorts in a population in the Swiss Alps, the effects of age, dominance and mating tactic on the likelihood of paternity were inferred within a Bayesian framework. In accordance with our hypothesis, reproductive success in male Alpine ibex was heavily biased towards older, dominant males that monopolized access to receptive females by adopting the ‘tending’ tactic, while success among young, subordinate males via the sneaking tactic ‘coursing’ was in general low and rare. In addition, we detected a high reproductive skew in male Alpine ibex, suggesting a large opportunity for selection. Compared with other ungulates with higher mortality rates, reproduction among young male Alpine ibex was much lower and more sporadic. Consistent with that, further examinations on the species level indicated that in polygynous ungulates the significance of early reproduction appears to decrease with increasing survival. Overall, this study supports the theory that survival prospects of males modulate the investments into reproduction via alternative mating tactics early in life. In the case of male Alpine ibex, the results indicate that their life-history strategy targets for long life, slow and prolonged growth and late reproduction.  相似文献   

17.
J. Jokela  P. Mutikainen 《Oecologia》1995,104(1):122-132
We studied resource allocation among maintenance, reproduction and growth in the freshwater clam Anodonta piscinalis. Recent theoretical and empirical studies imply that organisms with indeterminate growth may have priority rules for energy allocation. That being so, the traits involved should potentially be capable of considerable phenotypic modulation, as a mechanism to adjust allocation. We tested this hypothesis using a 1-year reciprocal transplant experiment at six sites. Experimental clams were caged at higher than natural densities in order to detect any phenotypic modulation of the traits and discover the putative priority rules in energy allocation. We recorded the survival and shell growth of clams during the experiment, and the reproductive output, somatic mass and fat content of clams at the end of the experiment. Shell growth, somatic mass, and the reproductive output of females varied more among transplant sites than among the populations of origin, suggesting a high capacity for phenotypic modulation. However, the reproductive investment, somatic mass and shell growth were also affected by origin; clams from productive habitats invested more in reproduction and were heavier. In comparison to undisturbed clams, the reproductive output of the experimental clams was similar and their fat content was higher, whereas their shell growth was considerably slower and their somatic mass lower. These results suggests that when resources are limiting (due to high density) reproductive allocation overrides allocation to somatic growth. The highest mortality during the experiment coincided with the period of reproductive stress in the spring. Additionally, the proportion of reproducing females was lower in those transplant groups where the survival rate was lowest, suggesting that maintenance allocation overrides allocation to reproduction when available resources are scarce. The results of this field experiment support theoretical predictions and results of previous laboratory experiments that suggest that there are priority rules for energy allocation in organisms with indeterminate growth.  相似文献   

18.
Although information concerning variation among and within populations is essential to understanding an organism's life history, little is known of such variation in any species of scorpion. We show that reproductive investment by the scorpion Centruroides vittatus varied among three Texas populations during one reproductive season. Females from the Kickapoo population produced smaller offspring and larger litters than females from the Independence Creek or Decatur populations; this pattern remained when adjusting for among population variation in either female mass or total litter mass. Relative clutch mass (RCM) and within-litter variability in offspring mass (V*) did not differ among populations. Among-population variation may result from genetic differences or from phenotypically plastic responses to differing environments. Within populations, the interrelationships among reproductive variables were similar for Decatur and Independence Creek: females investing more in reproduction (measured by total litter mass, TLM) produced larger litters and larger offspring, and V* decreased with increased mean offspring mass (and with decreased litter size at Decatur). At Kickapoo, larger females produced larger litters and had larger TLM; females investing more in reproduction produced larger litters but not larger offspring. Within litter variability in offspring mass was not correlated with any reproductive variables in this latter population. These patterns may be explained by the fractional clutch hypothesis, the inability of females precisely to control investment among offspring or morphological constraints on reproduction.  相似文献   

19.
The somatic growth, sexual maturation and fecundity of individually marked first‐time spawning female Atlantic cod Gadus morhua were examined under different varying temperature and feeding regimes over the months preceding spawning. A negative correlation between somatic and oocyte growth was found, reflecting the changing energy allocation pattern. Nevertheless, the somatic growth of mature individuals was at least as high as those of immature fish over the period of vitellogenesis. Potential fecundity was positively correlated with body size, but neither temperature or feeding regime significantly affected this relationship. Consequently, fish with unlimited feeding opportunity invested more energy into somatic growth during vitellogenesis compared to those held under a restricted ration. This indicated that once Atlantic cod had made the decision to invest in first reproduction, they allocated a certain amount of energy relative to their size into egg production and any surplus was invested into somatic growth. Low temperature led to an arrest in the onset of vitellogenesis and significantly affected the number of females that matured.  相似文献   

20.
Summary We have analyzed seasonal shifts of energy and time allocation in a population of golden-mantled ground squirrels (Spermophilus saturatus) by directly measuring total daily energy expenditure (DEE) with an isotopic technique (doubly labeled water=dlw), and by estimating components of total DEE through an integration of field behavioral observations with laboratory-measured rates of energy expenditure (oxygen consumption) associated with major behavioral and physiological states. Hibernation laster about 7 1/2 months, and the 4 1/2-month activity season consisted of mating, a 28-d gestation of 3–5 young, 5 1/2 weeks of postnatal growth building to a peak in lactation just before the young emerged above ground, an additional 2–3-week period of maternal care before dispersal, and finally restoration of body mass preceding hibernation. Although the hibernation season comprised nearly two-thirds of the year, it involved only 13–17% of annual energy expenditure, leaving about 85% of energy expenditure for the active season. Ground squirrels were actually present on the surface for only about 11% of the year's time, and the foraging time required to obtain the total annual energy supply amounted to only about 2% of the year's time. The squirrels fed mainly on herbs in the early season and hypogeous fungi later; both were used extensively during peak lactation when female energy expenditure and demand were maximal. Average daily foraging time increased steadily throughout the season to a maximum of 28% of aboveground time as availability of greens diminished and fungus predominated in the diet; time availability did not limit foraging since the animals sat on average for 65% of the daily surface time of about 7 h. Timing of reproduction is apparently optimized such that peak reproductive energy demands are matched with maximal food availability and moderate thermal conditions that minimize energy demand. Despite the greater body mass of males, the greatest total DEE (measured by dlw) of any squirrels at any time of year was that of females during peak lactation. For production of young and lactation through above-ground emergence of an average litter of 2.7, females required a total energy increase of 24% above annual nonreproductive metabolism. Yearling females all bred and performed similarly to older females, yet some costs were greater because the yearlings began and ended hibernation at smaller mass, compensated by giving birth later, and finally showed a greater absolute increase in body mass over the active season than older females. Annual metabolic energy expenditure of breeding males was about 18% greater than that of females, due to greater male body mass. Yet the annual energy intake requirement for both sexes was essentially identical (about 42MJ) due to the greater reproductive export by females in the form of newborn and milk. During the mating season males showed wide-ranging exploratory behavior and social interactions, including aggression, that involved considerable locomotory energy expenditures. Although we did not directly account for the energetics of these specific reproductive behaviors, they are critical to male reproductive success and on a daily basis they probably involved much greater energy expenditure than sperm production. Some yearling males avoided these costs by foregoing testicular development, yet they allocated four times as much energy to growth as older males, thereby increasing somatic condition for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号