首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosystem Ⅱ reaction center D1/D2/Cytochrome b559 complex loses its bound secondary electron acceptor QA and QB during isolation and purification. The artificial plastoquinone can reconstitute with the complex. The reconstitution of decyl-plastoquinone (DPQ) with D1/D2/Cytochrome b559 complex results in a decrease of the fraction of the two long lived fluorescence decay components (24 ns and 73 ns) coupled with photochemical activities to the total fluorescence yields, as well as a decrease of the total fluorescence intensity and a blue-shift of maximum emission wavelength. These results suggest that as the electron acceptor of reduced Pheo, DPQ restricts the charge recombination of P680+ Pheo-, and the two long lived fluorescence decay components (24 ns and 73 ns) come from the recombination. Although DPQ reconstitution has little effect on the susceptibility of Chi a to photodamage, β-carotene can easily be photodamaged after DPQ reconstitution. This is probably related to the physiological function of β-carotene.  相似文献   

2.
It has been shown that thermoinactivation of the isolated D1/D2/cytochrome b 559 complex (RC) of photosystem 2 (PS-2) from pea under anaerobic conditions at 35°C in 20 mM Tris-HCl buffer (pH 7.2) depleted of HCO3, with 35 mM NaCl and 0.05% n-dodecyl-β-maltoside, results in a decrease in photochemical activity measured by photoreduction of the PS-2 primary electron acceptor, pheophytin (by 50% after 3 min of heating), which is accompanied by aggregation of the D1 and D2 proteins. Bicarbonate, formate, and acetate anions added to the sample under these conditions differently influence the maintenance of photochemical activity: a 50% loss of photochemical activity occurs in 11.5 min of heating in the presence of bicarbonate and in 4 and 4.6 min in the presence of formate and acetate, respectively. The addition of bicarbonate completely prevents aggregation of the D1 and D2 proteins as opposed to formate and acetate (their presence has no effect on the aggregation during thermoinactivation). Since the isolated RCs have neither inorganic Mn/Ca-containing core of the water-oxidizing complex nor nonheme Fe2+, it is supposed that bicarbonate specifically interacts with the hydrophilic domains of the D1 and D2 proteins, which prevents their structural modification that is a signal for aggregation of these proteins and the loss of photochemical activity.  相似文献   

3.
P Braun  B M Greenberg  A Scherz 《Biochemistry》1990,29(45):10376-10387
A D1-D2-cyt b559 complex with about four attached chlorophylls and two pheophytins has been isolated from photosystem II of the aquatic plant Spirodela oligorrhiza and used for studying the detergent-induced changes in spectroscopic properties and photochemical activity. Spectral analyses (absorption, CD, and fluorescence) of D1-D2-cyt b559 preparations that were incubated with different concentrations of the detergent Triton X-100 indicate two forms of the D1-D2-cyt b559 complexes. One of them is photochemically active and has an absorption maximum at 676 nm, weak fluorescence at 685 nm, and a strong CD signal. The other is photochemically inactive, with an absorption maximum at 670 nm, strong fluorescence at 679 nm, and much weaker CD. The relative concentrations of the two forms determine the overall spectra of the D1-D2-cyt b559 preparation and can be deduced from the wavelength of the lowest energy absorption band: preparations having maximum absorption at 674, 672, or 670.5 nm have approximately 20, 60, or 85% inactive complexes. The active form contains two chlorophylls with maximum absorption at 679 nm and CD signals at 679 (+) and 669 nm (-). These chlorophylls make a special pair that is identified as the primary electron donor P-680. The calculated separation between the centers of these two pigments (using an extended version of the exciton theory) is about 10 A, the pigments' molecular planes are tilted by about 20 degrees, and their N1-N3 axes are rotated by 150 degrees relative to each other. The other two chlorophylls and one of the two pheophytins in the D1-D2-cyt b559 complex have their maximum absorption at 672 nm, while the maximum absorption of the photochemically active pheophytin is probably at 672-676 nm. During incubation with Triton X-100, the photochemically active complex is transformed into an inactive form with first-order kinetics. In the inactive form the maximum absorption of the 679 nm absorbing Chls is blue-shifted to 669 nm. The first-order decay of the photochemical activity suggests that the isolated D1-D2-cyt b559 complex is stable as an aggregate but becomes unstable on dissociation into individual D1-D2-cyt b559 units.  相似文献   

4.
Transformation with the bacterial gene codA for choline oxidase allows Synechococcus sp. PCC 7942 cells to accumulate glycinebetaine when choline is supplemented exogenously. First, we observed two types of protective effect of glycinebetaine against heat-induced inactivation of photosystem II (PSII) in darkness; the codA transgene shifted the temperature range of inactivation of the oxygen-evolving complex from 40-52 degrees C (with half inactivation at 46 degrees C) to 46-60 degrees C (with half inactivation at 54 degrees C) and that of the photochemical reaction center from 44-55 degrees C (with half inactivation at 51 degrees C) to 52-63 degrees C (with half inactivation at 58 degrees C). However, in light, PSII was more sensitive to heat stress; when moderate heat stress, such as 40 degrees C, was combined with light stress, PSII was rapidly inactivated, although these stresses, when applied separately, did not inactivate either the oxygen-evolving complex or the photochemical reaction center. Further our studies demonstrated that the moderate heat stress inhibited the repair of PSII during photoinhibition at the site of synthesis de novo of the D1 protein but did not accelerate the photodamage directly. The codA transgene and, thus, the accumulation of glycinebetaine alleviated such an inhibitory effect of moderate heat stress on the repair of PSII by accelerating the synthesis of the D1 protein. We propose a hypothetical scheme for the cyanobacterial photosynthesis that moderate heat stress inhibits the translation machinery and glycinebetaine protects it against the heat-induced inactivation.  相似文献   

5.
R Gadjieva  F Mamedov  G Renger  S Styring 《Biochemistry》1999,38(32):10578-10584
In this study, the reversible conversion between the high- (HP) and low-potential (LP) forms of Cytb(559) has been analyzed in Tris-washed photosystem II (PSII) enriched membranes. These samples are deprived of the Mn cluster of the water-oxidizing complex (WOC) and the extrinsic regulatory proteins. The results obtained by application of optical and EPR spectroscopy reveal that (i) under aerobic conditions, the vast majority of Cytb(559) exhibits a low midpoint potential, (ii) after removal of O(2) in the dark, a fraction of Cytb(559) is converted to the high-potential form which reaches level of about 25% of the total Cytb(559), (iii) a similar dark transformation of LP --> HP Cytb(559) occurs under reducing conditions (8 mM hydroquinone), (iv) under anaerobic conditions and in the presence of 8 mM hydroquinone, about 60% of the Cytb(559) attains the HP form, (v) the interconversion is reversible with the re-establishment of aerobic conditions, and (vi) aerobic and oxidizing conditions (2 mM ferricyanide or 0.5 mM potassium iridate) induce a decrease of the amount of the HP form, also showing that the conversion is reversible. This reversible interconversion between LP and HP Cytb(559) is not observed in PSII membrane fragments with an intact WOC. On the basis of these findings, the possibility is discussed that the O(2)-dependent conversion of Cytb(559) in PSII complexes lacking a functionally competent WOC is related to a protective role of Cytb(559) in photoinhibition and/or that it is involved in the regulation of the assembly of a competent water-oxidizing complex in PSII.  相似文献   

6.
A protective action of K15 (4-[methoxy-bis(trifluoromethyl)methyl]-2,6-dinitrophenylhydrazone methyl ketone), an inhibitor of electron transport in photosystem 2 (PS 2), against photoinactivation of the PS 2 reaction center (RC) D1/D2/cytochrome b(559) complex, isolated from pea chloroplasts, by red light (0.7 mmol photons/sec per m(2)) has been investigated under aerobic conditions. The inhibitor K15 causing cyclic electron transfer around PS 2 and thus prohibiting stabilization of separated charges has been shown to effectively protect RC both against the loss of photochemical activity (measured as reversible photoinduced absorbance changes related to photoreduction of pheophytin) and aggregation and degradation of the proteins D2 and D1 during photoinactivation. Comparison of the protective action of K15 and of another inhibitor of electron transfer in PS 2, diuron, against light-induced destruction of proteins D1 and D2 shows that diuron stabilizes protein D1 and K15 stabilizes protein D2. The preferential protection of D2 against photoinduced destruction revealed in our work is in accord with the concept of a specific binding of K15 with this protein. It is proposed that this binding site may be that of the primary quinone electron acceptor Q(A) located on the D2 protein (in contrast to diuron, which is known to replace the secondary electron acceptor Q(B) from its binding site on D1).  相似文献   

7.
Photosystem II (PSII) is the multi-subunit light-driven oxidoreductase that drives photosynthetic electron transport using electrons extracted from water. To investigate the initial steps of PSII assembly, we used strains of the cyanobacterium Synechocystis sp. PCC 6803 arrested at early stages of PSII biogenesis and expressing affinity-tagged PSII subunits to isolate PSII reaction center assembly (RCII) complexes and their precursor D1 and D2 modules (D1mod and D2mod). RCII preparations isolated using either a His-tagged D2 or a FLAG-tagged PsbI subunit contained the previously described RCIIa and RCII* complexes that differ with respect to the presence of the Ycf39 assembly factor and high light-inducible proteins (Hlips) and a larger complex consisting of RCIIa bound to monomeric PSI. All RCII complexes contained the PSII subunits D1, D2, PsbI, PsbE, and PsbF and the assembly factors rubredoxin A and Ycf48, but we also detected PsbN, Slr1470, and the Slr0575 proteins, which all have plant homologs. The RCII preparations also contained prohibitins/stomatins (Phbs) of unknown function and FtsH protease subunits. RCII complexes were active in light-induced primary charge separation and bound chlorophylls (Chls), pheophytins, beta-carotenes, and heme. The isolated D1mod consisted of D1/PsbI/Ycf48 with some Ycf39 and Phb3, while D2mod contained D2/cytochrome b559 with co-purifying PsbY, Phb1, Phb3, FtsH2/FtsH3, CyanoP, and Slr1470. As stably bound, Chl was detected in D1mod but not D2mod, formation of RCII appears to be important for stable binding of most of the Chls and both pheophytins. We suggest that Chl can be delivered to RCII from either monomeric Photosystem I or Ycf39/Hlips complexes.

Analysis of isolated assembly complexes provides new insights into the early stages of photosystem II biogenesis.  相似文献   

8.
Reconstitution of plastoquinone in the photosystem II D1/D2/cytochrome b-559 reaction centre complex, in the presence of the detergent Triton X-100, is reported. Illumination of the reconstituted system results in the reduction of cytochrome b-559, the process being partly herbicide-sensitive. In addition, the reconstitution of plastoquinone results in the ability of the isolated reaction centre to catalyse the photoreduction of 2,6-dichlorophenolindophenol in the presence of the exogenous electron donor diphenylcarbazide.  相似文献   

9.
Histidine residue content of photosystem Ⅱ reaction center D1/D2/cytochrome b559 complex decreased by about 26% after illumination. The result suggests that some histidine residues are damaged by illumination. The damage of histidine residues may be related to the changes of the spectra properties during the incubation in the dark following preillumination of the reaction center complex.  相似文献   

10.
Photodamage of some pigments in the isolated photosystem Ⅱ (PS Ⅱ ) reaction center D1/D2/Cyt b559 complex from spinach has been investigated by means of high performance liquid chromatography. The light-induced damage of pheophytin a (pheo a) in the complex was observed for the first time. The content of pheo a decreased about 47 % by illumination, suggesting only one of the two pheo a molecules in the PS Ⅱ reaction center complex was damaged. No damage of β-carotene was found.  相似文献   

11.
The CD spectrum of photosystem Ⅱ reaction center D1/D2/Cyt b559 complex showed a strong reverse band with positive peak at 680 nm and negative peak at 660 nm in the red absorption region (Qy band). After the D1/D2/Cyt b559 complex was illuminated by strong light, the CD signals of the complex decreased significantly in the red region in which the negative peak still existed but the positive one disappeared. The result suggested that the CD signal of photosystem Ⅱ reaction center D1/D2/Cyt b559 complex not only came from the primary donor, P680, but also from other pigments such as from accessory Chl a or Pheo a.  相似文献   

12.
Pure plasma membrane and thylakoid membrane fractions from Synechocystis 6803 were isolated to study the localisation and processing of the precursor form of the D1 protein (pD1) of photosystem II (PSII). PSII core proteins (D1, D2 and cytb559) were localised both to plasma and thylakoid membrane fractions, the majority in thylakoids. pD1 was found only in the thylakoid membrane where active PSII is known to function. Membrane fatty acid unsaturation was shown to be critical in processing of pD1 into mature D1 protein. This was concluded from pulse-labelling experiments at low temperature using wild type and a mutant Synechocystis 6803 with a low level of membrane fatty acid unsaturation. Further, pD1 was identified as two distinct bands, an indication of two cleavage sites in the precursor peptide or, alternatively, two different conformations of pD1. Our results provide evidence for thylakoid membranes being a primary synthesis site for D1 protein during its light-activated turnover. The existence of the PSII core proteins in the plasma membrane, on the other hand, may be related to the biosynthesis of new PSII complexes in these membranes.  相似文献   

13.
The cytochrome b559 content was examined in five types of isolated photosystem II D1-D2-cytochrome b559 reaction center preparations containing either five or six chlorophylls per reaction center. The reaction center complexes were obtained following isolation procedures that differed in chromatographic column material, washing buffer composition and detergent concentration. Two different types of cytochrome b559 assays were performed. The absolute heme content in each preparation was obtained using the oxidized-minus-reduced difference extinction coefficient of cytochrome b559 at 559 nm. The relative amount of D1 and cytochrome b559alpha-subunit polypeptide was also calculated for each preparation from immunoblots obtained using antibodies raised against the two polypeptides. The results indicate that the cytochrome b559 heme content in photosystem II reaction center complexes can vary with the isolation procedure, but the variation of the cytochrome b559alpha-subunit/D1 polypeptide ratio was even greater. This variation was not found in the PSII-enriched membrane fragments used as the RC-isolation starting material, as different batches of membranes obtained from spinach harvested at different seasons of the year or those from sugar beets grown in a chamber under controlled environmental conditions lack variation in their alpha-subunit/D1 polypeptide ratio. A precise determination of the ratio using an RC1-control sample calibration curve gave a ratio of 1.25 cytochrome b559alpha-subunit per 1.0 D1 polypeptide in photosystem II membranes. We conclude that the variations found in the reaction center preparations were due to the different procedures used to isolate and purify the different reaction center complexes.  相似文献   

14.
A recent report (Nanba O, Satoh K: Proc. Natl. Acad. Sci. USA 84: 109–112, 1987) described the isolation from spinach of a putative photosystem 2 reaction centre which contained cytochrome b-559 and three other electrophoretically resolvable polypeptide bands, two of which have molecular weights comparable to the D1 and D2 polypeptides. We have used in vivo labelling with radioactive methionine and probed with D1 and D2 monospecific antibodies (raised against synthetically expressed sequences of the psbA and psbD genes) for specific detection of these proteins in a similarly prepared photosystem 2 reaction centre preparation. These techniques identified a 32 000 dalton D1 band, a 30 000 dalton D2 band and a 55 000 dalton D1/D2 aggregate, the latter apparently arising from the detergent treatments employed. Digestions with a lysine-specific protease further confirmed the identification of the lysine-free D1 polypeptide and also confirmed that the D1 molecules in the 55 000 dalton band were in aggregation with other bands and not in self-aggregates. The D1 and D2 polypeptides (including the aggregate) are considerably enriched in the photosystem two reaction centre preparation compared to the other resolved fractions.  相似文献   

15.
Implication of D1 degradation in phosphorylation-induced state transitions   总被引:1,自引:0,他引:1  
State transitions and lateral migration of phosphorylated mobile-LHC II upon thylakoid unstacking have been reported as being interdependent. However, now the thyakoid unstacking event can be separated from the thyakoid phosphorylation and the associated F730/F685 enhancement by using the serine-type-protease inhibitor benzamidine. Thus, lateral migration appears not be necessary, and it can be shown that LHC II-rich fragments, originating in peripheral granal membranes, can be released by digitonin although in reduced amounts. On the other hand, phosphorylation of thylakoid proteins greatly stimulates the light-induced D1 degradation, which is observed in chloroplasts phosphorylated even at very low light (15 µmol m–2s–1). Thylakoid pretreatment with FSBA (the PS II protein-kinase inhibitor) blocks the light-induced and ATP-stimulated D1 degradation, and the F730/F685 ratio increase; this suggests that the dissociation of the PS II unit, resulting from the introduction of repulsive negative charges ( ATP groups) into LHC II and PS II core proteins, leads to D1 degradation. In chloroplast samples transferred to darkness following short-time phosphorylation, the D1 level is recovered. The results suggest that disassembly of PS II and D1 degradation occur parallel to State transitions. The removal of outer phospho-LHC II from PS II and its association with PS I at the periphery of grana may allow D1 degradation and increased light utilization by PS I, while net de novo synthesis of D1, stimulated by ATP, may lead to the assembly of new PS II units which could bind dephosphorylated LHC II in the dark, resulting in increased light utilization by PS II.  相似文献   

16.
The growth of canola plants treated with either wild-type Pseudomonas putida UW4 or a 1-aminocyclopropane-1-carboxylate (ACC) deaminase minus mutant of this strain was monitored in the presence of inhibitory levels of salt, i.e., 1.0 mol/L at 10 degrees C and 150 mmol/L at 20 degrees C. This strain is psychrotolerant with a maximal growth rate of approximately 30 degrees C and the ability to proliferate at 4 degrees C. Although plant growth was inhibited dramatically by the addition of 1.0 mol/L salt at 10 degrees C and only slightly by 150 mmol/L salt at 20 degrees C under both sets of conditions, the addition of the wild type but not the mutant strain of P. putida UW4 significantly improved plant growth. This result confirms the previous suggestion that bacterial strains that contain ACC deaminase confer salt tolerance to plants by lowering salt-induced ethylene synthesis.  相似文献   

17.
Effects of foliar application of 100 mmol/L glycinebetaine (GB) on PS II photochemistry in wheat (Triticum aestivum) flag leaves under drought stress combined with high irradiance were investigated. The results show that GB-treated plants maintained a higher net photosynthetic rate during drought stress than non-GB treated plants. Exogenous GB can preserve the photochemical activity of PSII, for GB-treated plants maintain higher maximal photochemistry efficiency of PSII (F(v)/F(m)) and recover more rapidly from photoinhibition. In addition, GB-treated plants can maintain higher anti-oxidative enzyme activities and suffer less oxidative stress. Our data suggest that GB may protect the PSII complex from damage through accelerating D1 protein turnover and maintaining anti-oxidative enzyme activities at higher level to alleviate photodamage. Diethyldithiocarbamate as well as streptomycin treatment can impair the protective effect of GB on PSII. In summary, GB can enhance the photoinhibition tolerance of PSII.  相似文献   

18.
Analysis of a number of PSII complexes detectable in the wild-type and mutant cells of the cyanobacterium Synechocystis sp. PCC 6803 showed that the PsbH protein is present in the complexes containing CP47, including unassembled CP47. In a mutant lacking CP47, in which the PSII assembly is stopped at the level of the D1-D2-cytochrome b-559 reaction centre complex, a negligible amount of the PsbH protein was not bound to this complex but was detected in the free form. The results indicate that the PsbH protein has a high affinity for CP47 and during PSII assembly most probably first associates with CP47 and this pair is subsequently attached to the reaction centre complex. Similarly to CP47, the PsbH protein exhibits a slow light-induced degradation in the presence of protein synthesis inhibitor. The absence of the PsbH protein leads to a greatly increased D1 pool that is not associated with other PSII proteins or it is present as a part of the reaction centre complex. We conclude that PsbH is important for the prompt incorporation of the newly synthesized D1 protein into PSII complexes and for the fast D1 maturation.  相似文献   

19.
The isolated and purified photosystem Ⅱ (PS Ⅱ ) reaction center D1/D2/Cyt b559 complex was taken as the experimental system. It was observed that under anaerobic conditions, cytochrome b559 (Cyt b559) could be reduced by exposure to strong illumination, suggesting Cyt b559 could accept electrons directly from reduced pheophytin (Pheo-). And the photoreduction of Cyt b559 was irreversible. When the isolated D1/D2/Cyt b559 complex reconstituted with exogenous secondary electron acceptor 2,6-dimethyl-benzoquinone (DMBQ), the photoreduction of Cyt b559 was delayed in the function of illumination time. Meanwhile, the electrons transferred mainly through DMBQ and photoreduced Cyt b559 could be partially reoxidized in the dark incubation following illumination. It was concluded that the quinone-independent electron transfer via Cyt b559 was a new, secondary electron pathway, which represented one of the protective pathes for PS Ⅱ reaction center to dissipate excess excitation energy.  相似文献   

20.
Photosystem Ⅱ reaction center D1/Dg/Cyt b559 complex is very sensitive to light. Besides pigments, some amino acids, like histidine and methionine residues on the polypeptide chain, were damaged and D1 and D2 proteins were degraded by illumination. SDS-PAGE analysis demonstrated an increased content of the D1 and D2 protein dimers and a new band with molecular weight of 41 kD after light treatment. Meanwhile, the D1 and D2 bands were shifted to apparent positions of higher molecular weight. During the consequent incubation in the dark following illumination, although there was no change in the composition of amino acids, the degradation process of D1 and D2 proteins and the production of 41 kD fragment continued. It was proposed that degradation of D1 and D2 proteins was probably due to the photodamage of some amino acids via chemical splitting and co-valent cross-linkage in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号