首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
营养及水力条件影响光合细菌生物膜生长特性实验   总被引:4,自引:0,他引:4  
对平板式生物膜反应器内,流量及底物浓度范围分别为37.8~1080ml/h、0.05~10g/L的不同生长条件下光合产氢细菌生物膜生长特性进行了实验研究,讨论了不同水力及营养条件对沼泽红假单胞菌生物膜表面覆盖率、膜厚、干重和密度的影响。实验结果表明,不同水力及营养条件对生物膜生长速率及结构具有重要影响。在相同的时间间隔内,在高流速条件下光合细菌菌落生长较快,但过高的液体流速会导致部分生物膜脱落;高流速条件易使生物膜形成薄而致密的结构。光合细菌生物膜在循环液底物浓度较高时生长较快,密度也最高;而贫营养条件可以促成结构疏松生物膜在固液界面的形成,这种生物膜结构有利于微生物在低底物浓度条件下底物在生物膜内的传输。  相似文献   

2.
Summary The effect of container porosity on water relations in the substrate and on plant growth was examined. With clay containers the proportional effect of the wall on water loss varied with season, being responsible for 42 per cent of the total loss in winter and 25 per cent in summer. Water loss from plastic containers was 55 per cent of that from clay containers in winter, and 66 per cent in summer. Wall porosity also had a significant effect on water distribution within the container under high radiation conditions. Tomato plants grown under three water regimes showed no effect of matric stress in winter, but growth was significantly reduced for each increase in stress in summer. There was no interaction between container type and water stress. Non-porous containers gave a higher water-use efficiency and had a lower irrigation requirement than porous ones, their greatest advantage being under conditions of low transpirational loss and high evaporative loss.  相似文献   

3.
In microbial cultures, both cellular growth rate and yield (defined as the degree of substrate conversion into the biomass) are important. Although effect of culture conditions on growth kinetics has been well documented for various microbial strains, there is almost no literature concerning the effect of environmental conditions on growth equilibrium, expressed as biomass yield coefficients from substrate. The present paper discusses the effect of culture conditions: irradiance (physical substrate) and glucose concentration (chemical substrate) on biomass yield coefficients from two chemical substrates: glucose and nitrate-nitrogen in photoautotrophic, heterotrophic and mixotrophic culture of blue-green alga Spirulina (Arthrospira) sp. The efficiency of substrates incorporation into the biomass can be precisely determined only if the elemental composition of the biomass is known. The experimental results showed that culture conditions had a substantial influence on biomass yield coefficients (biomass yield from glucose and nitrate-nitrogen). It was found that, the increase of irradiance favoured increase of biomass yield coefficient from both, glucose and nitrate-nitrogen. However, in the case of yield from nitrogen in mixotrophic culture, the effect was opposite. The effect of glucose concentration was different: the higher the initial glucose concentration, the lower the biomass yield coefficients from chemical substrates.  相似文献   

4.
Barbituric acid, 1-methyl- and 1,3-dimethylbarbituric acid, some of its 5-phenyl derivatives, and 5-chlorobarbituric acid are presented as new substrates for the bromoperoxidase isolated from the brown alga Ascophyllum nodosum. This enzyme is able to convert these substrates into the corresponding 5-bromo or 5,5-dibromo derivatives in good yields. Kinetic measurements show that the structure of the examined substrates has little or no effect on the enzymatic rate of bromination. However, at low substrate concentration the reaction rate depends on both the concentration of the organic substrate and the concentration of hydrogen peroxide. A mechanism is proposed for the reactions of bromoperoxidase with its substrates. These reactions involve the formation of free hypobromous acid which can either brominate the organic halogen acceptor or produce singlet oxygen by a competing reaction with hydrogen peroxide.  相似文献   

5.
Leggo  Peter J. 《Plant and Soil》2000,219(1-2):135-146
This work concerns a series of experiments designed to test and understand the effect of ammoniated zeolite on plant growth. The affinity of the zeolite mineral clinoptilolite for NH4 + is utilised in organo-zeolitic substrates to enhance plant growth. By comparing plants grown in substrates with and without ammoniated zeolite, an increase in plant dry weight of some 19% was shown to be due to the presence of the zeolitic NH4 +–N. In this study, experimental work has shown that in an organically enriched substrate an exponential diffusion of NH4 + occurs as a non-equilibrium reaction. It is suggested that ion-exchange is taking place in which soil Ca+2 is exchanged for lattice bound NH4 +. Nitrifying bacteria, utilising the diffusing NH4 +, appear to protect seedlings from the effect of ammonium toxicity and in so doing act as a biological buffer, allowing the plant to take up nitrogen at a rate which is most advantageous throughout its growth. Leaching experiments confirm the presence of very high soil nitrate concentrations indicating that a large population of nitrifying bacteria is established. The ionic mobility of major cations is also greatly increased in the organo-zeolitic substrates. This behaviour is already known to produce beneficial effects in the rhizosphere increasing aeration by flocculating colloidal clay particles and enabling the diffusion of metal ions to occur. Research reported elsewhere demonstrates that plants grown in organo-zeolitic substrates on toxic waste sites exhibit low up-take of toxic metals and it would, therefore, appear that the unique features of organo-zeolitic substrates have both nutritional and ecological value.  相似文献   

6.
Ralstonia eutropha (formerly Alcaligenes eutrophus) JMP 134 was continuously grown on phenol and 2,4-dichlorophenoxyacetate at elevated levels of stationary substrate concentration by using the nutristat principle in order to study the physiological impact exerted by these toxic substrates. Growth at stationary concentrations of both the substrates resulted in the reduction of growth efficiency and growth rate. The growth yield data revealed a pronounced dependence on the substrate concentration, and the growth yield increasingly diminished with rising substrate concentration. Inhibition was more pronounced with 2,4-dichlorophenoxyacetate, which reduced the growth yield coefficient by 50% at a substrate concentration of 0.1–0.25 mM. The same effect was obtained with phenol at about 5 mM. The growth rate profile had two distinct phases: after an initially strong reduction, the rate levelled-off at higher substrate concentrations. Standardizing the inhibition profiles, by taking into account the maximum effect after extrapolating the data to zero growth yield, revealed an almost identical pattern with both substrates, indicating some common mechanism. The growth yield data show that an increased amount of energy is required for both growth and maintenance. Homeostatic work was increased by a factor of 8 at 75% inhibition; growth collapsed once this amount of energy was no longer available. The effects are discussed with respect to the properties of these substrates functioning as potential uncouplers of energy conservation. Received: 5 June 1997 / Received revision: 7 July 1997 / Accepted: 12 July 1997  相似文献   

7.
In all terrestrial ecosystems, plant‐derived resources mainly enter the belowground subsystem in two ways – as dead plant parts (i.e. organic substrates) and as resources released from the rhizosphere of live plants. While the effects of identity of live plants or dead plant parts on aboveground and belowground properties have been well studied, much remains unknown about the effects of combinations of live plant species and dead plant‐derived substrates. In particular, no study to date has experimentally investigated the effects of simultaneously varying the composition or diversity of both live plants and dead plant parts. We performed a pot experiment consisting of a full factorial of 12 organic substrate addition treatments by eight live plant treatments, in which the composition and diversity of both substrates and live plants were varied. The 12 substrate treatments consisted of no substrates added, each of the four substrates represented singly (four treatments), each of the possible pairwise combinations of the four substrates (six treatments), and all four substrates added together. As expected, substrate and live plant identity both had important effects both above‐ and belowground. Mixtures of plant species always had effects that could be explained by the effects of the component plant species grown singly. Usually mixtures of substrates also had effects that could be predicted by the effects of component substrates added singly, but there were instances in which mixtures of certain substrates (notably mixtures containing Populus tremula leaf litter) had synergistic effects both belowground and aboveground, with especially strong effects on the growth of Pinus sylvestris seedlings. However, there was never any evidence of interactive effects between live plant species diversity or composition and added substrate diversity or composition, either aboveground or belowground. This means that whatever effects added substrates have on ecological properties operates independently of the influence of live plants, and vice versa. In total, this study shows that most resources entering the belowground subsystem have effects that are independent of the effects of other resources, though there are isolated instances in which strong (and potentially ecologically meaningful) synergistic interactions may occur for specific combinations of dead organic substrates.  相似文献   

8.
H Gr?n  K Breddam 《Biochemistry》1992,31(37):8967-8971
Subtilisins are endopeptidases with an extended binding cleft comprising at least eight subsites, and kinetic studies have revealed that subsites distant from the scissile bond are important in determining the substrate preference of the enzymes. With the subtilisin enzyme Savinase, the interdependency of the individual Sn-Pn interactions has been investigated. It was found that the contributions from each subsite interaction to kcat/KM are not always additive. Such interdependency was also observed between subsites which are remote from each other. With a series of substrates covering S6 to S'4 of Savinase, it was observed that favorable amino acids in P1 or, more significantly, P4 of the substrate shield adverse effects of less favorable amino acids at other positions. Thus, an upper limit of kcat/KM was observed, suggesting a limit on the amount of substrate interaction energy which can be converted into transition-state stabilization. Furthermore, with substrates in which all positions had been optimized, an upper limit of kcat/KM (approximately 2 x 10(9) min-1 M-1) was seen, both for a substrate with a high kcat and for one with a low KM. These results emphasize that the design of optimal substrates or substrate-derived inhibitors for endopeptidases preferably should be based on subsite mappings where interdependent substrate-subsite interactions have been eliminated.  相似文献   

9.
The influence of substrate and enzyme concentrations on the rate of saccharification of two defined insoluble cellulose substrates, Avicel (FMC Corp., Philadelphia, Pa.) and Solka-Floc (James River Co., Berlin, N.H.), by the cellulase enzyme system of Trichoderma viride was evaluated. In the assays, enzyme concentrations ranging from 0.004 to 0.016 IU/ml and substrate concentrations up to 10% (wt/vol) were used. Analysis by initial velocity methods found the maximum velocity of saccharification to be nearly equivalent for the two substrates and the Km for the two substrates to be of a similar magnitude, i.e., 0.20% (wt/vol) for Solka-Floc and 0.63% (wt/vol) for Avicel. Studies in which relatively high substrate concentrations (greater than 15 times the Km) were used demonstrated that the enzyme exhibited very different apparent substrate inhibition properties for the two substrates. The rate of saccharification of Avicel at relatively high substrate concentrations was up to 35% lower than the maximum rate which was observed at lower substrate concentrations. The Avicel concentration corresponding to the maximum rate of saccharification was dependent on the enzyme concentration. In contrast to the results with Avicel, the enzyme did not exhibit substrate inhibition with the Solka-Floc substrate. Potential differences in the degree of substrate inhibition with different substrates, as reported here, are particularly relevant to the experimental design of comparative studies.  相似文献   

10.
The influence of substrate and enzyme concentrations on the rate of saccharification of two defined insoluble cellulose substrates, Avicel (FMC Corp., Philadelphia, Pa.) and Solka-Floc (James River Co., Berlin, N.H.), by the cellulase enzyme system of Trichoderma viride was evaluated. In the assays, enzyme concentrations ranging from 0.004 to 0.016 IU/ml and substrate concentrations up to 10% (wt/vol) were used. Analysis by initial velocity methods found the maximum velocity of saccharification to be nearly equivalent for the two substrates and the Km for the two substrates to be of a similar magnitude, i.e., 0.20% (wt/vol) for Solka-Floc and 0.63% (wt/vol) for Avicel. Studies in which relatively high substrate concentrations (greater than 15 times the Km) were used demonstrated that the enzyme exhibited very different apparent substrate inhibition properties for the two substrates. The rate of saccharification of Avicel at relatively high substrate concentrations was up to 35% lower than the maximum rate which was observed at lower substrate concentrations. The Avicel concentration corresponding to the maximum rate of saccharification was dependent on the enzyme concentration. In contrast to the results with Avicel, the enzyme did not exhibit substrate inhibition with the Solka-Floc substrate. Potential differences in the degree of substrate inhibition with different substrates, as reported here, are particularly relevant to the experimental design of comparative studies.  相似文献   

11.
Summary The growth and development of tomato, Potentate, in sand and soil separates having a range of air capacities has been studied.With the sand separates, an air capacity of 25 per cent gave optimum growth. Both the number of days to anthesis and the number of leaves produced before the first infloresence were negatively correlated with air capacity.Tomatoes grown in soil separates with base fertilizer added before prickingout showed an optimum air capacity requirement of 5 per cent. Plants in similar substrates and receiving a nutrient solution at each irrigation were less responsive to differences in air capacity over the range 1.9 to 20 per cent. Differences in the air capacity of the substrate had no effect on the number of leaves produced before the first inflorescence and little effect on the number of days to anthesis.  相似文献   

12.
以新疆十字花科典型早春短命植物抱茎独行菜(Lepidium perfoliatum L.)为材料,分别在不同环境、不同土壤基质及不同春化时间下栽培,以探讨环境因素对抱茎独行菜抽薹开花的影响。结果表明:抱茎独行菜种子在蛭石∶珍珠岩(3∶1)中的出苗率显著高于营养土和自然生境土壤,基质对抱茎独行菜植株是否抽薹无显著影响,但影响其抽薹的早晚及结实特性;人工4℃春化对3种不同栽培环境中于阳台生长植株的抽薹有明显促进作用,而对培养室及户外环境中栽培植株是否抽薹无显著影响;抱茎独行菜抽薹开花对光照和温度的响应最明显,光照时间由短变长与苗期一定时间的低温之间的相互作用是促使抱茎独行菜抽薹开花的关键因素。  相似文献   

13.
The effect of soil strength on the yield of wheat   总被引:1,自引:0,他引:1  
Although it is well-known that high soil strength is a constraint to root and shoot growth, it is not clear to what extent soil strength is the main physical stress that limits crop growth and yield. This is partly because it is difficult to separate the effects of soil drying and high soil strength, which tend to occur together. The aim of this paper is to test the hypothesis that for two different soil types, yield is closely related to soil strength irrespective of difference in soil water status and soil structure. Winter (Triticum aestivum L., cv. Hereward) and spring wheat (cv. Paragon) were grown in the field on two soils, which had very different physical characteristics. One was loamy sand and the other sandy clay loam; compaction and loosening treatments were applied in a fully factorial design to both. Crop growth and yield, carbon isotope discrimination, soil strength, water status, soil structure and hydraulic properties were measured. The results showed that irrespective of differences in soil type, structure and water status, soil strength gave a good prediction of crop yield. Comparison with previous data led to the conclusion that, irrespective of whether it was due to drying or compaction (poor soil management), soil strength appeared to be an important stress that limits crop productivity.  相似文献   

14.
15.
The effects of cultivation pH and agitation rate on growth and extracellular xylanase production by Aspergillus oryzae NRRL 3485 were investigated in bioreactor cultures using spent sulphite liquor (SSL) and oats spelts xylan as respective carbon substrates. Xylanase production by this fungus was greatly affected by the culture pH, with pH 7.5 resulting in a high extracellular xylanase activity in the SSL-based medium as well as in a complex medium with xylan as carbon substrate. This effect, therefore, was not solely due to growth inhibition at the lower pH values by the acetic acid in the SSL. The xylanase activity in the SSL medium peaked at 199 U ml(-1) at pH 7.5 with a corresponding maximum specific growth rate of 0.39 h(-1). By contrast, the maximum extracellular beta-xylosidase activity pf 0.36 U ml(-1) was recorded at pH 4.0. Three low molecular weight xylanase isozymes were secreted at all pH values within the range of pH 4-8, whereas cellulase activity on both carbon substrates was negligible. Impeller tip velocities within the range of 1.56-3.12 m s(-1) had no marked effect, either on the xylanase activity, or on the maximum volumetric rate of xylanase production. These results also demonstrated that SSL constituted a suitable carbon feedstock as well as inducer for xylanase production in aerobic submerged culture by this strain of A. oryzae.  相似文献   

16.
On the basis of the X-ray crystal structure of scytalone dehydratase complexed with an active center inhibitor [Lundqvist, T., Rice, J., Hodge, C. N., Basarab, G. S., Pierce, J. and Lindqvist, Y. (1994) Structure (London) 2, 937-944], eight active-site residues were mutated to examine their roles in the catalytic mechanism. All but one residue (Lys73, a potential base in an anti elimination mechanism) were found to be important to catalysis or substrate binding. Steady-state kinetic parameters for the mutants support the native roles for the residues (Asn131, Asp31, His85, His110, Ser129, Tyr30, and Tyr50) within a syn elimination mechanism. Relative substrate specificities for the two physiological substrates, scytalone and veremelone, versus a Ser129 mutant help assign the orientation of the substrates within the active site. His85Asn was the most damaging mutation to catalysis consistent with its native roles as a general base and a general acid in a syn elimination. The additive effect of Tyr30Phe and Tyr50Phe mutations in the double mutant is consistent with their roles in protonating the substrate's carbonyl through a water molecule. Studies on a synthetic substrate, which has an anomeric carbon atom which can better stabilize a carbocation than the physiological substrate (vermelone), suggest that His110Asn prefers this substrate over vermelone in order to balance the mutation-imposed weakness in promoting the elimination of hydroxide from substrates. All mutant enzymes bound a potent active-site inhibitor in near 1:1 stoichiometry, thereby supporting their active-site integrity. An X-ray crystal structure of the Tyr50Phe mutant indicated that both active-site waters were retained, likely accounting for its residual catalytic activity. Steady-state kinetic parameters with deuterated scytalone gave kinetic isotope effects of 2.7 on kcat and 4.2 on kcat/Km, suggesting that steps after dehydration partially limit kcat. Pre-steady-state measurements of a single-enzyme turnover with scytalone gave a rate that was 6-fold larger than kcat. kcat/Km with scytalone has a pKa of 7.9 similar to the pKa value for the ionization of the substrate's C6 phenolic hydroxyl, whereas kcat was unaffected by pH, indicating that the anionic form of scytalone does not bind well to enzyme. With an alternate substrate having a pKa above 11, kcat/Km had a pKa of 9.3 likely due to the ionization of Tyr50. The non-enzyme-catalyzed rate of dehydration of scytalone was nearly a billion-fold slower than the enzyme-catalyzed rate at pH 7.0 and 25 degrees C. The non-enzyme-catalyzed rate of dehydration of scytalone had a deuterium kinetic isotope effect of 1.2 at pH 7.0 and 25 degrees C, and scytalone incorporated deuterium from D2O in the C2 position about 70-fold more rapidly than the dehydration rate. Thus, scytalone dehydrates through an E1cb mechanism off the enzyme.  相似文献   

17.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the reaction between shikimate 3-phosphate and phosphoenolpyruvate to form 5-enolpyruvylshikimate 3-phosphate, an intermediate in the shikimate pathway, which leads to the biosynthesis of aromatic amino acids. EPSPS exists in an open conformation in the absence of substrates and/or inhibitors and in a closed conformation when bound to the substrate and/or inhibitor. In the present report, the H/D exchange properties of EPSPS from Mycobacterium tuberculosis ( Mt) were investigated for both enzyme conformations using ESI mass spectrometry and circular dichroism (CD). When the conformational changes identified by H/D exchanges were mapped on the 3-D structure, it was observed that the apoenzyme underwent extensive conformational changes due to glyphosate complexation, characterized by an increase in the content of alpha-helices from 40% to 57%, while the beta-sheet content decreased from 30% to 23%. These results indicate that the enzyme underwent a series of rearrangements of its secondary structure that were accompanied by a large decrease in solvent access to many different regions of the protein. This was attributed to the compaction of 71% of alpha-helices and 57% of beta-sheets as a consequence of glyphosate binding to the enzyme. Apparently, MtEPSPS undergoes a series of inhibitor-induced conformational changes, which seem to have caused synergistic effects in preventing solvent access to the core of molecule, especially in the cleft region. This may be part of the mechanism of inhibition of the enzyme, which is required to prevent the hydration of the substrate binding site and also to induce the cleft closure to avoid entrance of the substrates.  相似文献   

18.
Kennard  D. K.  Gholz  H. L. 《Plant and Soil》2001,234(1):119-129
We compared soil nutrient availability and soil physical properties among four treatments (high-intensity fire, low-intensity fire, plant removal, and harvesting gap) and a control (intact forest understory) over a period of 18 months in a tropical dry forest in Bolivia. The effect of treatments on plant growth was tested using a shade intolerant tree species (Anadenanthera colubrina Vell. Conc.) as a bioassay. Surface soils in high-intensity fire treatments had significantly greater pH values, concentrations of extractable calcium (Ca), potassium (K), magnesium (Mg), and phosphorus (P), and amounts of resin-available P and nitrogen (N) than other treatments; however, a loss of soil organic matter during high-intensity fires likely resulted in increased bulk density and strength, and decreased water infiltration rates. Low intensity fires also significantly increased soil pH, concentrations of extractable Ca, K, Mg, and P, and amounts of resin-available P and N, although to a lesser degree than high-intensity fires. Low-intensity fires did not lower soil organic matter contents or alter soil physical properties. Plant removal and harvesting gap treatments had little effect on soil chemical and physical properties. Despite the potentially negative effects of degraded soil structure on plant growth, growth of A. colubrina seedlings were greater following high-intensity fires. Evidently, the increase in nutrient availability caused by high-intensity fires was not offset by degraded soil structure in its effects on seedling growth. Long-term effects of high intensity fires require further research.  相似文献   

19.
Waste cellulose was a suitable carbon source for cellulose production by Trichoderma viride. The enzyme can be produced in submerged fermentation using newspaper as a growth substrate. A variety of pure and complex cellulosic materials were hydrolyzed by culture filtrates. Saccharification of 5% slurries after 48 hr ranged from 2–92%. The rate and extent of hydrolysis was controlled by degree of crystallinity, particle size, and presence of impurities. Newspaper was used to evaluate methods for the pretreatment of substrate. The best pretreatment was ball milling which gave good size reduction, maximum bulk density, and maximum susceptibility. Hammer milling, fluid energy milling, colloid milling, or alkali treatments were less satisfactory. Dissolving cellulose in cuprammonium, or carbon disulfide (Viscose) and then reprecipitating gave a susceptible, but low bulk density product. However the susceptibility was lost if the substrate was dried. Because of costs, low bulk density, necessity of keep ing the substrate wet, and generation of chemical waste streams dissolving cellulose to increase reactivity does not seem a practical approach. Cellulose fractions separated from municipal trash or agricultural residues such as milled fibres from bovine manure are promising substrates for conversion.  相似文献   

20.
Extensive green roofs substrates should meet a list of physicochemical and biochemical requirements to be used as a basis for plant growth: high water holding capacity, good aeration, low bulk density, and proper drainage are some of them. In recent years, the impact of different organic matter doses and the substrate depth on the subsequent plant growth have been deeply studied. By contrast, there are not many publications about the effect of the inorganic component of these substrates on plant development and C and N sequestration potential by the green roof system, and even more under semi-arid Mediterranean conditions. Four substrates were made by mixing the same compost, at 10% by volume, with different inorganic materials: CsB (compost, silica sand, and crushed bricks; 1:1:8), CB (compost and crushed bricks; 1:9), CSB (compost, clay-loam soil, and crushed bricks; 1:1:8), and CsS (compost, silica sand, and clay-loam soil; 1:1:8). These were placed, a depth of 10 cm, on “cultivation tables” in an experimental farm located in the SE of Spain. Two native species were sown in each substrate: Lotus creticus and Asteriscus maritimus. Physicochemical, nutritional, and biochemical properties of the substrates as well as the plant development were evaluated during a 10-month experiment. The CsB and CSB mixtures had good physicochemical properties (high porosity and acceptable water holding capacity) although the levels of C, N, and humic substances were higher in the soil-containing substrates than in the CB and CsB mixtures. The hydrolytic enzyme activity was also promoted in these mixtures. The plant growth pattern showed differences regarding the inorganic composition of the substrate; L. creticus had superior development in the CsB substrate and A. maritimus was able to grow in all tested substrate mixtures, although its cover was low, being a more versatile candidate to establish a green roof cover. The greatest C and N sequestration potential was achieved by the CsS mixture, reaching 1.06 kg TC m−2 of green roof substrate. Therefore, substrate composition impacts the growth of native plant species as well as the C and N sequestration by the green roof system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号