首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A substantial shift toward use of marine protected areas (MPAs) for conservation and fisheries management is currently underway. This shift to explicit spatial management presents new challenges and uncertainties for ecologists and resource managers. In particular, the potential for MPAs to change population sustainability, fishery yield, and ecosystem properties depends on the poorly understood consequences of three critical forms of connectivity over space: larval dispersal, juvenile and adult swimming, and movement of fishermen. Conventional fishery management describes the dynamics and current status of fish populations, with increasing recent emphasis on sustainability, often through reference points that reflect individual replacement. These compare lifetime egg production (LEP) to a critical replacement threshold (CRT) whose value is uncertain. Sustainability of spatially distributed populations also depends on individual replacement, but through all possible paths created by larval dispersal and LEP at each location. Model calculations of spatial replacement considering larval connectivity alone indicate sustainability and yield depend on species dispersal distance and the distribution of LEP created by species habitat distribution and fishing mortality. Adding MPAs creates areas with high LEP, increasing sustainability, but not necessarily yield. Generally, short distance dispersers will persist in almost all MPAs, while sustainability of long distance dispersers requires a specific density of MPAs along the coast. The value of that density also depends on the uncertain CRT, as well as fishing rate. MPAs can increase yield in areas with previously low LEP but for short distance dispersers, high yields will require many small MPAs. The paucity of information on larval dispersal distances, especially in cases with strong advection, renders these projections uncertain. Adding juvenile and adult movement to these calculations reduces LEP near the edges in MPAs, if movement is within a home-range, but more broadly over space if movement is diffusive. Adding movement of fishermen shifts effort on the basis of anticipated revenues and fishing costs, leading to lower LEP near ports, for example. Our evolving understanding of connectivity in spatial management could form the basis for a new, spatially oriented replacement reference point for sustainability, with associated new uncertainties.  相似文献   

2.
Design and decision-making for marine protected areas (MPAs) on coral reefs require prediction of MPA effects with population models. Modeling of MPAs has shown how the persistence of metapopulations in systems of MPAs depends on the size and spacing of MPAs, and levels of fishing outside the MPAs. However, the pattern of demographic connectivity produced by larval dispersal is a key uncertainty in those modeling studies. The information required to assess population persistence is a dispersal matrix containing the fraction of larvae traveling to each location from each location, not just the current number of larvae exchanged among locations. Recent metapopulation modeling research with hypothetical dispersal matrices has shown how the spatial scale of dispersal, degree of advection versus diffusion, total larval output, and temporal and spatial variability in dispersal influence population persistence. Recent empirical studies using population genetics, parentage analysis, and geochemical and artificial marks in calcified structures have improved the understanding of dispersal. However, many such studies report current self-recruitment (locally produced settlement/settlement from elsewhere), which is not as directly useful as local retention (locally produced settlement/total locally released), which is a component of the dispersal matrix. Modeling of biophysical circulation with larval particle tracking can provide the required elements of dispersal matrices and assess their sensitivity to flows and larval behavior, but it requires more assumptions than direct empirical methods. To make rapid progress in understanding the scales and patterns of connectivity, greater communication between empiricists and population modelers will be needed. Empiricists need to focus more on identifying the characteristics of the dispersal matrix, while population modelers need to track and assimilate evolving empirical results.  相似文献   

3.
The rock lobster (Jasus edwardsii) fishery of South Australia is the State’s most valuable fisheries resource with an export value exceeding ~AU$100 million. The fishery operates primarily inshore (<60 m), and overlaps with a series of marine protected areas (MPAs) currently proposed for State territorial waters. As a result, the need to quantify the impact of proposed MPAs on commercial landings of rock lobster within territorial waters is an integral part of the MPA assessment process. Removing fishing effort displaced by MPAs prevents a corresponding increase in exploitation outside protected zones. We describe a binomial likelihood method that utilises historical commercial catch data to estimate catch totals of rock lobster inside South Australian State waters. Lobster catches per km2 showed a high level of spatial variation with estimated historical lobster catch in State waters spanning approximately three orders of magnitude. The method identified key areas where high lobster catch (up to 500 kg/km2) overlapped with State waters. Binomial likelihood outputs have particular application to the estimation of net catch loss in situations where fishery buy-back or financial compensation are a considered option as part of the MPA implementation process.  相似文献   

4.
Marine species with pelagic larvae typically exhibit little population structure, suggesting long‐distance dispersal and high gene flow. Directly quantifying dispersal of marine fishes is challenging but important, particularly for the design of marine protected areas (MPAs). Here, we studied kelp rockfish (Sebastes atrovirens) sampled along ~25 km of coastline in a boundary current‐dominated ecosystem and used genetic parentage analysis to identify dispersal events and characterize them, because the distance between sedentary parents and their settled offspring is the lifetime dispersal distance. Large sample sizes and intensive sampling are critical for increasing the likelihood of detecting parent–offspring matches in such systems and we sampled more than 6,000 kelp rockfish and analysed them with a powerful set of 96 microhaplotype markers. We identified eight parent–offspring pairs with high confidence, including two juvenile fish that were born inside MPAs and dispersed to areas outside MPAs, and four fish born in MPAs that dispersed to nearby MPAs. Additionally, we identified 25 full‐sibling pairs, which occurred throughout the sampling area and included all possible combinations of inferred dispersal trajectories. Intriguingly, these included two pairs of young‐of‐the‐year siblings with one member each sampled in consecutive years. These sibling pairs suggest monogamy, either intentional or accidental, which has not been previously demonstrated in rockfishes. This study provides the first direct observation of larval dispersal events in a current‐dominated ecosystem and direct evidence that larvae produced within MPAs are exported both to neighbouring MPAs and to proximate areas where harvest is allowed.  相似文献   

5.
Marine protected areas (MPAs) are increasingly being recognized as an alternative management tool for conserving marine resources and ecosystems. By integrating organism dispersal rates, ecosystem interactions and fishing effort dynamics, ECOSPACE, a spatially explicit ecosystem-based modeling tool, allowed us to compare the ecological consequences of alternative MPA zoning policies within the proposed Gwaii Haanas National Marine Conservation Area, located off the west coast of British Columbia, Canada. The desired effects of MPAs include higher fishery yields, the conservation of biodiversity, and/or the preservation of intact ecosystems. However, ECOSPACE predicts that when MPAs are small, species interactions and movements may make these objectives difficult to achieve. ECOSPACE suggests that the effects of MPAs are reduced at their boundaries where fishing effort is predicted to concentrate. Furthermore, top predators may become more abundant within MPAs, which could lead to a depression of their prey species and a subsequent increase of species at even lower trophic levels. Trophic cascade patterns and density gradients across boundaries are nontrivial departures from our simple expectations of how MPAs protect areas and will force us to reconsider what constitutes effective conservation. Our ECOSPACE model indicates that the establishment of multi-use buffer zones may help alleviate these realistic but worrisome ecological predictions. When coupled with an overall reduction in harvest pressure, ECOSPACE suggests that a MPA with a large core `no-take' zone and large buffer will result in the greatest increase in organism biomass. The use of marine zoning may be an effective management tactic to reduce social conflict and conserve marine ecosystems.  相似文献   

6.
Wrasse (Labridae) fisheries have increased markedly in Norway since 2010. Wrasse are being used as cleaner fish in salmonid aquaculture to control sea-lice infestations. However, fundamental knowledge on the demography and abundance of the targeted wrasse populations in Norwegian waters is lacking, and the consequences of harvesting at the current intensity have not been assessed. Here, we compared catch per unit effort (CPUE), size, age and sex ratio of goldsinny wrasse (Ctenolabrus rupestris) and corkwing wrasse (Symphodus melops) between marine protected areas (MPAs) and control areas open for fishing at four localities on the Skagerrak coast in Southern Norway. The CPUE of goldsinny larger than the minimum size limit was 33–65% higher within MPAs, while for corkwing three of four MPAs had higher CPUE with the relative difference between MPAs and control areas ranging from ?16% to 92%. Moreover, corkwing, but not goldsinny, was significantly older and larger within MPAs than in control areas. Sex ratios did not differ between MPAs and control areas for either species. Our study suggests that despite its short history, the wrasse fisheries have considerable impacts on the target populations and, further, that small MPAs hold promise as a management tool for maintaining natural population sizes and size structure. Goldsinny, being a smaller-sized species, also seems to benefit from the traditional minimum size limit management tool, which applies outside MPAs.  相似文献   

7.
Growing disillusion with the predictive capability of single species fisheries assessment methods and the realization that the management approaches they imply will always fail to protect bycatch species has led to growing interest in the potential of marine protected areas (MPAs) as a tool for protecting such species and allowing for rebuilding populations of target species and damaged habitat. Ecospace is a spatially explicit model for policy evaluation that allows for considering the impact of MPAs in an ecosystem (that is, trophic) context, and that relies on the Ecopath mass-balance approach for most of its parameterization. Additional inputs are movement rates used to compute exchanges between grid cells, estimates of the importance of trophic interactions (top-down vs bottom up control), and habitat preferences for each of the functional groups included in the model. An application example, including the effect of an MPA, and validation against trawl survey data is presented in the form of a color map illustrating Ecospace predictions of biomass patterns on the shelf of Brunei Darussalam, Southeast Asia. A key general prediction of Ecospace is spatial “cascade” effects, wherein prey densities are low where predators are abundant, for example, in protected areas or areas where fishing costs are high. Ecospace also shows that the potential benefits of local protection can be easily negated by high movement rates, and especially by concentration of fishing effort at the edge of the MPAs, where cascade effects generate prey gradients that attract predators out of the protected areas. Despite various limitations (for example, no explicit consideration of seasonal changes or directed migration), the outward simplicity of Ecospace and the information-rich graphs it generates, coupled with the increasingly global availability of the required Ecopath files, will likely ensure a wide use for this approach, both for generating hypotheses about ecosystem function and evaluating policy choices. Received 24 February 1999; accepted 16 June 1999.  相似文献   

8.
1.  Resource management agencies are often charged with managing natural resources for economic and social goals, while also protecting and conserving biodiversity and ecosystem function. However, this may not always be possible. Ecosystem-based management is frequently suggested as a way to achieve multiple objectives in resource management and requires that trade-offs among conflicting objectives be identified and an effective means to utilize these trade-offs developed.
2.  We examine the relationship between area and species richness in a diverse assemblage of fishes along the US West Coast and then use parameters from this relationship as input for a model that considers trade-offs between fisheries yield and the number of species protected by different management strategies.
3.  The species–area relationship ( S  =  cA z ) for fishes along the US Pacific coast is well described by the relationship S  =   16·18 A 0·226.
4.  There are nearly linear trade-offs between diversity and yield when fishing effort is low. However, the trade-offs become nonlinear as fishing effort increases and imposing MPAs increases both the conservation and fisheries value of the system when the system is overfished.
5.   Synthesis and applications . Solving conflicts between fisheries and conservation requires attention as to how conservation benefits accrue as fishing effort is reduced. However, scientists often lack quantitative information about the trade-offs inherent in human activities such as fisheries. The approach we develop here can begin to help frame the questions to be posed and evaluate the likely consequences of different management options.  相似文献   

9.
This paper describes a prey–predator type fishery model with prey dispersal in a two-patch environment, one of which is a free fishing zone and other is a protected zone. The existence of possible steady states, along with their local stability, is discussed. A geometric approach is used to derive the sufficient conditions for global stability of the system at the positive equilibrium. Relative size of the reserve is considered as control in order to study optimal sustainable yield policy. Subsequently, the optimal system is derived and then solved numerically using an iterative method with Runge–Kutta fourth-order scheme. Numerical simulations are carried out to illustrate the importance of marine reserve in fisheries management. It is noted that the marine protected area enables us to protect and restore multi-species ecosystem. The results illustrate that dynamics of the system is extremely interesting if simultaneous effects of a regulatory mechanism like marine reserve is coupled with harvesting effort. It is observed that the migration of the resource, from protected area to unprotected area and vice versa, is playing an important role towards the standing stock assessment in both the areas which ultimately control the harvesting efficiency and enhance the fishing stock up to some extent.  相似文献   

10.
Marine protected areas (MPAs) are promoted as a tool to protect overfished stocks and increase fishery yields. Previous models suggested that adult mobility modified effects of MPAs by reducing densities of fish inside reserves, but increasing yields (i.e., increasing densities outside of MPAs). Empirical studies contradicted this prediction: as mobility increased, the relative density of fishes inside MPAs (relative to outside) increased or stayed constant. We hypothesized that this disparity between theoretical and empirical results was the result of differential movement of fish inside versus outside the MPA. We, therefore, developed a model with unequal and discontinuous diffusion, and analyzed its steady state and stability. We determined the abundance in the fishing grounds, the yield, the total abundance and the log ratio at steady-state and examined their response to adult mobility (while keeping the relative inequity in the diffusion constant). Abundance in the fishing grounds and yield increased, while total abundance and log-ratio decreased, as mobility increased. These results were all qualitatively consistent with the previous models assuming uniform diffusivity. Thus, the mismatch between empirical and theoretical results must result from other processes or other forms of differential movement. Therefore, we modified our original model by assuming that species located on the boundary of the MPA will preferentially move towards the MPA. This localized movement bias model gives rise to steady state profiles that can differ radically from the profiles in the unbiased model, especially when the bias is large. Moreover, for sufficiently large bias values, the monotonicity of the four measures with increased mobility is reversed, when compared with our original model. Thus, the movement bias model reconciles empirical data and theoretical results.  相似文献   

11.
We consider combinations of three types of control measures for the management of fisheries when the input information for policy decisions is uncertain. The methods considered include effort controls, catch quotas and area closures. We simulated a hypothetical fishery loosely based on the Icelandic cod fishery, using a simple spatially explicit dynamic model. We compared the performance with respect to conserving the resource and economic return for each type of control measure alone and in combination. In general, combining more than one type of primary direct control on fishing provides a greater buffer to uncertainty than any single form of fishery control alone. Combining catch quota control with a large closed area is a most effective system for reducing the risk of stock collapse and maintaining both short and long-term economic performance. Effort controls can also be improved by adding closed areas to the management scheme. We recommend that multiple control methods be used wherever possible and that closed areas should be used to buffer uncertainty. To be effective, these closed areas must be large and exclude all principal gears to provide real protection from fishing mortality.  相似文献   

12.
A major challenge for small-scale fisheries management is high spatial variability in the demography and life history characteristics of target species. Implementation of local management actions that can reduce overfishing and maximize yields requires quantifying ecological heterogeneity at small spatial scales and is therefore limited by available resources and data. Collaborative fisheries research (CFR) is an effective means to collect essential fishery information at local scales, and to develop the social, technical, and logistical framework for fisheries management innovation. We used a CFR approach with fishing partners to collect and analyze geographically precise demographic information for grass rockfish (Sebastes rastrelliger), a sedentary, nearshore species harvested in the live fish fishery on the West Coast of the USA. Data were used to estimate geographically distinct growth rates, ages, mortality, and length frequency distributions in two environmental subregions of the Santa Barbara Channel, CA, USA. Results indicated the existence of two subpopulations; one located in the relatively cold, high productivity western Channel, and another in the relatively warm, low productivity eastern Channel. We parameterized yield per recruit models, the results of which suggested nearly twice as much yield per recruit in the high productivity subregion relative to the low productivity subregion. The spatial distribution of fishing in the two environmental subregions demonstrated a similar pattern to the yield per recruit outputs with greater landings, effort, and catch per unit effort in the high productivity subregion relative to the low productivity subregion. Understanding how spatial variability in stock dynamics translates to variability in fishery yield and distribution of effort is important to developing management plans that maximize fishing opportunities and conservation benefits at local scales.  相似文献   

13.
Marine Protected Areas (MPAs), if well designed and managed, can produce conservation benefits to fish assemblages within no-take zones and fishery benefits in neighboring areas through ‘spillover’. However, although plenty of studies have provided evidence of the benefits produced within MPA boundaries, overall benefits to local fisheries, especially via spillover, seem to be still unclear. Because of the lost fishing grounds following an MPA establishment, local fishermen usually oppose MPAs. There is, therefore, the urgent need for a better understanding of the mechanism(s) through which MPAs can export fishable fish biomass towards adjacent fished areas, a process that could counterbalance the loss of fishing grounds. Here we review the literature on spillover for refining the terminology, detailing the underlying mechanisms and identifying both the existing and needed methodological approaches to measure spillover. Operationally, two types of spillover should be considered: ecological spillover (i.e. the net export of juvenile, subadult and adult biomass from MPAs outwards driven by density-dependent processes) and the fishery spillover (i.e. the proportion of this biomass that can be fished, taking into account regulations and accessibility). Underwater visual census and tagging/tracking may allow getting evidence of ecological spillover, while experimental catch data are essential to assess and monitor fishery spillover, which is the main component of MPAs that can provide direct benefit to local fisheries.  相似文献   

14.
Seahorses are iconic charismatic species that are often used to ‘champion’ marine conservation causes around the world. As they are threatened in many countries by over-exploitation and habitat loss, marine protected areas (MPAs) could help with their protection and recovery. MPAs may conserve seahorses through protecting essential habitats and removing fishing pressures. Populations of White''s seahorse, Hippocampus whitei, a species endemic to New South Wales, Australia, were monitored monthly from 2006 to 2009 using diver surveys at two sites within a no-take marine protected areas established in 1983, and at two control sites outside the no-take MPA sites. Predators of H. whitei were also identified and monitored. Hippocampus whitei were more abundant at the control sites. Seahorse predators (3 species of fish and 2 species of octopus) were more abundant within the no-take MPA sites. Seahorse and predator abundances were negatively correlated. Substantial variability in the seahorse population at one of the control sites reinforced the importance of long-term monitoring and use of multiple control sites to assess the outcomes of MPAs for seahorses. MPAs should be used cautiously to conserve seahorse populations as there is the risk of a negative impact through increased predator abundance.  相似文献   

15.
16.
A stochastic age-structured population model was developed to explore biologically favourable levels of effort and closing periods within the sardine pelagic fishery in the eastern Mediterranean Sea. Results suggested that the developed age-structured model captured the observed biomass fluctuations and catches reasonably well and represents the first comprehensive investigation of alternative management strategies for eastern Mediterranean sardine fishery that include stochasticity. The present study provided direct evidence for the importance of the correct timing of the temporal fishing ban. Significant benefits were found both in terms of biomass and catch from a corrective shift in the fishing closed period. The current findings suggested that protecting the younger age groups from fishing in the period October–December, by shifting the ban period earlier than December may profit, biologically, the stock and economically the fishing sector. Progressive reductions in fishing mortality/effort also yield significant positive biological and fishery benefits in the short term.  相似文献   

17.
The fragmentation of an environment into developed and protected areas may influence selection pressure on dispersal by increasing the chance of moving from a favorable to an unfavorable habitat. We theoretically explore this possibility through two cases: (1) marine systems in which reduced predation and/or increased feeding drive the evolution of planktonic larval duration and (2) more generally, where stochasticity in reproductive yield drives the evolution of the proportion of offspring dispersing. Model results indicate that habitat fragmentation generally shifts selection pressure toward reduced dispersal, particularly when areas outside reserves are uninhabitable. However, shifts to increased dispersal may occur when temporal heterogeneity is the primary selective force and constant-quota harvest occurs outside reserves. In addition, model results suggest the potential for changes in the genetic variability in dispersal after habitat fragmentation. The predicted evolutionary changes in dispersal will depend on factors such as the relative genetic and environmental contributions to dispersal-related traits and the extent of anthropogenic impacts outside reserves. If the predicted evolutionary changes are biologically attainable, they may suggest altering current guidelines for the appropriate size and spacing of marine reserves necessary to achieve conservation and fisheries goals.  相似文献   

18.
In recent years conservationist NGOs, policy makers, and scientists in the tropics have expressed a fascination with marine protected areas for simultaneously achieving conservation goals and economic development. Despite their popularity, MPAs often encounter serious implementation challenges due to, at least to some extent, our limited understanding of MPA processes as influenced by neoliberal ideology and practice. By resituating MPAs in debates of neoliberal conservation, this study aims to examine social and economic changes that MPAs bring about in fishing communities. Taking a fishing village in the Philippines as a case study, it shows technocratic solution seeking led to further marginalization of small-scale fishers through unequal distribution of benefits and burdens. Here it is argued that MPAs are prone to exclusionist processes of redefining the value and legitimate users of marine resources, which further limits the opportunities for small-scale fishers to participate meaningfully in resource governance.  相似文献   

19.
As the global demand for seaweed-derived products drives the expansion of seaweed farming onto shallow coral ecosystems, the effects of farms on fish assemblages remain largely unexplored. Shallow coral reefs provide food and shelter for highly diverse fish assemblages but are increasingly modified by anthropogenic activities. We hypothesized that the introduction of seaweed farms into degraded shallow coral reefs had potential to generate ecological benefits for fish by adding structural complexity and a possible food source. We conducted 210 transects at 14 locations, with sampling stratified across seaweed farms and sites adjacent to and distant from farms. At a seascape scale, locations were classified by their level of exposure to human disturbance. We compared sites where (1) marine protected areas (MPAs) were established, (2) neither MPAs nor blast fishing was present (hence “unprotected”), and (3) blast fishing occurred. We observed 80,186 fish representing 148 species from 38 families. The negative effects of seaweed farms on fish assemblages appeared stronger in the absence of blast fishing and were strongest when MPAs were present, likely reflecting the positive influence of the MPAs on fish within them. Species differentiating fish assemblages with respect to seaweed farming and disturbance were typically small but also included two key target species. The propensity for seaweed farms to increase fish diversity, abundance, and biomass is limited and may reduce MPA benefits. We suggest that careful consideration be given to the placement of seaweed farms relative to MPAs.  相似文献   

20.
The excessive and unsustainable exploitation of our marine resources has led to the promotion of marine reserves as a fisheries management tool. Marine reserves, areas in which fishing is restricted or prohibited, can offer opportunities for the recovery of exploited stock and fishery enhancement. This study examines the impact of the creation of marine protected areas, from both economic and biological perspectives. The consequences of reserve establishment on the long-run equilibrium fish biomass and fishery catch levels are evaluated. We include reserve size as control variable to maximize catch at equilibrium. A continuous time model is used to simulate the effects of reserve size on fishing catch. Fish movements between the sites is assumed to take place at a faster time scale than the variation of the stock and the change of the fleet size. We take advantage of these two time scales to derive a reduced model governing the dynamics of the total fish stock and the fishing effort. Simulation results suggest that the establishment of a protected marine reserve will always lead to an increase in total fish biomass, an optimal size of a marine reserve can achieve to maximize the catch at equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号