首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: A mass fragmentographic method was used in which homovanillic acid (HVA), methoxyhydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) were measured from a single sample. The results describe the effect of morphine on the metabolism of the major monoamines, dopamine (DA), noradrenaline (NA), and 5-hydroxytryptamine (5-HT) in the spinal cord. Morphine has very little effect on the metabolism of DA and NA in the spinal cord. However, morphine causes a significant increase in the metabolism of spinal 5-HT. The increase in 5-HIAA induced by morphine is not restricted to the dorsal horn. The three main functional regions of the cord—dorsal horn (sensory), zona intermedia (autonomic), and ventral horn (somatic motor)—are affected to the same degree. The results indicate that morphine causes a generalized activation of serotonin neurons in the spinal cord. There appears to be little or no selectivity for those serotonergic neurons that innervate the dorsal horn. The results are discussed with reference to current data which indicate a fairly strong link between descending serotonergic nerves and the mechanism of action of morphine-induced analgesia.  相似文献   

2.
This study examined the localized action of neuropeptide Y (NPY) on monoamine transmitter activity in the hypothalamus of the unrestrained rat as this peptide induced hypothermia, spontaneous feeding or both responses simultaneously. A guide tube was implanted in the anterior hypothalamic pre-optic area (AH/POA) of Sprague-Dawley rats. Then either control CSF vehicle or NPY in a dose of either 100 ng/μl or 250 ng/μl was perfused by push-pull cannulae in this structure in the fully sated, normothermic rat. Successive perfusions were carried out at a rate of 20 μl/min for 6.0 min with an interval of 6.0 min elapsing between each. Samples of perfusate were assayed by HPLC for their levels of dopamine (DA), norepinephrine (NE), serotonin (5-HT) and their respective metabolites. Whereas control CSF was without effect on body temperature (Tb) or feeding, repeated perfusions of NPY over 3.0 hr caused dose—dependent eating from 4 to 39 g of food, hypothermia of 0.9 to 2.3°C or both responses concurrently. As the rats consumed 11–39 g of food, the efflux of NE, MHPG, DOPAC and 5-HT was enhanced significantly, whereas during the fall in Tb the efflux of NE, DOPAC and 5-HIAA from the AH/POA increased. When the Tb of the rat declined simultaneously with eating behavior, the levels in perfusate of DOPAC and HVA increased significantly while MHPG declined. During perfusion of the AH/POA with NPY the turnover of NE declined while DA and 5-HT turnover increased during hypothermia alone or when accompanied by feeding. These results demonstrate that the sustained elevation in NPY within the AH/POA causes a selective alteration in the activity of the neurotransmitters implicated in thermoregulation, satiety and hunger. These findings suggest that both DA and NE comprise intermediary factors facilitating the action of NPY on neurons involved in thermoregulatory and ingestive processes. The local activity of NPY on hypothalamic neurons apparently shifts the functional balance of serotonergic and catecholaminergic neurons now thought to play a primary role in the control of energy metabolism and caloric intake.  相似文献   

3.
Concentrations of dopamine (DA), its metabolites 3-methoxytyramine and homovanillic acid (HVA), noradrenaline (NA), its metabolites normetanephrine (NM) and 3-methoxy-4-hydroxyphenylglycol (MHPG), 5-hydroxytryptamine (5-HT, serotonin), and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured in 14 brain regions and in CSF from the third ventricle of 27 human autopsy cases. In addition, in six cases, lumbar CSF was obtained. Monoamine concentrations were determined by reversed-phase liquid chromatography with electrochemical detection. Ventricular/lumbar CSF ratios indicated persistence of rostrocaudal gradients for HVA and 5-HIAA post mortem. Ventricular CSF concentrations of DA and HVA correlated positively with striatal DA and HVA. CSF NA correlated positively with NA in hypothalamus, and CSF MHPG with levels of MHPG in hypothalamus, temporal cortex, and pons, whereas CSF NM concentration showed positive correlations with NM in striatum, pons, cingulate cortex, and olfactory tubercle. CSF 5-HT concentrations correlated positively with 5-HT in caudate nucleus, whereas the concentration of CSF 5-HIAA correlated to 5-HIAA levels in thalamus, hypothalamus, and the cortical areas. These data suggest a specific topographic origin for monoamine neurotransmitters and their metabolites in human ventricular CSF and support the contention that CSF measurements are useful indices of central monoaminergic activity in man.  相似文献   

4.
The irreversible inhibition of the monoamine oxidase (MAO) activity within monoaminergic neurons in the rat brain 24 h after single or repeated administration of (E)-beta-fluoromethylene-m-tyrosine (FMMT, MDL 72394) was examined. The enzyme activity was determined by incubating synaptosome-rich homogenates of hypothalamus or striatum with low concentrations of 5-[14C]hydroxytryptamine (5-HT), [14C]noradrenaline (NA), or [14C]dopamine (DA) in the absence and presence of the selective amine uptake inhibitors citalopram (5-HT), maprotiline (NA), and GBR 12909 (DA). After a single subcutaneous injection of FMMT, the inhibition of MAO within the noradrenergic and dopaminergic neurons was significant but only slightly greater than that outside these neurons. The opposite relationship was observed for the serotonergic neurons. After 7 days' treatment of rats with carbidopa, 20 mg/kg p.o., + FMMT once daily, the preference for the inhibition of MAO within the noradrenergic and dopaminergic neurons was accentuated further. The inhibition outside the serotonergic neurons was still greater than within these neurons. The NA uptake inhibitor CPP 199 antagonized the selective inhibition of MAO within the noradrenergic neurons, which indicates that this preference is due to the accumulation of the active metabolite (E)-beta-fluoromethylene-m-tyramine by the NA transporter.  相似文献   

5.
Recreational use of the synthetic methamphetamine derivative MDMA (3,4-methylenedioxymethamphetamine), the main constituent of the illegal drug "ecstasy", has increased dramatically in recent years. The reasons for ecstasy-associated cardiovascular complications like tachycardia, arrhythmias and hypertensive crises and psychiatric symptoms like psychotic episodes are not well understood. We have measured the plasma concentrations of 5-HIAA, 5-HT, norepinephrine, epinephrine and dopamine in 159 ecstasy users and controls. Ecstasy users showed elevated resting sympathetic activity, reflected in increased norepinephrine, epinephrine and dopamine levels. The levels of these catecholamines correlated positively with the cumulative dose and also with consumption during the last 30 days and 12 months. Although it is known that significant changes in 5-HT and 5-HIAA appear in the cerebrospinal fluid in ecstasy users, we could not detect alterations in serotonergic neurotransmitters in plasma in this large sample of subjects. Thus, in the drug-free interval, ecstasy users show lowered central serotonergic activity (lowered 5-HT and 5-HIAA concentrations in CSF) along with unchanged central noradrenergic and dopaminergic activity (HVA and MHPG unchanged in CSF) and elevated peripheral noradrenergic, dopaminergic and adrenergic activity along with unchanged peripheral serotonergic activity (plasma levels). We conclude, that the data presented here could argue for a noradrenergic hyperreactivity in the drug-free interval in ecstasy users resulting from previous ecstasy consumption. Also for an association with psychotic episodes and cardiovascular complications like tachycardia, arrhythmias.  相似文献   

6.
Abstract: Neurochemical changes in the ventromedial hypothalamus (VMH) after a single intravenous injection of streptozotocin were examined, using in vivo brain microdialysis under free-moving conditions. Although streptozotocin-induced diabetes produced significant decreases in extracellular concentrations of noradrenaline (NA), serotonin (5-HT), and their metabolites in the VMH, the ratios of 3-methoxy-4-hydroxyphenylglycol/NA and 5-hydroxyindoleacetic acid (5-HIAA)/5-HT were increased. Experimental diabetes led to a pronounced increase in extracellular GABA, which correlated strongly with the decrease in dialysate levels of NA, and to a smaller extent with that of 5-HT. A modification of dopamine (DA) metabolism was induced in the VMH of diabetic rats, whereas there was no change in dialysate DA levels. Daily injections of insulin were able to restore their levels to normal in the areas tested in the microdialysis study. The equal increases in dialysate 5-HT and 5-HIAA and the better restoration of the 5-HIAA/5-HT ratio after insulin therapy indicate that serotonergic activity may depend on the levels of circulating insulin more than on noradrenergic activity. Circulating NA was reduced in streptozotocin-diabetic rats, suggesting that the diabetes-induced reduction in sympathetic activity is accompanied by decreases in NA, or 5-HT, or both, in the VMH.  相似文献   

7.
One-day-old rats were exposed to a gas mixture of 15% CO2-21% O2-64% N2 for a 30-min period. Monoamine synthesis in whole brain was measured during, and at various intervals after, hypercapnia by estimating the accumulation of dihydroxyphenylalanine (DOPA) and 5-hydroxytryptophan (5-HTP) after inhibition of aromatic L-amino-acid decarboxylase with NSD 1015. Endogenous concentrations of tyrosine, dopamine (DA), noradrenaline (NA), tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were measured at the same intervals. Exposure to CO2 induced an increased synthesis of catecholamines and 5-HT. Further, an increase in DA concentration was seen during hypercapnia, while NA and 5-HT were unchanged. After the CO2 exposure the increased in vivo synthesis rates of catecholamines and 5-HT were rapidly normalized, as was the endogenous DA concentration. A slight increase in 5-HT and 5-HIAA concentrations was seen immediately after CO2 exposure. These results indicate that in neonatal animals, hypercapnia induces changes in central monoamine neurons, primarily an increased synthesis. These alterations may be relevant to some physiological changes seen during CO2 exposure, such as the alteration in central respiratory performance.  相似文献   

8.
A novel and highly sensitive method has been developed for the determination of catecholamines [noradrenaline (NA), dopamine (DA), serotonin (5-HT) and their metabolites 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA)] in brain tissue. The method uses isocratic reversed-phase HPLC with amperometric end-point detection. The calibration curve was linear over the range 10–150 pg on-column. The assay limits of detection for NA, DA, 5-HT, 5-HIAA and HVA were 3.8, 3.8, 6.8, 5 and 7.5 pg on-column, respectively. The mean inter- and intra-assay relative standard deviations (RSDs) over the range of the standard curve were less than 5%. The absolute recoveries averaged 99.1%, 99.5%, 97.7%, 99.5% and 98.8% for NA, DA, 5-HT, 5-HIAA and HVA, respectively.  相似文献   

9.
Noradrenaline (NA), 3,4-dihydroxyphenylethylamine (dopamine, DA), 5-hydroxytryptamine (serotonin, 5-HT), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were measured in 22 regions of postmortem brains from four histologically verified cases with Alzheimer-type dementia (ATD) and nine histologically normal controls. Compared with the controls, concentrations of 5-HT and 5-HIAA in the ATD brains were significantly reduced in nine regions (superior frontal gyrus, insula, cingulate gyrus, amygdala, putamen, medial and lateral segments of globus pallidus, substantia nigra, lateral nucleus of thalamus) and in eight regions (amygdala, substantia innominata, caudate, putamen, medial and lateral segments of globus pallidus, medial and lateral nuclei of thalamus), respectively. NA concentrations of the ATD brains were significantly reduced in six regions (cingulate gyrus, substantia innominata, putamen, hypothalamus, medial nucleus of thalamus, raphe area). In contrast, significant reductions of DA and HVA concentrations in the ATD brains were found only in putamen and amygdala, respectively. The 5-HIAA/5-HT ratio in the ATD brains decreased significantly in locus coeruleus, while the HVA/DA ratio increased significantly in putamen and medial segment of globus pallidus. These findings suggest that the serotonergic and noradrenergic systems are affected, while the dopaminergic system is relatively unaffected in ATD brains.  相似文献   

10.
Rat brain monoamine and serotonin S2 receptor changes during pregnancy   总被引:1,自引:0,他引:1  
The concentrations of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and their metabolites were determined in 5 brain areas of non-pregnant, 15 and 20 day pregnant and 4 day post-partum rats. Striatal 5-HT content was significantly lower in 15 and 20 day pregnant rats than in estrous controls. A significant decrease in striatal and frontal cortex 5-hydroxyindole-3-acetic acid (5-HIAA) concentration was observed in 15 day pregnant rats. Significant increases in hypothalamic and hippocampal NA levels were observed at 4 days post-partum. Frontal cortex serotonin S2 receptorKd was reduced in 4 day post-partum rats. There was no significant change in S2 receptorB max during pregnancy. Levels of progesterone were negatively correlated with striatal DA, homovanillic acid (HVA), 5-HT, and 5-HIAA levels, hypothalamic DA, hippocampal 5-HT, and frontal cortex 5-HIAA values as well as striatal HVA to DA, and HVA to 3,4-dihydroxyphenylacetic acid (DOPAC) ratios and amygdaloid HVA to DOPAC ratios. The limbic neurotransmitter changes might possibly contribute to mood changes which occur during pregnancy and post-partum.  相似文献   

11.
Abstract— Noradrenaline (NA), dopamine (DA). 5-hydroxytryptamine (5-HT), 4-hydroxy, 3-methoxy-phenylethylene glycol (MHPG), homovanillic acid (HVA), 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindolylacetic acid (5-HIAA) were measured in twenty areas of post-mortem brain from ten psychiatrically and neurologically normal patients. There was a marked difference, which did not appear to be related to sex, medication, cause of death or time between death and dissection, in amine and metabolite concentrations between brains. In the cortex, 5-HT, MHPG, HVA. DOPAC and S-HIAA were approximately even in their distribution; NA and DA could not be detected. In sub-cortical areas there were clear differences in the distribution of the three amines accompanied by less marked differences in the distribution of their respective metabolites.  相似文献   

12.
We determined levels of monoamines and their metabolites in 2 hypothalami dissected from the right and left hemibrains of 15 females during the right-left alternating ovulatory cycle of Anolis carolinensis. Tissue contents of the following were measured using HPLC and electrochemical (coulometric) detection: dopamine (DA) and its metabolite 2,4-dihydroxyphenylacetic acid (DOPAC), norepinephrine (NE) and its metabolites 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxyphenylglycol (DHPG), and serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). An asymmetry ratio (AR) was determined by subtracting hypothalamic content (pM/mg) on the larger ovary (LO) side from that on the smaller ovary (SO) side, divided by the sum of the 2 sides (AR = SO - LO/SO+LO). The Ar of MHPG and DHPG both decreased as the largest follicle in the LO grew during the cycle, from greater than 0 (content higher on the SO side) at the beginning of the cycle to less than 0 (content higher on the LO side). The average content of MHPG in the 2 sides significantly increased during the cycle. There were no significant asymmetric changes in hypothalamic DA or DOPAC. The average content of DA increased during the cycle, whereas the content of DOPAC, as well as DOPAC/DA, did not change. The average content of 5-HT increased, and the average metabolite ratio of 5-HIAA/5-HT decreased during the cycle without significant asymmetries. The metabolite ratios of NE and DA, but not 5-HT, were asymmetric on the same side in a given female.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A simple and fast HPLC method based on an isocratic, reversed-phased ion-pair with amperometric end-point detection for simultaneous measurement of noradrenergic (MHPG/NA and A), dopaminergic (DOPAC, HVA/DA) and serotonergic (5-HIAA/5-HT) compounds in mouse brain tissue was developed. In order to improve the chromatographic resolution (Rs) with an acceptable total analysis time, experimental designs for multivariate optimization of the experimental conditions were applied. The optimal conditions for the separation of the eight neurotransmitters and metabolites, as well as two internal standards, i.e., DHBA and 5-HMT, were obtained using a mixture of methanol–phosphate–citric buffer (pH 3.2, 50 mM) (9:91, v/v) containing 2 mM OSA as mobile phase at 32 °C on a microbore ALF-115 column (150 mm × 1.0 mm, 3 μm particle size) filled with porous C18 silica stationary phase. In this study, a two-level fractional factorial experimental design (½ 2K) was employed to optimize the separation and capacity factor (k′) of each molecule, leading to a good separation of all biogenic amines and their metabolites in brain tissue. A simple method for the preparation of different bio-analytical samples in phosphate–citric buffer was also developed. Results show that all molecules of interest were stabilized for at least 24 h in the matrix conditions without any antioxidants. The method was fully validated according to the requirements of SFSTP (Société Française des Sciences et Techniques Pharmaceutiques). The acceptance limits were set at ±15% of the nominal concentration. The method was found accurate over a concentration range of 4–2000 ng/ml for MHPG, 1–450 ng/ml for NA, 1–700 ng/ml for A, 1–300 ng/ml for DOPAC, 1–300 ng/ml for 5-HIAA, 1–700 ng/ml for DA, 4–2800 ng/ml for HVA and 1–350 ng/ml for 5-HT. The assay limits of detection for MHPG, NA, A, DOPAC, 5-HIAA, DA, HVA and 5-HT were 2.6, 2.8, 4.1, 0.7, 0.6, 0.8, 4.2 and 1.4 pg, respectively. It was found that the mean inter- and intra-assay relative standard deviations (RSDs) over the range of standard curve were less than 3%, the absolute and the relative recoveries were around 100%, demonstrating the high precision and accuracy, and reliability of the analytical method described to apply in routine analysis of biogenic amines and their metabolites in brain tissue.  相似文献   

14.
We previously reported that serotonergic activity was reduced in the ventromedial hypothalamic nucleus (VMN) of obese vs. lean male Zucker rats. To verify that this reduction was associated with genotype rather than gender, we measured monoamines and their major metabolites in hypothalamic nuclei of ll-week-old female lean (Fa/Fb) and obese (fa/fb) Zucker rats. In addition, since the thermic response to cold is reported to differ between lean and obese rats, some rats were also exposed to 9° or 22° C for 2h to determine if cold exposure altered hypothalamic monoaminergic activity. As in males, levels of 5-hydroxyindoleacetic acid [5-HIAA; major metabolite of serotonin (5-HT)] and the ratio of 5-HIANS-HT were lower in the VMN of obese vs. lean females (P = 0.008, 0.001, respectively). S-HIANS-HT was also reduced in the paraventricular (PVN) and suprachiasmatic nuclei (SCN) of the obese compared to the lean females. Cold exposure significantly stimulated brown fat mitochondria1 GDP binding in lean but not obese rats. Similarly, levels of norepinephrine, dopamine (DA), 5-HIAA, and 5-HT in the PVN, and 5-HIAA in the SCN increased in cold-exposed lean but not obese rats. In contrast, VMN and preoptic 3,4-dihydroxyphenylacetic acid (DOPAC; major metabolite of DA) increased in the cold-exposed obese but not lean animals. We conclude that: (1) the blunted peripheral response to cold in obese vs. lean Zucker rats is accompanied by altered hypothalamic monoaminergic activity, the physiological role of which needs further evaluation; and 2) depressed VMN serotonergic activity is associated with the obese genotype (fa/fa) rather than gender and as such may contribute to the reduced sympathetic and enhanced parasympathetic outflow from the VMN .  相似文献   

15.
—Alterations in whole-brain and hypothalamic levels of serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), norepinephrine (NE), dopamine (DA) as well as the turnover rates of NE and DA of adult male rats were analysed fluorometrically at either 3 weeks or 6 weeks following castration. Significant increases were observed in whole-brain (minus hypothalamus) 5-HIAA levels and hypothalamic DA levels, fractional rate constants and utilization rates at the 3 but not the 6 week intervals. Elevated levels of 5-HT were observed at both time intervals while an increase in whole-brain DA was seen only at the 6 week interval. Whole brain NE turnover rates of castrated animals did not differ significantly from those of sham-castrate control animals at either test interval. However, a tendency toward increased hypothalamic NE turnover rates was seen in the castrated animals. These biochemical changes resulted in decreased NE/5-HT and DA/5-HT ratios for the castrate rats as compared to controls. The results are discussed in relation to emotional and aggressive behavior and are interpreted as being consistent with the hypothesis purporting an inhibitory role for 5-HT and excitatory role for NE and DA in sex-specific behavior patterns including aggression.  相似文献   

16.
Levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), noradrenaline (NA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) in the CSF of patients with Huntington's disease (HD) were measured by HPLC. CSF DA, DOPAC, and MHPG levels were found to be increased in HD patients. Levels of HVA, 5-HIAA, and NA in the CSF of HD patients did not differ from those of controls. Changes in CSF DA and DOPAC levels were consistent with previous findings of increased DA tissue content in some brain areas of patients with HD. These results suggest that CSF DOPAC levels could be a more reliable index of overactive dopaminergic brain systems in HD than CSF HVA levels.  相似文献   

17.
The hypothalamic levels of noradrenaline (NA), dophamine (DA), serotonine (5-HT), 5-hydroxyindolacetic acid (5-HIAA) were found to be decreased in male rats 24 hours after subcutaneous injection of 1,2-dimethylhydrazine (SDMH) in a dose of 21 mg/kg. During 3 to 12 hrs after the SDMH treatment the hypothalamic level of NA was decreased, whereas the 5-HT turnover became greater. The hypothalamic histamine level increased 30 min after the SDMH injection only. In the brain stem and the great hemispheres the biogenic amine level displayed no significant changes under the effect of SDMH. The endocrine-metabolic changes due to the selected SDMH effect on the hypothalamic biogenic amine level are supposed to be of great significance in the realization of the carcinogenic action of SDMH in rats.  相似文献   

18.
F. J. Mi  ano  J. M. Peinado  R. D. Myers 《Peptides》1988,9(6):1381-1387
This investigation was undertaken in the unrestrained rat to determine the localized effect of neurotensin (NT) on the profile of release and turnover of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) within the hypothalamus. Following stereotaxic implantation of a permanent guide tube, artificial CSF was perfused in the hypothalamus of the freely moving animal by means of push-pull cannulae at a rate of 20 μl/min and for an interval of 5.0 min. After three 5.0 min control samples were collected, NT in a concentration of 0.1 μg/μl was perfused followed by additional CSF controls. Assay by HPLC-EC of each perfusate showed that when the rat was sated, NT evoked a significant increase in the release of DA and DOPAC from the hypothalamus as well as augmented NE turnover, as reflected by a significant efflux in MHPG. However, when the rat was fasted for 22 hr, the perfusion of NT reduced DA and DOPAC concentrations in the diencephalic perfusate significantly as well as levels of both MHPG and VMA. Under both sated and fasted conditions, NT failed to produce notable changes in the release of 5-HT or its metabolism to 5-HIAA. These findings thus reveal a functional interaction between NT and both of the catecholamine neurotransmitters within hypothalamic neurons, which is clearly dependent upon the nutritional status of the animal.  相似文献   

19.
Effects of DSP-4 on noradrenaline (NA), 3-methoxy-4-hydroxyphenyl glycol (MHPG), serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) levels and on beta adrenoceptor binding kinetics (Bmax and KD) in rat hippocampus, cortex and hypothalamus were studied between 24 hours and 14 days after systemic administration. Beta adrenoceptor numbers in hippocampus and cortex, but not in hypothalamus, were significantly increased after DSP-4. No significant changes in KD values were observed in hypothalamus, but significant increases in this parameter were measured in hippocampus and cortex. NA and MHPG levels were significantly decreased in all three brain regions, but MHPG/NA ratios were increased in hippocampus, decreased in cortex and unchanged in hypothalamus. Very prominent increases in 5-HIAA levels were observed in all three brain regions, but only at one day after DSP-4. The greatest increases in 5-HIAA levels occurred in the hippocampus, but this effect of DPS-4 appeared to be slightly diminished by pre-treatment with fluoxetine. In cortex and hippocampus 5-HT levels were slightly, but significantly decreased after DSP-4.  相似文献   

20.
The influence of the pineal gland on the hypothalamic serotonergic function was examined by studying the effects of long-term pinealectomy (1 month) and melatonin replacement (500 μg/kg; 10 days) on serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content as well as on the in vivo 5-HT synthesis rate in discrete hypothalamic nuclei. Pinealectomy was followed by a significant decrease of 5-HT content in the anterior hypothalamic nuclei (AHN) and the ventromedial hypothalamic nuclei (VMHN), and also in 5-HIAA content in lateral (LPON) and medial preoptic nuclei (MPON). The 5-HT synthesis rate, estimated from the accumulation of 5-hydroxytryptophan after blockade of the 1-amino acid decarboxylase activity, were also decreased in the AHN and the paraventricular hypothalamic nuclei (PVHN) of pinealectomized rats. In contrast, an enhanced 5-HT synthesis rate and basal 5-HIAA content were found in the suprachiasmatic nuclei (SCN) after pinealectomy. Daily treatment with melatonin for 10 days reversed most of the effects induced by pinealectomy. Thus, melatonin increased the levels of 5-HT in the AHN and VMHN, and slightly increased the 5-HIAA content in preoptic nuclei. In addition, melatonin increased the 5-HT synthesis rate in the AHN and VMHN, but also in the MPON, VMHN and dorsomedial hypothalamic nuclei (DMHN) where pinealectomy had no effect. By contrast, melatonin treatment did not affect SCN 5-HT synthesis rate, although it decreased 5-HIAA levels. The results demonstrate that melatonin is able to stimulate 5-HT metabolism in most of the hypothalamic areas, but inhibits SCN 5-HT function. Some of the effects of melatonin seems to be exerted by modulating the synthesis of the amine, although melatonin likely also interacts with other regulatory processes of 5-HT function (i.e. release/uptake). The well defined presence of melatonin receptors in the rat SCN, and its absence in other hypothalamic structures, suggest that this may be the mechanism mediating the differential response to endogenous melatonin. Moreover, the larger effect of exogenous melatonin in relation to pinealectomy suggests the presence of melatonin unespecific effects possibly owing to supraphysiological doses. The present findings may be relevant for the mode of action of melatonin and its implication in several endocrine and behavioral functions mediated by serotonergic neurons. Copyright © 1996 Elsevier Science Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号