首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biological Control》2005,32(1):40-48
Early French discoveries of insect parasitoids and various aspects of their life cycle are discussed in this paper. Parasitism in insects first attracted the attention of French scientists in the 18th century, despite indifference of the famous encyclopedists of “the Age of Enlightenment” to this group of animals. Fortunately, a distinguished scientist of many talents, R.A. Ferchault de Réaumur (1683–1757), was interested in the study of insects. His work on insects, “Mémoires pour servir à l’histoire des insectes” published in six volumes, remains his most well known opus. He was the first person in France to describe an entomophagous insect (probably a Cotesia species) as well as several aspects of the biological characteristics of parasitoid life in 1736. Together with Latreille (1762–1833), he may be considered one of the founding fathers of entomology in France.  相似文献   

2.
Vig K 《ZooKeys》2011,(157):159-179
The excellence of Károly Sajó as a researcher into Hungary’s natural history has been undeservedly neglected. Yet he did lasting work, especially in entomology, and a number of his discoveries and initiatives were before their time.Born in 1851 in Győr, he received his secondary education there and went to Pest University. He taught in a grammar school in 1877–88 before spending seven years as an entomologist at the National Phylloxera Experimental Station, later the Royal Hungarian State Entomological Station. Pensioned off at his own request in 1895, he moved to Őrszentmiklós, where he continued making entomological observations on his own farm and wrote the bulk of his published materials: almost 500 longer or shorter notes, articles and books, mainly on entomological subjects.Sajó was among the first in the world to publish in 1896 a study of how the weather affects living organisms, entitled Living Barometers. His Sleep in Insects, which appeared in the same year, described his discovery, from 1895 observations of the red turnip beetle, Entomoscelis adonidis (Pallas, 1771), of aestivation in insects – in present-day terms diapause.It was a great loss to universal entomology when Sajó ceased publishing about 25 years before his death. His unpublished notes, with his library and correspondence, were destroyed in the World War II. His surviving insect collection is now kept in the Hungarian Natural History Museum, Budapest.  相似文献   

3.
We honor here Thomas (Tom) Roosevelt Punnett, Jr. (May 25, 1926–July 4, 2008), who was a pioneer of Biology, particularly of biochemistry of plants and algae, having specialized in photosynthesis under Robert Emerson of the University of Illinois at Urbana-Champaign. He did exciting work on regulation and control of various metabolic reactions. He was an innovator and raconteur par excellence, and he prized critical thinking. His enthusiasm for basic science questions was matched by his grasp of their “real-world” implications. His last project was a patent for anaerobic sewage treatment that he hoped would lead to solution of waste disposal and energy creation world wide, including the clean-up of Lake Erie, where he had sailed as a boy. On the personal side, he had a strong sense of morality and a great wit and humor.  相似文献   

4.
Atsushi Komamine was one of the pioneers of plant tissue culture in Japan and a researcher with many friends throughout the world. His objective was to determine the potential capacities of plant cells, and he contributed considerably to plant tissue cultivation research by establishing several unique culture systems that controlled cell division and differentiation. He emphasized that the uniformity of cultured cells and the synchrony of the plant cell response at a high frequency were necessary to study the functions of plant cells using biochemical and molecular biological methods. He trained over 300 people, and many outstanding individuals in academia and industry emerged under his tutelage. He was an outstanding mentor: with his accommodating attitude, he was loved dearly by students and foreign researchers alike. He set up the Asia Pacific Association of Plant Tissue Culture and Agribiotechnology in 2000, and he established the international journal Plant Biotechnology Reports with Jang R. Liu in 2006, thereby contributing to Asian plant sciences. In addition to describing his achievements and activities, this article aims to paint a portrait of the man himself.  相似文献   

5.
Johann, Heinrich, Ferdinand von Autenrieth [1772–1835], was a teacher of anatomy, physiology and pharmacology at the University of Tübingen, Germany. He was the author of a famous textbook on Physiology and one of the earliest pharmacologists [Öffentlicher Lehrer der Arzneykunst]. In his textbooks, he presented a lot of information that and how biological rhythms influenced physiological functions in the human body, the book was used for his medical lectures for students. He can be regarded as on of the earliest chronophysiologists. Most important, he assumed a chemical stimulation responsible for generating the periodicities in the human body.  相似文献   

6.
Dr Shigeo Yamanouchi was born in Yamagata Prefecture and completed his secondary education at Tokyo Higher Normal School (THNS) where he was also a professor until 1904. In 1905, he went to the University of Chicago in the USA and earned a PhD in Botany in 1907. He is best noted for his excellent research on the cytology and life histories of the marine algae Polysiphonia, Fucus, Cutleria, Aglaozonia and Zanardinia, published between 1906 and 1921 while he was associated with the University of Chicago. He also described the freshwater green alga Hydrodictyon africanum. In 1910, he returned to THNS as a Professor and wrote several botanical textbooks, receiving his DSc degree in 1911 and traveling in England and the USA as an advisor for the Japanese Ministry of Education during 1911–1913. For much of the time between 1920 and 1942 he remained in the USA, returning to Japan following the advent of World War II, During his later life, he was in obscurity, and sadly there is very little recorded of his activities in the post-war years. He died in Tokyo on 2 February 1973 at the age of 96.  相似文献   

7.
Summary and conclusions Leeuwenhoek's observations relating to animal population, though scattered through many letters written during a period of over forty years, when seen in toto, were important contributions to the subject now known as animal demography. He maintained enough contact with other scientists to have received encouragement and some helpful suggestions, but the language barrier and the novelty of doing microscopic work forced him to be resourceful, inventive, and original. His multifarious investigations impinged upon population biology before he discovered a direct interest in it. He devised methods for estimating numbers of animalcules, and then he went on to estimate the population of the world. His interest in reproduction was an important avenue by which he approached the subject of reproductive capacity. Other important approaches were his studies of growth, longevity, and life histories. He discovered relationships between aspects of the life history, longevity, and reproductive capacity of several species of insects, notably calanders, scavenger flies, crane flies, aphids, and lice. An important feature of these investigations were the arithmetical calculations which he made of reproductive potentials. In spite of several limitations, these calculations were an important innovation to the study of animal population. In his later years, his investigations came more and more within the sphere of ecology. He made the first significant observations on food chains. It is especially interesting that fish were the subject of these observations, because it was not until the latter half of the nineteenth century that scientists realized that fish ultimately depend upon phytoplankton.These accomplishments did not pass unnoticed. Although Leeuwenhoek never synthesized his scattered observations concerning population, his originality and perception were appreciated by outstanding biologists of the eighteenth century. The important discussions of population biology by Réaumur, Buffon, and Bonnet all derived inspiration and assistance from the writings of Leeuwenhoek.73 This ingenious Fellow of the Royal Society, by detecting through diligent application and scrutiny the mysteries of Nature and the secrets of natural philosophy,74 became one of the founders of animal demography.  相似文献   

8.
Cooperation can evolve in the context of cognitive activities such as perception, attention, memory, and decision making, in addition to physical activities such as hunting, gathering, warfare, and childcare. The social insects are well known to cooperate on both physical and cognitive tasks, but the idea of cognitive cooperation in humans has not received widespread attention or systematic study. The traditional psychological literature often gives the impression that groups are dysfunctional cognitive units, while evolutionary psychologists have so far studied cognition primarily at the individual level. We present two experiments that demonstrate the superiority of thinking in groups, but only for tasks that are sufficiently challenging to exceed the capacity of individuals. One of the experiments is in a brain-storming format, where advantages of real groups over nominal groups have been notoriously difficult to demonstrate. Cognitive cooperation might often operate beneath conscious awareness and take place without the need for overt training, as evolutionary psychologists have stressed for individual-level cognitive adaptations. In general, cognitive cooperation should be a central subject in human evolutionary psychology, as it already is in the study of the social insects. David Sloan Wilson is an evolutionary biologist interested in a broad range of issues relevant to human behavior. He has published in psychology, anthropology, and philosophy journals in addition to his mainstream biological research. He is author of Darwin’s Cathedral: Evolution, Religion, and the Nature of Society (University of Chicago Press, 2002) and co-author with philosopher Elliott Sober of Unto Others: The Evolution and Psychology of Unselfish Behavior (Harvard University Press, 1998). John J. Timmel received his Ph.D. from Binghamton University in 2001. Ralph R. Miller is Distinguished Professor of Psychology at Binghamton University. His research interests include information processing in animals, with an emphasis on elementary, evolutionarily derived, fundamentals of learning and memory that might be expected to generalize across species, including humans.  相似文献   

9.
Herman Jan Phaff, the father of yeast ecology, was born in the Netherlands in 1913. In his early years, he spent much time in his family's winery, which sparked his interest in microbes. Trained in the famous Delft tradition, Phaff discovered many unrecognized ecological niches of yeast, such as shellfish, rabbit stomach, frass of bark beetles, tree exudates, cactus roots, Capri figs, sewage, Drosophila flies and shrimp. He is also remembered for his pioneering work on the coevolution of yeasts, insects and plants as well as for his work on yeast -glucanase, which resulted in major advances in the understanding of the nature of the yeast cell wall. Phaff's legacy includes research on pectin degradation by fungal enzymes and the application of molecular approaches to yeast systematics. He discovered and described many yeasts, such as the yeast named in his honor, Phaffia rhodozyma, which led to the establishment of a very important industrial fermentation process yielding high concentrations of the pigment astaxanthin, used throughout the world to provide a natural source of this important carotenoid.  相似文献   

10.
As a Cambridge University undergraduate Charles Darwin was fascinated and convinced by the argument for intelligent design, as set forth in William Paley’s 1802 classic, Natural Theology. Subsequently, during his five-year voyage on HMS Beagle (1831–1836), Darwin interpreted his biological findings through a creationist lens, including the thought-provoking evidence he encountered during his historic visit to the Galápagos Islands in September and October 1835. After his return to England in 1836 and his subsequent conversion to the idea of organic evolution in March 1837, Darwin searched for a theory that would explain both the fact of evolution and the widespread appearance of intelligent design. His insight into the process of natural selection, which occurred in September 1838, provided this alternative explanation. Darwin’s Origin of Species (1859) exemplifies his skillful deployment of the hypothetico-deductive method in testing and refuting the arguments for intelligent design that he had once so ardently admired.  相似文献   

11.
Conclusion Publication of the Vestiges and the rather primitive theory of evolution it expounded thus played a significant role in the careers of Darwin and Wallace. In addition, in spite of his poor opinion of the Vestiges, it presented Huxley with a convenient topic for critical discussion and the opportunity to focus more attention on the subject of evolution. The dynamic interactions among these leading figures of nineteenth-century natural science helped spur the development of more sophisticated models of evolution.Darwin had a proper appreciation of Chambers's contribution to evolutionary thought, although he fully recognized the shortcomings of this work. He understood the importance of allowing fresh ideas about organic change to be ventilated. However, he was primarily concerned with his own theory and viewed all developments in evolutionary biology from this perspective. If he did not give full consideration to Chambers and his book early on, it was due mainly to his feeling that the concepts in the Vestiges were very different from his own; he was therefore reluctant to embrace them as the forerunners of his own theory. As a scholar, he was also troubled by the scientific errors in the book. However, the record demonstrates that he attempted to make amends for any oversight on his part. His generous letter to Chambers's daughter, and his gracious treatment of Chambers during the brief time the latter lived in London, are ample proof of that.The attacks of Huxley, Sedgwick, and other prominent natural historians and geologists at the time, the problems inherent in Chambers's evolutionary theory, and the publication of the Origin, are the major reasons why the Vestiges became a neglected work. Nevertheless, Chambers's contribution will always stand out because, together with those of other late eighteenth- and early nineteenth-century predecessors of Darwin, it laid the foundations of modern evolutionary thought and, more importantly, helped prepare the scientific community for the more fully developed ideas of Darwin and Wallace.  相似文献   

12.
Bluetooth polling, also referred to as Bluetooth MAC scheduling or intra-piconet scheduling, is the mechanism that schedules the traffic between the participants in a Bluetooth network. Hence, this mechanism is highly determining with respect to the delay packets experience in a Bluetooth network. In this paper, we present a polling mechanism that provides delay guarantees in an efficient manner, and we evaluate this polling mechanism by means of simulation. It is shown that this polling mechanism is able to provide delay guarantees while saving as much as possible resources, which can be used for transmission of best effort traffic or for retransmissions.Rachid Ait Yaiz (1974) received his BS in Electrical Engineering from the Technische Hogeschool Arnhem, the Netherlands, in 1996 and his MSc in Electrical Engineering from the University of Twente, the Netherlands, in 1999. He received his Ph.D. in Telecommunications from the same university in 2004. Currently, he works for TNO Telecom. His research interests include mobile and wireless networks, and he is particularly interested in the area of quality of service over mobile and wireless networks.Geert Heijenk (1965) received his MSc in Computer Science from University of Twente, the Netherlands, in 1988. He worked as a research staff member at the same university and received his Ph.D. in Telecommunications in 1995. He has also held a part-time position as researcher at KPN research, the Netherlands, from 1989 until 1991. From 1995 until 2003, he was with Ericsson EuroLab Netherlands, first as a senior strategic engineer, and since 1999 as a research department manager. From 1998 until 2003 he was also a part-time senior researcher at the University of Twente. Currently, he is a full-time associate professor at the same university. His research interests include mobile and wireless networks, resource management, and quality of service.  相似文献   

13.
We provide here a glimpse of Govindjee and his pioneering contributions on the two light reactions and the two pigment systems, particularly on the water–plastoquinone oxido-reductase, Photosystem II. His focus has been on excitation energy transfer; primary photochemistry, and the role of bicarbonate in electron and proton transfer. His major tools have been kinetics and spectroscopy (absorption and fluorescence), and he has provided an understanding of both thermoluminescence and delayed light emission in plants and algae. He pioneered the use of lifetime of fluorescence measurements to study the phenomenon of photoprotection in plants and algae. He, however, is both a generalist and a specialist all at the same time. He communicates very effectively his passion for photosynthesis to the novice as well as professionals. He has been a prolific author, outstanding lecturer and an editor par excellence. He is the founder not only of the Historical Corner of Photosynthesis Research, but of the highly valued Series Advances in Photosynthesis and Respiration Including Bioenergy and Related Processes. He reaches out to young people by distributing Z-scheme posters, presenting Awards of books, and through tri-annual articles on “Photosynthesis Web Resources”. At home, at the University of Illinois at Urbana-Champaign, he has established student Awards for Excellence in Biological Sciences. On behalf of all his former graduate students and associates, I wish him a Happy 80th birthday. I have included here several tributes to Govindjee by his well-wishers. These write-ups express the high regard the photosynthesis community holds for “Gov” and illuminate the different facets of his life and associations.  相似文献   

14.
15.
Conclusion People have many names. But, changing one's name is no small thing. It can signify a major step in life or an embarrassing story, as in the last case.A person has a complex individual identity. His collective identity is clear from the moment he is conceived. He is one with a body of people, his kinsmen, who share one common ancestor and through him access to land and resources. The continuation of this group and its name is perpetuated through paternal descent.Kingroup membership ensures a person's place in life, his right to exist, eat, live and enjoy. But, who is he, apart from being a kinsman? Which kinsman is he? How are people going to interact with him? His individual identity will become clear through time. He is a re-incarnation of ancestor x. The circumstances of his birth were such. He behaves like this. He has these personal traits. This has happened to him. He has achieved that. There is no permanent role attached to an individual. He is neither bound to class nor caste. He is dynamic and changes constantly. His life is one of achievement, constant striving and upward mobility till death — when it all begins again. His name signals his state of being in time and existence.Sabine Jell-Bahlsen is an anthropologist and filmmaker.  相似文献   

16.
Lacepède was a key figure in the French intellectual world from the Old Regime to the Restoration, sinc e he was not only a scientist, but also a musician, a writer, and a politician. His brilliant career is a good example of the progress of the social status of scientists in France around 1800. In the life sciences, he was considered the heir to Buffon and continued the latter’s Histoire naturelle, but he also borrowed ideas from anti-Buffonian (e.g. Linnaean) scientists. He broached many important subjects such as the nature of man, the classification of animals, the concept of species, and the history of the Earth. All these topics led to tensions in the French sciences, but Lacepède dealt with them in a consensual, indeed even ambiguous way. For example, he held transformist views, but his concept of evolution was far less precise and daring than Lamarck’s contemporaneous attempts. His somewhat confused eclecticism allowed him to be accepted by opposing camps of the French scientific community at that time and makes his case interesting for historians, since the opinions of such an opportunistic figure can illuminate the figure of the French intellectual better than more original works could do. In turn, Lacepède’s important social and scientific position gave his views a significant visibility. In this sense, his contributions probably exerted an influence, in particular with regard to the emergence of transformist theories.  相似文献   

17.
Conclusion My conclusion is that Mendel deliberately, though without any real falsification, tried to suggest to his audience and readers an unlikely and substantially wrong reconstruction of the first and most important phase of his research. In my book I offer many reasons for this strange and surprising behavior,53 but the main argument rests on the fact of linkage. Mendelian genetics cannot account for linkage because it was based on the idea of applying probability theory to the problem of species evolution. Central to the theory is the law of probability according to which the chance occurrence of a combination of independent events is the product of their separate probabilities. This is the common basis of Mendel's first and second laws, but this is why Mendel's second law on independent assortment is enunciated in too general a way. From Morgan's work we now know that characters may not always be independent if their genes are located very close one to the other on the same chromosome. And this was also the basis of Mendel's personal drama: he surely observed the effects of linkage, but he had no theoretical tools with which to explain it. So he presented his results in a logical structure consistent with the central idea of his theory. Had he described the real course of his experiments he would have had to admit that his law worked for only a few of the hundreds of Pisum characters — and it would thus have been considered more of an exception than a rule. This is why he insisted on the necessity of testing the law on other plants, and this is why in his second letter to Carl Nägeli he admits that the publication of his data was untimely and dangerous.54.We can argue that already in 1866 Mendel was less confident that his so-called second law had the same general validity as the first — and that later he lost his confidence altogether. Contemporary testimony indicates that in the end he became as skeptical as all his contemporaries as to the scientific relevance of his theory.55 But he was wrong. His research is in no way the fruit of methodological mistakes or forgery, and it remains a landmark in the history of science. He was only the victim of a strange destiny in which the use of probability theory was responsible, at the same time, for the strength and for the weakness of his theory. We must still consider him the father and founder of genetics.  相似文献   

18.
Software Component Frameworks are well known in the commercial business application world and now this technology is being explored with great interest as a way to build large-scale scientific applications on parallel computers. In the case of Grid systems, the current architectural model is based on the emerging web services framework. In this paper we describe progress that has been made on the Common Component Architecture model (CCA) and discuss its success and limitations when applied to problems in Grid computing. Our primary conclusion is that a component model fits very well with a services-oriented Grid, but the model of composition must allow for a very dynamic (both in space and in time) control of composition. We note that this adds a new dimension to conventional service workflow and it extends the “Inversion of Control” aspects of most component systems. Dennis Gannon is a professor of Computer Science at Indiana University. He received his Ph.D. in Computer Science from the University of Illinois in 1980 and his Ph.D. in Mathematics from the University of California in 1974. From 1980 to 1985, he was on the faculty at Purdue University. His research interests include software tools for high performance distributed systems and problem solving environments for scientific computation. Sriram Krishnan received his Ph.D. in Computer Science from Indiana University in 2004. He is currently in the Grid Development Group at the San Diego Supercomputer Center where he is working on designing a Web services based architecture for biomedical applications that is secure and scalable, and is conducive to the creation of complex workflows. He received my undergraduate degree in Computer Engineering from the University of Mumbai, India. Liang Fang is a Ph.D. student in Computer Science at Indiana University. His research interests include Grid computing, Web services, portals, their security and scalability issues. He is a Research Assistant in Computer Science at Indiana University, currently responsible for investigating authorization and other security solutions to the project of Linked Environments for Atmospheric Discovery (LEAD). Gopi Kandaswamy is a Ph.D. student in the Computer Science Department at Indiana University where he is current a Research Assistant. His research interests include Web services and workflow systems for the Grid. Yogesh Simmhan received his B.E. degree in Computer Science from Madras University, India in 2000, and is a doctoral candidate in Computer Science at Indiana University. He is currently working as a Research Assistant at Indiana University, investigating data management issues in the LEAD project. His interests lie in data provenance for workflow systems and its use in data quality estimation. Aleksander Slominski is a Ph.D. student in the Computer Science at Indiana University. His research interests include Grid and Web Services, streaming XML Pull Parsing and performance, Grid security, asynchronous messaging, events, and notifications brokers, component technologies, and workflow composition. He is currently working as a Research Assistant investigating creation and execution of dynamic workflows using Grid Process Execution Language (GPEL) based on WS-BPEL.  相似文献   

19.
Edouard Chatton (1883–1947) began his scientific career in the Pasteur Institute, where he made several important discoveries regarding pathogenic protists (trypanosomids, Plasmodium, toxoplasms, Leishmania). In 1908 he married a "Banyulencque", Marie Herre; from 1920, he focused his research on marine protists. He finished his career as Professor at the Sorbonne (Paris) and director of the Laboratoire Arago in Banyuls-sur-mer, where he died in 1947. André Lwoff (1902–1994) lived several scientific lives in addition to his artistic and family life. But it is the study of protists that filled his first life after he encountered the exceptional Master who was Chatton. Lwoff's father was a psychiatrist and his mother an artist sculptor. He became a Doctor of Medicine in 1927 and then a Doctor of Sciences in 1932, his thesis dealing with biochemical aspects of protozoa nutrition. He met Chatton in 1921 and – until Chatton's death – their meetings, first in Roscoff and then in Banyuls-sur-mer, were numerous and their collaboration very close. Their monograph on apostome ciliates was one of the peaks of this collaboration. In 1938, Lwoff was made director of the Microbial Physiology Department at the Pasteur Institute in Paris, where he began a new life devoted to bacteria, and then to viruses, before pursuing his career as director of the Cancer Research Institute in Villejuif (France). Lwoff was awarded the Nobel Prize in Physiology or Medicine in 1965. He died in Banyuls in 1994. "Master" and "pupil" had in common perseverance in their scientific work, conception and observation, a critical sense and rigor but also a great artistic sensibility that painting and drawing in the exceptional surroundings of Banyuls-sur-mer had fulfilled. Electronic Publication  相似文献   

20.
Distributed Shared Arrays (DSA) is a distributed virtual machine that supports Java-compliant multithreaded programming with mobility support for system reconfiguration in distributed environments. The DSA programming model allows programmers to explicitly control data distribution so as to take advantage of the deep memory hierarchy, while relieving them from error-prone orchestration of communication and synchronization at run-time. The DSA system is developed as an integral component of mobility support middleware for Grid computing so that DSA-based virtual machines can be reconfigured to adapt to the varying resource supplies or demand over the course of a computation. The DSA runtime system also features a directory-based cache coherence protocol in support of replication of user-defined sharing granularity and a communication proxy mechanism for reducing network contention. System reconfiguration is achieved by a DSA service migration mechanism, which moves the DSA service and residing computational agents between physical servers for load balancing and fault resilience. We demonstrate the programmability of the model in a number of parallel applications and evaluate its performance by application benchmark programs, in particular, the impact of the coherence granularity and service migration overhead. Song Fu received the BS degreee in computer science from Nanjing University of Aeronautics and Astronautics, China, in 1999, and the MS degree in computer science from Nanjing University, China, in 2002. He is currently a PhD candidate in computer engineering at Wayne State University. His research interests include the resource management, security, and mobility issues in wide-area distributed systems. Cheng-Zhong Xu received the BS and MS degrees in computer science from Nanjing University in 1986 and 1989, respectively, and the Ph.D. degree in computer science from the University of Hong Kong in 1993. He is an Associate Professor in the Department of Electrical and Computer Engineer of Wayne State University. His research interests lie in distributed are in distributed and parallel systems, particularly in resource management for high performance cluster and grid computing and scalable and secure Internet services. He has published more than100 peer-reviewed articles in journals and conference proceedings in these areas. He is the author of the book Scalable and Secure Internet Services and Architecture (CRC Press, 2005) and a co-author of the book Load Balancing in Parallel Computers: Theory and Practice (Kluwer Academic, 1997). He serves on the editorial boards of J. of Parallel and Distributed Computing, J. of Parallel, Emergent, and Distributed Systems, J. of High Performance Computing and Networking, and J. of Computers and Applications. He was the founding program co-chair of International Workshop on Security in Systems and Networks (SSN), the general co-chair of the IFIP 2006 International Conference on Embedded and Ubiquitous Computing (EUC06), and a member of the program committees of numerous conferences. His research was supported in part by the US National Science Foundation, NASA, and Cray Research. He is a recipient of the Faculty Research Award of Wayne State University in 2000, the Presidents Award for Excellence in Teaching in 2002, and the Career Development Chair Award in 2003. He is a senior member of the IEEE. Brian A. Wims was born in Washington, DC in 1967. He received the Bachelor of Science in Electrical Engineering from GMI-EMI (now called Kettering University) in 1990; and Master of Science in Computer Engineering from Wayne State University in 1999. His research interests are primarily in the fields of parallel and distributed systems with applications in Mobile Agent technologies. From 1990–2001 he worked in various Engineering positions in General Motors, including Electrical Analysis, Software Design, and Test and Development. In 2001, he joined the General Motors IS&S department where he is currently a Project Manager in the Computer Aided Test group. Responsibilities include managing the development of test automation applications in the Electrical, EMC, and Safety Labs. Ramzi Basharahil was born in Aden, Yemen in 1972. He received the Bachelor of Science degree in Electrical Engineering from the United Arab Emirates University. He graduated top of his engineering graduated class of 1997. He obtained Master of Science degree in 2001 from Wayne State University in the Department of Electrical and Computer Engineering. His main research interests are primarily in the fields of parallel and distributed systems with applications to distributed processing across cluster of servers. From 1997 to 1998, he worked as a Teaching Assistant in the Department of Electrical Engineering at the UAE University. In 2000, he joined Internet Security Systems as a security software engineer. He later joined NetIQ Corporation in 2002 and still working since then. He is leading the security events trending and events management software development where he is involved in designing and the implementing event/log managements products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号