首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isothiocyanates are potent modifiers of thiol groups, and they have been successfully applied in studying the active site structure of renal (Na+ + K+)-ATPase. However, very little has been known on interactions of isothiocyanates with myocardial sarcolemmal ATPases. In the present study the mode of interaction and inhibitory effect of p-bromophenyl isothiocyanate (BPITC) on isolated rat heart sarcolemmal preparation ATPase activities not exhibiting (Mg-Ca)-ATPase activity was investigated. BPITC in concentrations of 10(-7)-10(-4) mol . l-1 inhibited selectively and non-competitively the (Na+ + K+)-ATPase activity in the sarcolemma with an ID50 around 2.10(-7) mol . l-1. The non-specific interaction of BPITC with bivalent cations, namely with Mg2+ and Ca2+, in the reaction system was eliminated by preincubation of membranes with BPITC keeping the ratio of inhibitor to membrane protein concentration constant. Under these conditions no considerable inhibitory effects were observed on Mg2+-ATPase or the low-affinity Ca2+-ATPase of sarcolemma. Preincubation of membranes with 2 mmol . l-1 ATP protected (Na+ + K+)-ATPase activity against inhibition by BPITC. The interaction of BIPTC with the sarcolemma proved to be reversible in the presence of beta-mercaptoethanol or dithiothreitol.  相似文献   

2.
The effect of thyroid hormones (T4, T3 and reverse T3) on rat renal Na+,K+-ATPase activity was investigated by a cytochemical technique. T3 caused stimulation of Na+,K+-ATPase activity in the renal medulla but not in the renal cortex. There was a peak in enzyme activity after cultured renal segments had been exposed to T3 for 11 min and this time of maximal stimulation did not vary with the concentration of T3. A rectilinear response in Na+,K+-ATPase activity was observed over T3 concentration range 10 pmol l-1 to 100 nmol l-1; at higher T3 concentrations, Na+,K+-ATPase activity was inhibited. The enzyme response was totally blocked by specific T3 antiserum. Addition of T4 and reverse T3 (100 fmol l-1 -1 mmol l-1) failed to stimulate Na+,K+-ATPase activity in any part of the kidney. Plasma (neat and diluted 1:10) stimulated the enzyme in parallel with the dose response curve and the stimulatory effect was abolished by prior addition of specific T3 antiserum.  相似文献   

3.
To better comprehend physiological adaptation to dilute media and the molecular mechanisms underlying ammonia excretion in palaemonid shrimps, we characterized the (Na+,K+)-ATPase from Macrobrachium amazonicum gills, disclosing high- (K(0.5) = 4.2+/-0.2 micromol L(-1); V = 33.9+/-1.9 U mg(-1)) and low-affinity (K(0.5) = 0.144+/-0.010 mmol L(-1); V = 232.9+/-15.3 U mg(-1)) ATP hydrolyzing sites. Stimulation by Na+ (K(0.5) = 5.5+/-0.3 mmol L(-1); V = 275.1+/-15.1 U mg(-1)), Mg2+ (K(0.5) = 0.79+/-0.06 mmol L(-1); V = 261.9+/-18.3 U mg(-1)), K+ (K(M) = 0.88+/-0.04 mmol L(-1); V = 271.8+/-10.9 U mg(-1)) and NH4(+) (K(M) = 5.0+/-0.2 mmol L(-1); V = 385.9+/-15.8 U mg(-1)) obeys single saturation curves, activity being stimulated synergistically by NH4(+) and K+. There is a single K+ binding site, NH4(+) binding to a second, exclusive site, stimulating activity by 33%, modulating K+ affinity. (Na+,K+)-ATPase activity constitutes approximately 80% of total ATPase activity (K(Iouabain) = 147.5+/-8.9 micromol L(-1)); Na+-, K+-, Ca2+-, V- and F(o)F(1)-ATPases are also present. M. amazonicum microsomal fractions possess approximately 2-fold less (Na+,K+)-ATPase alpha-subunit than M. olfersi, consistent with a 2.6-fold lower specific activity. These differences in (Na+, K+)-ATPase stimulation by ATP and ions, and specific activities of other ATPases, suggest the presence of distinct biochemical adaptations to life in fresh water in these related species.  相似文献   

4.
The distribution of K+-pNPPase (Na+,K+-ATPase) activity in the compartments of the Golgi apparatus in neurons of the cerebral cortex of young and adult Wistar rats was studied by ultrastructural cytochemistry. In adult rats, mainly the cis-most cisterna was associated with reaction deposits. In 10- and especially in 15-day-old rats, not only the cis-cisternae, but the cis- and trans-Golgi, as well as components of the Golgi stack, also revealed K+-pNPPase activity. The dynamic changes of K+ -pNPPase localization in the compartments of the neuronal Golgi complexes were discussed with respect to the biochemical evidence concerning the building, assembly and processing of Na+,K+-ATPase as plasma membrane glycoprotein. It was suggested that the high activity in the Golgi complexes seen in 15-day-old rats has to be associated with the advancing myelinization in this period and the necessity of Na+,K+-ATPase equipment of nodes of Ranvier.  相似文献   

5.
We have earlier shown that the renal dopaminergic system failed to respond to high salt (HS) intake in old (24-month-old) Fisher 344 rats (Hypertension 1999;34:666-672). In the present study, intestinal Na+,K+-ATPase activity and intestinal dopaminergic tonus were evaluated in adult and old Fischer 344 rats during normal salt (NS) and HS intake. Basal intestinal Na+,K+-ATPase activity (nmol Pi/mg protein/min) in adult rats (142+/-6) was higher than in old Fischer 344 rats (105+/-7). HS intake reduced intestinal Na+,K+-ATPase activity by 20% (P<0.05) in adult, but not in old rats. Dopamine (1 microM) failed to inhibit intestinal Na+,K+-ATPase activity in both adult and old Fischer 344 rats (NS and HS diets). In adult animals, co-incubation of pertussis toxin with dopamine (1 microM) produced a significant inhibitory effect in the intestinal Na+,K+-ATPase activity. L-DOPA and dopamine tissue levels in the intestinal mucosa of adult rats were higher (45+/-9 and 38+/-4 pmol/g) than those in old rats (27+/-9 and 14+/-1 pmol/g). HS diet did not change L-DOPA and DA levels in both adult and old rats. DA/L-DOPA tissue ratios, an indirect measure of dopamine synthesis, were higher in old (1.1+/-0.2) than in adult rats (0.6+/-0.1). Aromatic L-amino acid decarboxylase (AADC) activity in the intestinal mucosa of old rats was higher than in adult rats. HS diet increased the AADC activity in adult rats, but not in old rats. It is concluded that intestinal dopaminergic tonus in old Fisher 344 rats is higher than in adult rats and is accompanied by lower basal intestinal Na+,K+-ATPase activity. In old rats, HS diet failed to alter the intestinal dopaminergic tonus or Na+,K+-ATPase activity, whereas in adult rats increases in AADC activity were accompanied by decreases in Na+,K+-ATPase activity. The association between salt intake, increased dopamine formation and inhibition of Na+,K+-ATPase at the intestinal level was not as straightforward as that described in renal tissues.  相似文献   

6.
The activity of Na+/K+- and Ca2+-ATPase and some allosteric properties of Na+/K+-ATPase were studied in whole erythrocytes and their membrane preparations (ghosts) from rats exposed to intermittent altitude hypoxia (10 and 24 exposures, 8 h/day in an altitude chamber, stepwise up to an altitude of 7,000 m). Ca2+-ATPase activity was increased both in whole erythrocytes and ghosts after the first phase of acclimatization (10 exposures). In a standard incubation medium (containing 3 mmol.l-1 MgCl2 ), Na+/K+-ATPase activity in the ghosts was also increased after the initial phase of acclimatization whereas in whole erythrocytes Na+/K+-ATPase was only decreased in the regression phase. At high MgCl2 concentrations (12 mmol.l-1) changes of Na+/K+-ATPase activity both in whole erythrocytes and in the ghosts followed similar time course with a pronounced increase in the first phase of acclimatization (10 exposures) followed by an abrupt drop (24 exposures) and then by a gradual normalization in the regression phase. Sensitivity of the enzyme to mounting MgCl2 concentrations was increased in the ghosts at the end of acclimatization and was decreased in whole erythrocytes during acclimatization and especially in the regression phase. It has been suggested that chronic altitude hypoxia leads to the alteration of cooperative interaction of the Na+/K+-ATPase subunits in the erythrocyte membrane and accumulation of some factor in the cells inhibiting this enzyme.  相似文献   

7.
Differential polarized phase fluorometry of fluorescein-5-isothiocyanate (FITC) showed that the activation of (Na,K)-ATPase in crude plasma membranes from rat brain by 10 mmol.l-1 K+ and 100 mmol.l-1 Na+ significantly increased the rotational relaxational rate (R) of enzyme-bound FITC. This increase was blocked by both ouabain (0.1 mmol.l-1) and vanadate (0.1 mmol.l-1). In the absence of ATP, R was increased less after adding of 10 mmol.l-1 K+ to the membranes. The shifts in the nanosecond movements of the protein segments measured as R during the activation of (Na,K)-ATPase suggest that this type of movement might be of some functional importance.  相似文献   

8.
1. Sea bass kidney microsomal preparations contain two Mg2+ dependent ATPase activities: the ouabain-sensitive (Na+ + K+)-ATPase and an ouabain-insensitive Na+-ATPase, requiring different assay conditions. The (Na+ + K+)-ATPase under the optimal conditions of pH 7.0, 100 mM Na+, 25 mM K+, 10 mM Mg2+, 5 mM ATP exhibits an average specific activity (S.A.) of 59 mumol Pi/mg protein per hr whereas the Na+-ATPase under the conditions of pH 6.0, 40 mM Na+, 1.5 mM MgATP, 1 mM ouabain has a maximal S.A. of 13.9 mumol Pi/mg protein per hr. 2. The (Na+ + K+)-ATPase is specifically inhibited by ouabain and vanadate; the Na+-ATPase specifically by ethacrynic acid and preferentially by frusemide; both activities are similarly inhibited by Ca2+. 3. The (Na+ + K+)-ATPase is specific for ATP and Na+, whereas the Na+-ATPase hydrolyzes other substrates in the efficiency order ATP greater than GTP greater than CTP greater than UTP and can be activated also by K+, NH4+ or Li+. 4. Minor differences between the two activities lie in the affinity for Na+, Mg2+, ATP and in the thermosensitivity. 5. The comparison between the two activities and with what has been reported in the literature only partly agree with our findings. It tentatively suggests that on the one hand two separate enzymes exist which are related to Na+ transport and, on the other, a distinct modulation in vivo in different tissues.  相似文献   

9.
1. Gilthead gill 10(-3) M ouabain-inhibited (Na+ + K+)-ATPase and 10(-2) M ouabain-insensitive Na+-ATPase require the optimal conditions of pH 7.0, 160 mM Na+, 20 mM K+, 5 mM MgATP and pH 4.8-5.2, 75 mM Na+, 2.5 mM Mg2+, 1.0 mM ATP, respectively. 2. The main distinctive features between the two activities are confirmed to be optimal pH, the ouabain-sensitivity and the monovalent cation requirement, Na+ plus another cationic species (K+, Rb+, Cs+, NH4+) in the (Na+ + K+)-ATPase and only one species (Na+, K+, Li+, Rb+, Cs+, NH4+ or choline+) in the Na+-ATPase. 3. The aspecific Na+-ATPase activation by monovalent cations, as well as by nucleotide triphosphates, opposed to the (Na+ + K+)-ATPase specificity for ATP and Na+, relates gilthead gill ATPases to lower organism ATPases and differentiates them from mammalian ones. 4. The discrimination between the two activities by the sensitivity to ethacrynic acid, vanadate, furosemide and Ca2+ only partially agrees with the literature. 5. Present findings are viewed on the basis of the ATPase's presumptive physiological role(s) and mutual relationship.  相似文献   

10.
The aim of this work was to develop a method for renal H+,K+-ATPase measurement based on the previously used Na+,K+-ATPase assay (Beltowski et al.: J Physiol Pharmacol.; 1998, 49: 625-37). ATPase activity was assessed by measuring the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Both ouabain-sensitive and ouabain-resistant K+-stimulated and Na+-independent ATPase activity was detected in the renal cortex and medulla. These activities were blocked by 0.2 mM imidazolpyridine derivative, Sch 28080. The method for ouabain-sensitive H+,K+-ATPase assay is characterized by good reproducibility, linearity and recovery. In contrast, the assay for ouabain-resistant H+,K+-ATPase was unsatisfactory, probably due to low activity of this enzyme. Ouabain-sensitive H+,K+-ATPase was stimulated by K+ with Km of 0.26 +/- 0.04 mM and 0.69 +/- 0.11 mM in cortex and medulla, respectively, and was inhibited by ouabain (Ki of 2.9 +/- 0.3 microM in the renal cortex and 1.9 +/- 0.4 microM in the renal medulla) and by Sch 28080 (Ki of 1.8 +/- 0.5 microM and 2.5 +/- 0.9 microM in cortex and medulla, respectively). We found that ouabain-sensitive H+,K+-ATPase accounted for about 12% of total ouabain-sensitive activity in the Na+,K+-ATPase assay. Therefore, we suggest to use Sch 28080 during Na+,K+-ATPase measurement to block H+,K+-ATPase and improve the assay specificity. Leptin administered intraperitoneally (1 mg/kg) decreased renal medullary Na+,K+-ATPase activity by 32.1% at 1 h after injection but had no effect on H+,K+-ATPase activity suggesting that the two renal ouabain-sensitive ATPases are separately regulated.  相似文献   

11.
Bass gill microsomal preparations contain a Mg2+-dependent Na+-stimulated ATPase activity in the absence of K+, whose characteristics are compared with those of the (Na+ + K+)-ATPase of the same preparations. The activity at 30 degrees C is 11.3 mumol Pi X mg-1 protein X hr-1 under optimal conditions (5 mM MgATP, 75 mM Na+, 75 mM HEPES, pH 6.0) and exhibits a lower pH optimum than the (Na+ + K+)-ATPase. The Na+ stimulation of ATPase is only 17% inhibited by 10-3M ouabain and completely abolished by 2.5 mM ethacrinic acid which on the contrary cause, respectively, 100% and 34% inhibition of the (Na+ + K+)-ATPase. Both Na+-and (Na+ + K+)-stimulated activities can hydrolyze nucleotides other than ATP in the efficiency order ATP greater than CTP greater than UTP greater than GTP and ATP greater than CTP greater than GPT greater than UTP, respectively. In the presence of 10(-3)M ouabain millimolar concentrations of K+ ion lower the Na+ activation (90% inhibition at 40 mM K+). The Na+-ATPase is less sensitive than (Na+ + K+)-ATPase to the Ca2+ induced inhibition as the former is only 57.5% inhibited by a concentration of 1 X 10(-2)M which completely suppresses the latter. The thermosensitivity follows the order Mg2+--greater than (Na+ + K+)--greater than Na+-ATPase. A similar break of the Arrhenius plot of the three enzymes is found. Only some of these characteristics do coincide with those of a Na+-ATPase described elsewhere. A presumptive physiological role of Na+-ATPase activity in seawater adapted teleost gills is suggested.  相似文献   

12.
The aim of this study was to investigate the effect of different cytidine-5'-diphosphocholine (CDP-choline) concentrations (0.1-1 mM) on acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg(2+)-ATPase activities in homogenates of adult and aged rat hippocampi. Tissues were homogenised, centrifuged at 1000 x g for 10 min and in the supernatant, AChE activity and Na+,K(+)-ATPase and Mg(2+)-ATPase activities were determined according to Ellman's method and Bowler's and Tirri's method, respectively. After an 1-3 h preincubation of the homogenised tissue with CDP-choline, a maximal AChE stimulation of about 25% for both adult and aged rats (p < 0.001) and a Na+,K(+)-ATPase activation of about 50% for adult rats (p < 0.001) and about 60% for aged rats (p < 0.001) were observed, while hippocampal Mg(2+)-ATPase activity was not influenced in either adult or aged animals. It is suggested that: CDP-choline can restore hippocampal AChE and Na+,K(+)-ATPase activities in the aged rat and thus it may play a role in improving memory performance which is impaired by aging and some neuronal disturbances.  相似文献   

13.
The comparative research of catalytic properties of two ATP-hydrolases of the sarcolemma of the smooth muscle of the uterus--ouabaine-sensitive Na+,K+-ATPase and ouabaine-resistent Mg2+-ATPase is carried out. The specific enzymatic activity of Na+,K+-ATPase and Mg2+-ATPase makes 10.2 +/- 0.7 and 18.1 +/- 1.2 mmol P/mg of protein for 1 hour, accordingly. The action of ouabaine on Na+,K+-ATPase is characterized by magnitude of quotient of inhibition I0.5=21.3 +/- 1.5 mkM. Processing of the sarcolemma fraction by digitonin in concentrations 0.001 +/- 0.1% promotes an activation of Na+,K+ATPase and Mg2+- ATPase, and in the first case much more efficiently than in the second. The kinetics of accumulation of the product of ATP-hydrolase reactions of phosphate satisfies the laws of the zero order reaction (incubation time--about 10 min). Na+,K+-ATPase is highly specific concerning the univalent cations--Na+, K+, however Li+ can partially substitute K+. Activity of Mg2+-ATPase is not specific concerning univalent cations. The dependence of Na+,K+-ATPase activity on pH in the range of 6.0-8.0 is characterized by the bell-shaped curve, at the same time the linear dependence on pH is peculiar to Mg2+-ATPase. The functioning of Na+,K+-ATPase is provided only by ATP, in the case of Mg2+-ATPase ATP can be successfully replaced with other nucleotidetriphosphates. It is supposed that the obtained experimental data can be beneficial in further research of membranous mechanisms underlying the cation exchange in the smooth muscles, in particular when studying the role of the plasma membrane in the maintenance of electromechanical coupling in them, and also in the regulation of ionic homeostasis in myocytes.  相似文献   

14.
Calcium-induced changes in (Na+ + K+)-ATPase activity and structural changes of membrane bound proteins in rat heart sarcolemma were investigated. Increasing concentrations of Ca2+ (0.1-8.0 mmol.l-1) gradually inhibited the (Na+ + K+)-ATPase activity and decreased the alpha-helix content of sarcolemmal proteins. Mathematical and graphical analysis of observed data yielded a quantitative relationship between Ca2+-induced changes in (Na+ + K+)-ATPase activity and the secondary structure of membrane proteins in cardiac sarcolemma.  相似文献   

15.
The effect of different L-phenylalanine (Phe) concentrations (0.12-12.1 mM) on acetylcholinesterase (AChE), (Na+,K+)-ATPase and Mg2+-ATPase activities was investigated in homogenates of adult rat whole brain and frontal cortex at 37 degrees C. AChE, (Na+,K+)-ATPase and Mg2+-ATPase activities were determined after preincubation with Phe. AChE activity in both tissues showed a decrease up to 18% (p<0.01) with Phe. Whole brain Na+,K+-ATPase was stimulated by 30-35% (p<0.01) with high Phe concentrations, while frontal cortex Na+,K+-ATPase was stimulated by 50-55% (p<0.001). Mg2+-ATPase activity was increased only in frontal cortex with high Phe concentrations. It is suggested that: a) The inhibitory effect of Phe on brain AChE is not influenced by developmental factors, while the stimulation of Phe on brain Na+,K+-ATPase is indeed affected; b) The stimulatory effect of Phe on rat whole brain Na+,K+-ATPase is decreased with age; c) Na+,K+-ATPase is selectively more stimulated by high Phe concentrations in frontal cortex than in whole brain homogenate; d) High (toxic) Phe concentrations can affect Mg2+-ATPase activity in frontal cortex, but not in whole brain, thus modulating the amount of intracellular Mg2+.  相似文献   

16.
S Maeda  J Nakamae  R Inoki 《Life sciences》1988,42(4):461-468
The effect of various opioids on Na+, K+ -ATPase partially purified from rat heart was examined. Dynorphin-A (1-13), dynorphin-A (1-17) and ethylketocyclazocine (EKC), which are k-type opiate agonists, markedly inhibited the enzyme activity in a dose-dependent manner; IC50 values were 12 microM, 21 microM and 0.38 mM, respectively. Morphine (mu-type agonist), methionine- and leucine-enkephalin (delta-type agonist) at the concentration of 1 mM did not affect the enzyme activity. The effect of dynorphin-A (1-13) and EKC was not antagonized by naloxone. Dynorphin-A (1-13) mainly decreased Vmax value without the change of Km value in the activation of Na+, K+-ATPase by ATP, Na+ and K+. Dynorphin-A(1-13) inhibited the partial reactions of Na+, K+-ATPase at the different degree of the potency; the inhibition of K+-stimulated phosphatase was greater than that of Na+-dependent phosphorylation. The present study suggests that dynorphin-A and EKC have an effect on cardiovascular system which is mediated by the inhibition of Na+, K+-ATPase in the heart.  相似文献   

17.
The alpha- and beta-subunits of Na+,K+-ATPase and H+,K+-ATPase were expressed in Sf9 cells in different combinations. Immunoprecipitation of the alpha-subunits resulted in coprecipitation of the accompanying beta-subunit independent of the type of beta-subunit. This indicates cross-assembly of the subunits of the different ATPases. The hybrid ATPase with the catalytic subunit of Na+,K+-ATPase and the beta-subunit of H+,K+-ATPase (NaKalphaHKbeta) showed an ATPase activity, which was only 12 +/- 4% of the activity of the Na+,K+-ATPase with its own beta-subunit. Likewise, the complementary hybrid ATPase with the catalytic subunit of H+,K+-ATPase and the beta-subunit of Na+,K+-ATPase (HKalphaNaKbeta) showed an ATPase activity which was 9 +/- 2% of that of the recombinant H+,K+-ATPase. In addition, the apparent K+ affinity of hybrid NaKalphaHKbeta was decreased, while the apparent K+ affinity of the opposite hybrid HKalphaNaKbeta was increased. The hybrid NaKalphaHKbeta could be phosphorylated by ATP to a level of 21 +/- 7% of that of Na+,K+-ATPase. These values, together with the ATPase activity gave turnover numbers for NaKalphabeta and NaKalphaHKbeta of 8800 +/- 310 min-1 and 4800 +/- 160 min-1, respectively. Measurements of phosphorylation of the HKalphaNaKbeta and HKalphabeta enzymes are consistent with a higher turnover of the former. These findings suggest a role of the beta-subunit in the catalytic turnover. In conclusion, although both Na+,K+-ATPase and H+,K+-ATPase have a high preference for their own beta-subunit, they can function with the beta-subunit of the other enzyme, in which case the K+ affinity and turnover number are modified.  相似文献   

18.
Stimulation by serum of cell proliferation in G1-arrested culture of Chinese hamster ovary cells CHO-K1 was accompanied by an early (during the first minutes) and delayed (2-10 h) activation of Na+,K+-ATPase and an increase in cell K+ content from 0.5-0.6 to 0.7-0.8 mmol per gram protein. Isoproterenol acted synergistically with serum in eliciting both early and delayed changes in K+ transport and in stimulating G1----S transition. Isoproterenol alone (without serum) induced a transient increase in K+ influx via Na+,K+-ATPase without changing the cell K+ content or having any mitogenic effect. Theophylline enhanced the serum-induced early activation of Na+,K+-ATPase but inhibited both the delayed increase in cell K+ and the G1----S transition. Early serum-induced increase in K+ transport was not affected by cycloheximide, whereas net accumulation of cell K+ was abolished by the drug. It is concluded that the early and the delayed activation of Na+,K+-ATPase induced by mitogens can be dissociated; the early ionic response is related to the primary transduction of membrane signal, whereas the delayed modulation of ion transport via Na+,K+-ATPase has another function and is associated with cell growth.  相似文献   

19.
To better comprehend the mechanisms of ionic regulation, we investigate the modulation by Na+, K+, NH4(+) and ATP of the (Na+, K+)-ATPase in a microsomal fraction from Callinectes ornatus gills. ATP hydrolysis obeyed Michaelis-Menten kinetics with KM=0.61+/-0.03 mmol L(-1) and maximal rate of V=116.3+/-5.4 U mg(-1). Stimulation by Na+ (V=110.6+/-6.1 U mg(-1); K0.5=6.3+/-0.2 mmol L(-1)), Mg2+ (V=111.0+/-4.7 U mg(-1); K0.5=0.53+/-0.03 mmol L(-1)), NH4(+) (V=173.3+/-6.9 U mg(-1); K0.5=5.4+/-0.2 mmol L(-1)) and K+ (V=116.0+/-4.9 U mg(-1); K0.5=1.5+/-0.1 mmol L(-1)) followed a single saturation curve, although revealing site-site interactions. In the absence of NH4(+), ouabain (K(I)=74.5+/-1.2 micromol L(-1)) and orthovanadate inhibited ATPase activity by up to 87%; the inhibition patterns suggest the presence of F0F1 and K+-ATPases but not Na+-, V- or Ca2+-ATPase as contaminants. (Na+, K+)-ATPase activity was synergistically modulated by K+ and NH4(+). At 10 mmol L(-1) K+, increasing NH4(+) concentrations stimulated maximum activity to V=185.9+/-7.4 U mg(-1). However, at saturating NH4(+) (50 mmol L(-1)), increasing K+ concentrations did not stimulate activity further. Our findings provide evidence that the C. ornatus gill (Na+, K+)-ATPase may be particularly well suited for extremely efficient active NH4(+) excretion. At elevated NH4(+) concentrations, the enzyme is fully active, regardless of hemolymph K+ concentration, and K+ cannot displace NH4(+) from its exclusive binding sites. Further, the binding of NH4(+) to its specific sites induces an increase in enzyme apparent affinity for K+, which may contribute to maintaining K+ transport, assuring that exposure to elevated ammonia concentrations does not lead to a decrease in intracellular potassium levels. This is the first report of modulation by ammonium ions of C. ornatus gill (Na+, K+)-ATPase, and should further our understanding of NH4(+) excretion in benthic crabs.  相似文献   

20.
Microsomal Na+,K+-ATPase isolated from the renal cortex of rats with CCL4-induced cirrhosis (CIR) showed a higher specific activity than the enzyme obtained from control rats (COR). Kinetic studies showed a lower K0.5 for ATP (0.08 +/- 0.03 vs. 0.24 +/- 0.04 mM; p less than 0.05), a lower Na+ activation constant (9.6 +/- 1.5 vs. 19.0 +/- 1.7 mM; p less than 0.05), and a higher K+ activation constant (1.2 +/- 0.1 vs. 0.6 +/- 0.1 mM; p less than 0.05) for CIR. The optimal pH of the enzyme was 0.5 units higher in CIR than COR. The fluorescence of eosin-treated enzymes indicated a higher ratio of E1/E2 forms of Na+,K+-ATPase in CIR. The K+-activated p-nitrophenylphosphatase (pNPPase) activity of the enzyme was lower in CIR than COR rats (1.5 +/- 0.1 vs. 2.2 +/- 0.1 mU/mg; p less than 0.05). Dialysing (24 h) COR microsomes reproduced most of the changes observed in CIR enzymes (kinetics, optimal pH, and eosin fluorescence). Lyophilized dialysate of COR, but not of CIR microsomes, inhibits Na+,K+-ATPase activity. These results suggest that a dialysable inhibitor modifies the Na+,K+-ATPase activity in the kidney of COR which is almost absent in that of CIR. The absence of this factor may lead to the overall inability to excrete Na+ in the cirrhotic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号