首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accumulation of copper, zinc and cadmium inA. yokoscense collected from Ashio (copper-contaminated area), Bandai (zinc- and cadmium-contaminated area) and Tama (non-contaminated area), has been investigated. Copper and zinc were accumulated most highly in the root, whilst cadmium was accumulated more in the leaf. The root ofA. yokoscense growing in areas contaminated with metals contained maximum amounts of Cu (5, 989 mg. kg−1 dry weight) and Zn (6,384 mg.kg−1 dry weight), while in the leaf from the Bandai area 164.8 mg Cd.kg−1 dry weight was accumulated. These amounts are far greater than those found inA yokoscense growing on the non-metalliferous habitat (Tama). Twenty five times more zinc and three times more cadmium were found in the dead leaf than in the living leaf. InA. yokoscense growing on soils containing more than 1,000 mg Cu or Zn.kg−1 dry weight, the uptake of copper by the root increased considerably with increasing copper content in the soils, while the uptake of zinc increased only slightly compared with the increase of zinc in the soils.  相似文献   

2.
The aim of the present study was to assess dietary zinc effects on femur weight and mineral content in growing rats. For this purpose, 70 weanling Sprague-Dawley rats were divided into four groups. Each group was subject to a diet containing 2 (BZ), 5 (DZ), 10 (MZ), and 30 (CZ) ppm zinc. The calcium and magnesium content in all diets was 5 g/kg and 507 mg/kg, respectively. The animals were kept on this regime for 28 d and then sacrificed and their femurs were removed for analysis using atomic absorption spectrophotometry. The weights of the BZ and DZ groups were significantly different from the MZ and CZ groups (38.5±10.5, 89.9±13.7, 118.6±13.6 and 134±19.9 g, p<0.01) respectively. There were no differences between the MZ and CZ groups. Femur weight also varied with dietary zinc, as it was significantly different among all groups (BZ, 265±49 mg; DZ, 380±40 mg; MZ, 452±54 mg; CZ, 735±66 mg; p<0.01). The femur zinc content varied with diets, following a different pattern than the above parameters. Femur zinc from the BZ group (51.5±5.4 ppm) was significantly different from the MZ and CZ groups (115.9±14.2 and 175.0±13.5 ppm, respectively), whereas the DZ group (62.5±11.3 ppm) did not differ from the other three groups. The femur content of calcium (BZ, 83.2±9.8 mg/g; DZ, 88.0±9.2 mg/g; MZ, 90.2±13.6 mg/g; CZ, 83.1±14.7 mg/g) and magnesium (BZ, 1.82±0.13 mg/g; DZ, 1.98±0.09 mg/g; MZ, 1.93±14 mg/g; CZ, 1.83±0.19 mg/g) were not significantly different among the groups, nor was the calcium-magnesium ratio. These results suggest that although dietary zinc deficiency retards growth and causes bone fragility, bone deposition of calcium and magnesium and its ratio are not affected.  相似文献   

3.
Juvenile and young adult specimens ofCarcinus maenas were kept in the laboratory under controlled conditions. The main organic constituents and their variations during the molt cycle were quantitatively determined.
1.  During postmolt the chitin concentration rises rapidly (20–74 mg/g dry weight) in parallel to the dry weight (120–293 mg/g fresh weight). Both decrease again before ecdysis (Fig. 1).
2.  The glycose level in the hemolymph (50–80 g/ml) shows no significant variation during the molt cycle (Fig. 2).
3.  The glycogen concentrations in integument, (14–180 mg/g dry weight), gills (5.5–66 mg/g dry weight), muscle (8.8–41 mg/g dry weight), heart (135–308 mg/g dry weight) and hemolymph (160–690 g/ml) reach their maximum values during the premolt stage. The highest glycogen content in the midgut gland (83 mg/g dry weight) is observed immediately before and after ecdysis. Glycogen storage in heart and hemolymph, can, account for about half of the glycogen stored in the midgut gland (Figs. 3,4 and 5).
4.  The lipid concentration in the hemolymph (120–440 g/ml) and in gills (33.6–70 mg/g dry weight) rises during the premolt stage (Figs. 6 and 7).
5.  The protein concentration in the hemolymph increased during premolt (9–31 mg/ml). The copper content (13–42 g/ml) varies in parallel to the protein concentration indicating that the proportion of hemocyanin to total proteins remains constant during the molting cycle (Fig. 8).
  相似文献   

4.
Brachymystax tsinlingensis Li is a threatened fish species endemic to China. With the problems of environmental factors and seeding breeding diseases, it is important to further improve the efficiency of seeding breeding and the basis of resource protection. This study investigated the acute toxicity of copper, zinc and methylene blue (MB) on hatching, survival, morphology, heart rate (HR) and stress behaviour of B. tsinlingensis. Eggs (diameter: 3.86 ± 0.07 mm, weight: 0.032 ± 0.004 g) of B. tsinlingensis were selected randomly from artificial propagation and developed from eye-pigmentation-stage embryos to yolk-sac stage larvae (length: 12.40 ± 0.02 mm, weight: 0.03 ± 0.001 g) and exposed to different concentrations of Cu, Zn and MB for 144 h in a series of semi-static toxicity tests. The acute toxicity tests indicated that the 96-h median lethal concentration (LC50) values of the embryos and larvae were 1.71 and 0.22 mg l−1 for copper and 2.57 and 2.72 mg l−1 for zinc, respectively, whereas the MB LC50 after 144-h exposure for embryos and larvae were 67.88 and 17.81 mg l−1, respectively. The safe concentrations of copper, zinc and MB were 0.17, 0.77 and 6.79 mg l−1 for embryos and 0.03, 0.03 and 1.78 mg l−1 for larvae, respectively. Copper, zinc and MB treatments with concentrations greater than 1.60, 2.00 and 60.00 mg l−1, respectively, led to a significantly low hatching rate and significantly high embryo mortality (P < 0.05), and copper and MB treatments with concentrations greater than 0.2 and 20 mg l−1 led to significantly high larvae mortality (P < 0.05). Exposure to copper, zinc and MB resulted in developmental defects, including spinal curvature, tail deformity, vascular system anomalies and discolouration. Moreover, copper exposure significantly reduced the HR of larvae (P < 0.05). The embryos exhibited an obvious change in behaviour, converting from the normal behaviour of emerging from the membrane head first to emerging tail first, with probabilities of 34.82%, 14.81% and 49.07% under copper, zinc and MB treatments, respectively. The results demonstrated that the sensitivity of yolk-sac larvae to copper and MB was significantly higher than that of embryos (P < 0.05) and that B. tsinlingensis embryos or larvae might be more resistant to copper, zinc and MB than other members of the Salmonidae family, which benefits their resource protection and restoration.  相似文献   

5.
The influence of zinc, iron, cobalt, and manganese on submerged cultures of Fusarium moniliforme NRRL 13616 was assessed by measuring dry weight accumulation, fusarin C biosynthesis, and ammonia assimilation. Shake flask cultures were grown in a nitrogen-limited defined medium supplemented with various combinations of metal ions according to partial-factorial experimental designs. Zinc (26 to 3,200 ppb [26 to 3,200 ng/ml]) inhibited fusarin C biosynthesis, increased dry weight accumulation, and increased ammonia assimilation. Carbohydrate was found to be the principal component of the increased dry weight in zinc-supplemented cultures. Zinc-deficient cultures synthesized more lipid and lipidlike compounds, such as fusarin C, than did zinc-supplemented cultures. Microscopic examination showed that zinc-deficient hyphae contained numerous lipid globules which were not present in zinc-supplemented cultures. Addition of zinc (3,200 ppb) to 2- and 4-day-old cultures inhibited further fusarin C biosynthesis but did not stimulate additional dry weight accumulation. Iron (10.0 ppm) and cobalt (9.0 ppm) did not affect fusarin C biosynthesis or dry weight accumulation. Manganese (5.1 ppm) did not affect dry weight accumulation but did increase fusarin C biosynthesis in the absence of zinc. Maximum fusarin C levels, 32.3 micrograms/mg (dry weight), were produced when cultures were supplied manganese, whereas minimum fusarin C levels, 0.07 micrograms/mg (dry weight), were produced when zinc, iron, cobalt, and manganese were supplied. These results suggest a multifunctional role for zinc in affecting F. moniliforme metabolism.  相似文献   

6.
The influence of zinc, iron, cobalt, and manganese on submerged cultures of Fusarium moniliforme NRRL 13616 was assessed by measuring dry weight accumulation, fusarin C biosynthesis, and ammonia assimilation. Shake flask cultures were grown in a nitrogen-limited defined medium supplemented with various combinations of metal ions according to partial-factorial experimental designs. Zinc (26 to 3,200 ppb [26 to 3,200 ng/ml]) inhibited fusarin C biosynthesis, increased dry weight accumulation, and increased ammonia assimilation. Carbohydrate was found to be the principal component of the increased dry weight in zinc-supplemented cultures. Zinc-deficient cultures synthesized more lipid and lipidlike compounds, such as fusarin C, than did zinc-supplemented cultures. Microscopic examination showed that zinc-deficient hyphae contained numerous lipid globules which were not present in zinc-supplemented cultures. Addition of zinc (3,200 ppb) to 2- and 4-day-old cultures inhibited further fusarin C biosynthesis but did not stimulate additional dry weight accumulation. Iron (10.0 ppm) and cobalt (9.0 ppm) did not affect fusarin C biosynthesis or dry weight accumulation. Manganese (5.1 ppm) did not affect dry weight accumulation but did increase fusarin C biosynthesis in the absence of zinc. Maximum fusarin C levels, 32.3 micrograms/mg (dry weight), were produced when cultures were supplied manganese, whereas minimum fusarin C levels, 0.07 micrograms/mg (dry weight), were produced when zinc, iron, cobalt, and manganese were supplied. These results suggest a multifunctional role for zinc in affecting F. moniliforme metabolism.  相似文献   

7.
Summary The concentrations of zinc, cadmium, lead and copper have been determined in the hepatopancreas, hindgut and rest of the body tissues of Oniscus asellus collected from eight sites in the U.K. The hepatopancreas is by far the most important storage organ of heavy metals, particularly cadmium, and at each site, contains a mean of at least 89% of the total body load of this element. Specimens of Oniscus asellus from contaminated sites may contain concentrations of zinc, cadmium, lead and copper in the hepatopancreas of about 1%, 0.5%, 2.5% and 3% of the dry weight respectively, which are among the highest so far recorded in the soft tissues of any animal.There is a significant positive correlation between the mean relative dry weight of the hepatopancreas of Oniscus asellus and the concentrations of zinc or cadmium in leaf litter from all eight sites. It is suggested that animals from sites which are contaminated heavily with zinc or cadmium have a large hepatopancreas because this enables them to de-toxify a greater amount of the metal.  相似文献   

8.
The northern end of Lake George, Uganda, and its associated wetlands receive localized metal pollution from a former copper mine and tailings left after metal extraction. The aim of this study was to determine (i) whether the heavy metals are a threat to the biology of the major commercial fish species and (ii) whether consumption of the fish threatens human health. Concentrations of copper, zinc, cobalt and nickel in detrital sediments, plankton, and five fish species from sites in Lake George, the Kazinga Channel and Lake Edward (which are inter-connected) were determined using atomic absorption spectroscopy. The detrital sediments of Hamukungu Bay, Lake George, had average concentrations (g/g dry weight) of 96.3 zinc, 270.4 copper, 57.4 cobalt and 42.8 nickel. There were no significant differences between the Hamukungu Bay and the North Lake George site of Bushatu: both receive inflows from the mining activities. Concentrations of copper and zinc were significantly higher than background values from unpolluted freshwater ecosystems. Plankton samples showed a metal concentration gradient consistent with a gradient from the source of pollution in northern Lake George, along the Kazinga Channel to Lake Edward. The liver tissues of fish had markedly higher concentrations of copper and zinc than flesh. Concentrations of cobalt and nickel were relatively low. The highest mean concentrations of metals in liver tissue occurred in Oreochromis leucostictus (189.0 g/g Cu) and Bagrus docmac (187.5 g/g Zn) whilst the lowest occurred in Oreochromis niloticus (15.3 g/g and 78.2 g/g dry weight copper and zinc, respectively). However, O. niloticus contained the highest concentrations of cobalt (11.2 g/g) and nickel (3.8 g/g). Liver Somatic Indices (LSI) of the fish species from the different sites indicated a reduction of LSI in those fish from the most contaminated zones of northern Lake George compared with all other sites. This suggests there could be anatomical and physiological abnormalities linked to the heavy metal pollution. The flesh had only low concentrations of metals; well within international guidelines for consumption. A person would have to consume 9 kg of fresh flesh of Clarias sp. and 65 kg of O. leucostictus daily to exceed the WHO recommended intake for copper, and even more for other metals. This implies that currently metal pollution in Lake George presents an ecological rather than a human health concern.  相似文献   

9.
Two-wk-old broiler chicks were inoculated via crop intubation withEimeria acervulina at two doses: 105 or 106 sporulated oocysts/bird or withEimeria tenella at a dose of 105 sporulated oocysts/bird. Serum and liver samples were collected on days 3 and 6 post-inoculation (PI). There were no significant changes in serum or liver zinc, copper, and iron concentrations in any of the infected groups by 3 d PI. However, on d 6, PI serum protein was significantly reduced in all of the infected groups compared to their pair-fed controls. The chicks infected withE. tennella had significantly reduced serum zinc (1.20 vs 1.77 μg/mL) and iron (0.44 vs 1.28 μg/mL) concentrations and significantly elevated serum copper (0.28 vs 0.17 μg/mL) and ceruloplasmin levels (20.33 vs 11.11 μg/mL) compared to their pair-fed counterparts. Those chicks infected withE. acervulina (106 oocysts/bird) exhibited significantly reduced serum iron concentration by 6 days PI (0.90 vs 1.14 μg/mL). Liver zinc was significantly increased in the chicks infected withE. tenella (349 vs 113 μg/g dry liver wt), as was copper (24 vs 19 μg/g), whereas liver iron concentration was significantly reduced (172 vs 243 μg/g) compared to pair-fed controls. At both dose levels, the chicks infected withE. acervulina exhibited a significant reduction in liver iron by 6 d PI. Hepatic cytosol metals generally reflected whole tissue levels. Metallothionein (MT)-bound zinc was significantly elevated in the chicks infected withE. tenella. Iron bound to a high molecular weight, heat-stable protein fraction (presumably cytoplasmic ferritin) was significantly reduced in chicks infected withE. acervulina, as well as those infected withE. tenella. Collectively, the changes in serum zinc, copper, and iron concentrations, as well as the changes in hepatic zinc and MT-zinc concentrations in the chicks infected withE. tenella were similar to changes evoked during an acute phase response to infection. It is possible that a secondary bacterial infection or inflammation stemming from erosion of the lining of the cecum may play a role in the response of trace element metabolism to theE. tenella infection. Mentions of a trademarkr, proprietary product or specific equipment does not consitute a guarantee or warranty by the US Department of Agriculture and does not imply its approval to the exclusion of other products.  相似文献   

10.
Three different kinds of Phanerochaete chrysosporium (NaOH‐treated, heat‐inactivated and active) biosorbent were used for the removal of Cd(II) and Hg(II) ions from aquatic systems. The biosorption of Cd(II) and Hg(II) ions on three different forms of Phanerochaete chrysosporium was studied in aqueous solutions in the concentration range of 50–700 mg/L. Maximum biosorption capacities of NaOH‐treated, heat‐inactivated and active Phanerochaete chrysosporium biomass were found to be 148.37 mg/g, 78.68 mg/g and 68.56 mg/g for Cd(II) as well as 224.67 mg/g, 122.37 mg/g and 88.26 mg/g for Hg(II), respectively. For Cd(II) and Hg(II) ions, the order of affinity of the biosorbents was arranged as NaOH‐treated > heat‐inactivated > active. The order of the amount of metal ions adsorbed was established as Hg(II) > Cd(II) on a weight basis, and as Cd(II) > Hg(II) on a molar basis. Biosorption equilibriums were established in about 60 min. The effect of the pH was also investigated, and maximum rates of biosorption of metal ions on the three different forms of Phanerochaete chrysosporium were observed at pH 6.0. The reusability experiments and synthetic wastewater studies were carried out with the most effective form, i.e., the NaOH‐treated Phanerochaete chrysosporium biomass. It was observed that the biosorbent could be regenerated using 10 mM HCl solution, with a recovery of up to 98%, and it could be reused in five biosorption‐desorption cycles without any considerable loss in biosorption capacity. The alkali‐treated Phanerochaete chrysosporium removed 73% of Cd(II) and 81% of Hg(II) ions from synthetic wastewater.  相似文献   

11.
Three groups (14 rats each) were fed one of the following diets for 8 wks: a control purified basal diet containing 12 ppm zinc, 5 ppm copper, and 35 ppm iron; the basal diet with less than 2 ppm zinc; or the basal diet supplemented with 1000 ppm zinc. Rats fed the zinc-deficient diet had decreased weight gain, moderate polydipsia, and intermittent mild diarrhea. The zinc-supplemented rats had a cyclical pattern of food intake and weight loss from weeks 5 to 8. Tissue concentrations suggest that zinc and copper were not mutually antagonistic with chronic dietary imbalances. If tissue element concentrations reflected intestinal uptake, then competition and/or inhibition of intestinal uptake occurred between zinc and iron. The fluctuations in tissue element concentrations that occurred with increased duration of the study were at variance with previous studies of shorter time periods. The dietary proportions of zinc, copper, and iron appear to influence zinc, copper, and iron metabolism at the intestinal and cellular transport levels over a given period of time.  相似文献   

12.
The concentrations of accumulated trace metals in selected seeds and vegetables collected in the oil producing Rivers State of Nigeria were investigated. The values were compared with those of seeds and vegetables cultivated in Owerri, a less industrialized area in Nigeria. The lead (Pb) and cadmium (Cd) contents of the seeds obtained from Rivers State ranged between 0.10 and 0.23 μg/g dry weight, while those of the seeds cultivated in Owerri fell below the detection limit of 0.01 μg/g dry weight. The highest manganese (Mn) level (902 μg/g dry weight) was found in Irvingia garbonesis seeds cultivated in Rivers State. Similarly, the highest nickel (Ni) value (199 μg/g dry weight) was also obtained in I. garbonesis, however, in the seeds sampled in Owerri. The highest copper (Cu), zinc (Zn), and iron (Fe) levels (16.8, 5.27, and 26.2 μg/g dry weight, resp.) were detected in seeds collected in Rivers State. With the exception of Talinum triangulae, Ocinum gratissimum, and Piper guineese, with Pb levels of 0.09, 0.10, and 0.11 μg/g dry weight, respectively, the Pb and Cd levels in the vegetables grown in Owerri fell below the detection limit of 0.01 μg/g dry weight. The trace metal with the highest levels in all the vegetables studied was Mn, followed by Fe. The highest concentrations of Ni and Cu occurred in vegetables collected from Rivers State, while the highest level of Zn was observed in Piper guineese collected in Owerri, with a value of 21.4 μg/g dry weight. Although the trace metal concentrations of the seeds and vegetables collected in Rivers State tended to be higher than those of the seeds and vegetables grown in Owerri, the average levels of trace metals obtained in this study fell far below the WHO specifications for metals in foods.  相似文献   

13.
Potentiometric stripping analysis (PSA) with oxygen as the oxidant has been used to determine soluble zinc and copper levels in exfoliated human teeth (all of which required extraction for orthodontic reasons) and commercial dental materials. The soluble zinc and copper contents of teeth were slightly below the zinc and copper contents in whole teeth reported by other researchers, except in the case of tooth with removed amalgam filling. Soluble zinc and copper concentrations of the dental materials and metal ceramic crowns were 0.50-6.30, and of 2.00-4.30 microg/g, respectively. The results of this work suggest that PSA may be a good method for zinc and copper leaching studies during the investigation of dental prosthetic materials' biocompatibility. Corrosive action of acidic media as evidenced by SEM micrographs caused the leaching of metal ions from teeth.  相似文献   

14.
Summary

Nectochaete larvae of the ecologically and economically important ragworm, Nereis virens, were exposed to cadmium, chromium, copper, lead and zinc dissolved in seawater to nominal concentrations ranging from 0 to 5000 μg l?1. Copper was the most toxic (mean LC50 of 76.5 μg l?1 ± 95% CI 73.8–79.2 after 96 h exposure) and so was used for subsequent experiments. Exposure of gametes to greater than 500 μg l?1 copper for 2 or 4 h at 10°C prior to fertilization, or a 10 min exposure during fertilization, significantly reduced embryo developmental success. The effect of copper on larval settlement was also assessed using sediment spiked to a range of concentrations (0, 50, 250, 500, 1000 mg kg!1 dry weight). Significantly fewer larvae were found in sediment of $250 mg kg!1 in comparison to the control or the 50 mg kg!1 treatment. Assessment of living larvae also confirmed a significant reduction in settlement, but in all treatments compared to the control, although the number of dead larvae also increased as the concentrations increased. These effects may have important implications for reproductive success and recruitment of N. virens to polluted sediments.  相似文献   

15.
On a restricted food supply of Tubifex tubifex (2h/day) the fish consumed only 69.5 mg dry food/g live fish/day and grew only to 25.6 mg live body weight by the 30th day of it's age, while those fed ad libitum consumed 94.7 mg/g/day and attained a body weight of 125.9 mg live weight by the 30th day. Conversion efficiency (K1) averaged to 8.3% in the former and 14.1% in the latter series, throughout the 30 day experimental period.Feeding rate of the test series fed individually and at ad libitum, decreased from 780 mg dry food/g dry fish/day for a fish weighing 4 mg dry weight to 180 mg/g/ day for one weighing 41 mg, exhibiting a log-log relationship to the body weight (Y = 2.20140–0.5639 X). Growth rate also decreased as a log-log function with increasing body weight (Y = 1.2309–0.4384 X).  相似文献   

16.
Zinc, lead and mercury accumulation in the amphipod Hyalella azteca increases with increasing exposure to metals. During 10 week chronic toxicity tests, metal accumulated at the highest non-toxic/lowest toxic concentration was 126/136 µg Zn g–1, 7.1/16 µg Pb g–1 and 56/90 µg Hg g–1 dry weight. Concentrations of lead and mercyry in control animals were substantially lower (1.3 µg Pb g–1 and 0.4 µg Hg g–1), but concentrations of zinc in controls (74 µg g–1) were about one half those of the lowest toxic concentration. Copper was completely regulated. Accumulated copper concentrations after 10 weeks exposure to all waterborne copper concentrations resulting in less than 100% mortality were not significantly different from controls (79 µg g–1). Lead and mercury concentrations in wild H. azteca should be useful indicators of potential toxicity. Zinc accumulation may also be a useful indicator of zinc toxicity, but careful comparison with control or reference animals is necessary because of the small differences between toxic and control concentrations. Copper is not accumulated by H. azteca under chronic exposure conditions and body burdens of field animals cannot be used as an indicator of exposure or potential toxic effects. Short term exposures to copper, however, result in elevated copper concentrations in H. azteca, even at concentrations below those causing chronic toxicity. Short term bioaccumulation studies might, therefore, provide a useful indication of potential chronic copper toxicity.  相似文献   

17.
Holothuria leucospilota Brandt, the large black sea cucumber, is a non-selective deposit feeder, and is commonly found in the bottom of shallow waters in Hong Kong, where the sediments are often polluted with heavy metals. This study was designed to test the possibility of heavy metal accumulation by the sea cucumber at two sites in Hong Kong. Atomic absorption spectrophotometer was used to measure Cu and Zn concentrations in various tissue/organs of the animal as well as in the sediments. The result indicated that H. leucospilota accumulated zinc in the longitudinal muscle bands (97.27–98.07 ppm in dry weight) and in the respiratory tree (83.92–89.64 ppm in dry weight). Copper concentrations in these two organs were much lower than that of zinc. After the animals were kept in the aquarium without sediment for40 days, zinc concentration of the longitudinal muscle and respiratory tree decreased by 48% and 39%respectively whereas copper concentration remained unchanged. The concentrations of zinc and copper in the sediment at the two sites differed significantly but the metal level in the animals from the two sites were similar, suggesting that this sea cucumber was not an ideal bioindicator of heavy metal pollution in the sediment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
 Concentrations of cadmium, copper and zinc were measured in 34 octopuses over a large range of size and weight, caught in the Kerguelen shelf waters. Compared with levels normally encountered in European cephalopods, Cd concentrations in both species were very high: 30.7–47.1 and 27.3–54.4 μg/g dry weight in Graneledone sp. and Benthoctopus thielei, respectively; Cu concentrations were generally low while Zn concentrations exhibited similar levels. Distribution of Cd in tissues showed that the high levels of Cd in Kerguelen octopuses resulted from very high levels of the metal in the digestive gland (369 and 215 μg/g dry wt in Graneledone sp. and Benthoctopus thielei, respectively). The digestive gland accumulated about 90% of the total Cd in the whole animal. Due to the very high concentrations of Cd in the Kerguelen octopuses, we hypothesize that these species play an important role in the process of Cd transfer throughout the food chain to top vertebrate predators in this area. Received: 2 June 1997 / Accepted: 30 October 1997  相似文献   

19.
The effects of various carbon sources, phosphorus concentration, and different concentrations of the micronutrients calcium, cobalt, copper, iron, manganese, potassium, and zinc were determined on biomass dry weight production, geosmin production, and geosmin/biomass (G/B) values for Streptomyces halstedii, a geosmin-producing actinomycete isolated from the sediment of an aquaculture pond. Of the substrates tested, maltose as a sole carbon source promoted maximal growth by S. halstedii while mannitol promoted maximal geosmin production, and galactose yielded the highest G/B values. Fish-food pellets and galactose were poor substrates for growth. Increasing phosphorus concentrations enhanced geosmin production and G/B values. Of the seven micronutrients tested, zinc, iron, and copper had the most profound effects on biomass and geosmin production. Increasing zinc concentrations promoted biomass production while inhibiting geosmin production and G/B values; increasing concentrations of copper and iron inhibited biomass and geosmin production. Increased copper concentrations had the greatest effect in preventing growth and geosmin production by S. halstedii. Journal of Industrial Microbiology & Biotechnology (2001) 26, 241–247. Received 20 September 2000/ Accepted in revised form 17 January 2001  相似文献   

20.
Photosynthesis, respiration, carbonic anhydrase activity and chlorophyll concentrations were correlated with zinc nutrition in cotton (Gossypium hirsutum L.). The critical zinc level during early plant growth was 13 μg/g dry weight in recently matured leaves (blade three). Photosynthesis and chlorophyll concentration required a minimum Zn of 13 and 14 μg/g dry weight, respectively, in blade three for maximum activity and synthesis. Respiration was not influenced by zinc status. Carbonic anhydrase activity increased curvilinearly as zinc status improved from deficiency to adequacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号