首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To examine the role of beta-adrenergic mechanisms in the regulation of endogenous glucose (Glu) production [rate of appearance (R(a))] and utilization [rate of disappearance (R(d))] and carbohydrate (CHO) metabolism, six horses completed consecutive 30-min bouts of exercise at approximately 30% (Lo) and approximately 60% (Hi) of estimated maximum O(2) uptake with (P) and without (C) prior administration of the beta-blocker propranolol (0.22 mg/kg iv). All horses completed exercise in C; exercise duration in P was 49.9 +/- 1.2 (SE) min. Plasma Glu was unchanged in C during Lo but increased progressively in Hi. In P, plasma Glu rose steadily during Lo and Hi and was higher (P < 0.05) than in C throughout exercise. Plasma insulin declined during exercise in P but not in C; beta-blockade attenuated (P < 0.05) the rise in plasma glucagon and free fatty acids and exaggerated the increases in epinephrine and norepinephrine. Glu R(a) was 8.1 +/- 0.8 and 8.4 +/- 1.0 micromol. kg(-1). min(-1) at rest and 30.5 +/- 3.6 and 42.8 +/- 4.1 micromol. kg(-1). min(-1) at the end of Lo in C and P, respectively. During Hi, Glu R(a) increased to 54.4 +/- 4.4 and 73.8 +/- 4.7 micromol. kg(-1). min(-1) in C and P, respectively. Similarly, Glu R(d) was approximately 40% higher in P than in C during Lo (27.3 +/- 2.0 and 39.5 +/- 3.3 micromol. kg(-1). min(-1) in C and P, respectively) and Hi (37.4 +/- 2.6 and 61.5 +/- 5.3 micromol. kg(-1). min(-1) in C and P, respectively). beta-Blockade augmented CHO oxidation (CHO(ox)) with a concomitant reduction in fat oxidation. Inasmuch as estimated muscle glycogen utilization was similar between trials, the increase in CHO(ox) in P was due to increased use of plasma Glu. We conclude that beta-blockade increases Glu R(a) and R(d) and CHO(ox) in horses during exercise. The increase in Glu R(d) under beta-blockade suggests that beta-adrenergic mechanisms restrain Glu R(d) during exercise.  相似文献   

2.
For 5 days, eight well-trained cyclists consumed a random order of a high-carbohydrate (CHO) diet (9.6 g. kg(-1). day(-1) CHO, 0.7 g. kg(-1). day(-1) fat; HCHO) or an isoenergetic high-fat diet (2.4 g. kg(-1). day(-1) CHO, 4 g. kg(-1). day(-1) fat; Fat-adapt) while undertaking supervised training. On day 6, subjects ingested high CHO and rested before performance testing on day 7 [2 h cycling at 70% maximal O(2) consumption (SS) + 7 kJ/kg time trial (TT)]. With Fat-adapt, 5 days of high-fat diet reduced respiratory exchange ratio (RER) during cycling at 70% maximal O(2) consumption; this was partially restored by 1 day of high CHO [0.90 +/- 0.01 vs. 0.82 +/- 0.01 (P < 0.05) vs. 0.87 +/- 0.01 (P < 0.05), for day 1, day 6, and day 7, respectively]. Corresponding RER values on HCHO trial were [0. 91 +/- 0.01 vs. 0.88 +/- 0.01 (P < 0.05) vs. 0.93 +/- 0.01 (P < 0.05)]. During SS, estimated fat oxidation increased [94 +/- 6 vs. 61 +/- 5 g (P < 0.05)], whereas CHO oxidation decreased [271 +/- 16 vs. 342 +/- 14 g (P < 0.05)] for Fat-adapt compared with HCHO. Tracer-derived estimates of plasma glucose uptake revealed no differences between treatments, suggesting muscle glycogen sparing accounted for reduced CHO oxidation. Direct assessment of muscle glycogen utilization showed a similar order of sparing (260 +/- 26 vs. 360 +/- 43 mmol/kg dry wt; P = 0.06). TT performance was 30.73 +/- 1.12 vs. 34.17 +/- 2.48 min for Fat-adapt and HCHO (P = 0.21). These data show significant metabolic adaptations with a brief period of high-fat intake, which persist even after restoration of CHO availability. However, there was no evidence of a clear benefit of fat adaptation to cycling performance.  相似文献   

3.
We evaluated the effect of carbohydrate (CHO) loading on cycling performance that was designed to be similar to the demands of competitive road racing. Seven well-trained cyclists performed two 100-km time trials (TTs) on separate occasions, 3 days after either a CHO-loading (9 g CHO. kg body mass(-1). day(-1)) or placebo-controlled moderate-CHO diet (6 g CHO. kg body mass(-1). day(-1)). A CHO breakfast (2 g CHO/kg body mass) was consumed 2 h before each TT, and a CHO drink (1 g CHO. kg(.)body mass(-1). h(-1)) was consumed during the TTs to optimize CHO availability. The 100-km TT was interspersed with four 4-km and five 1-km sprints. CHO loading significantly increased muscle glycogen concentrations (572 +/- 107 vs. 485 +/- 128 mmol/kg dry wt for CHO loading and placebo, respectively; P < 0.05). Total muscle glycogen utilization did not differ between trials, nor did time to complete the TTs (147.5 +/- 10.0 and 149.1 +/- 11.0 min; P = 0.4) or the mean power output during the TTs (259 +/- 40 and 253 +/- 40 W, P = 0.4). This placebo-controlled study shows that CHO loading did not improve performance of a 100-km cycling TT during which CHO was consumed. By preventing any fall in blood glucose concentration, CHO ingestion during exercise may offset any detrimental effects on performance of lower preexercise muscle and liver glycogen concentrations. Alternatively, part of the reported benefit of CHO loading on subsequent athletic performance could have resulted from a placebo effect.  相似文献   

4.
We examined the effects of increased glucose availability on glucose kinetics and substrate utilization in horses during exercise. Six conditioned horses ran on a treadmill for 90 min at 34 +/- 1% of maximum oxygen uptake. In one trial [glucose (Glu)], glucose was infused at a mean rate of 34.9 +/- 1.1 micromol. kg(-1). min(-1), whereas in the other trial [control (Con)] an equivalent volume of isotonic saline was infused. Plasma glucose increased during exercise in Glu (90 min: 8.3 +/- 1.7 mM) but was largely unchanged in Con (90 min: 5.1 +/- 0.4 mM). In Con, hepatic glucose production (HGP) increased during exercise, reaching a peak of 38.6 +/- 2.7 micromol. kg(-1). min(-1) after 90 min. Glucose infusion partially suppressed (P < 0.05) the rise in HGP (peak value 25.8 +/- 3.3 micromol. kg(-1). min(-1)). In Con, glucose rate of disappearance (R(d)) rose to a peak of 40.4 +/- 2.9 micromol. kg(-1). min(-1) after 90 min; in Glu, augmented glucose utilization was reflected by values for glucose R(d) that were twofold higher (P < 0.001) than in Con between 30 and 90 min. Total carbohydrate oxidation was higher (P < 0.05) in Glu (187.5 +/- 8.5 micromol. kg(-1). min(-1)) than in Con (159.2 +/- 7.3 micromol. kg(-1).min(-1)), but muscle glycogen utilization was similar between trials. We conclude that an increase in glucose availability in horses during low-intensity exercise 1) only partially suppresses HGP, 2) attenuates the decrease in carbohydrate oxidation during such exercise, but 3) does not affect muscle glycogen utilization.  相似文献   

5.
The metabolic response to eccentric exercise in healthy older adults is unknown. Therefore, substrate metabolism was examined in the basal state and after sustained hyperglycemia (180 min, 10 mM) in eight healthy, sedentary older [66 +/- 2 yr; body mass index (BMI) of 25.5 +/- 1.2 kg/m] and nine younger (23 +/- 1 yr; BMI of 23.6 +/- 1.7 kg/m) men, under control conditions and 48 h after eccentric exercise. Indirect calorimetry was performed to evaluate carbohydrate and lipid oxidation (C(ox) and L(ox), respectively). Eccentric exercise caused muscle soreness and increased plasma creatine kinase in both groups of men (P < 0.02). Although a similar level of hyperglycemia was maintained in the two groups, glucose infusion rates were lower (P < 0.001) in the older men. Compared with basal levels, hyperglycemia stimulated an increase in C(ox) and a decrease in L(ox) during the control and exercise trials in the younger group (P < 0.03), but only during the control trial in the older subjects (P < 0.007). C(ox) was unchanged after eccentric exercise in the younger men [4.00 +/- 0.30 vs. 3.54 +/- 0.44 mg x kg fat-free mass (FFM)(-1) x min(-1); exercise vs. control] but was suppressed by 20% in the older group (3.37 +/- 0.37 vs. 4.21 +/- 0.23 mg x kg FFM(-1) x min(-1); P < 0.04). Moreover, L(ox) was reduced by 38% in the younger subjects (0.47 +/- 0.09 vs. 0.76 +/- 0.10 mg x kg FFM(-1) x min(-1); P< 0.03) but was augmented by 89% in the older group (0.68 +/- 0.11 vs. 0.36 +/- 0.08 mg x kg FFM(-1) x min(-1); P < 0.04). In addition, hyperglycemia-stimulated C(ox), L(ox), and respiratory exchange ratio responses to eccentric exercise were related to abdominal adiposity (r = -0.57, P < 0.04, r = 0.68, P < 0.02 and r = -0.60, P < 0.02, respectively). Despite normal glucose tolerance and the absence of obesity per se, older men experience a reduction in carbohydrate oxidation in response to hyperglycemia after eccentric exercise.  相似文献   

6.
The purpose of this study was to investigate whether simultaneous alterations in the availability of plasma free fatty acids and muscle glycogen would impair the maintenance of thermal balance during cold water immersion in humans. Eight seminude subjects were immersed on two occasions in 18 degrees C water for 90 min or until rectal temperature (Tre) decreased to 35.5 degrees C. Each immersion followed 2.5 days of a specific dietary and exercise regimen designed to elicit low (LOW) or high glycogen levels (HIGH) in large skeletal muscle groups. Nicotinic acid (1.6 mg/kg) was administered for 2 h before and during immersion to inhibit white adipose tissue lipolysis. Biopsies from the vastus lateralis showed that the glycogen concentration before the immersion was significantly lower in LOW than in HIGH (223 +/- 19 vs. 473 +/- 24 mmol glucose units/kg dry muscle). However, the mean rates of glycogen utilization were not significantly different between trials (LOW 0.62 +/- 0.14 vs. HIGH 0.88 +/- 0.15 mmol glucose units.kg-1.min-1). Nicotinic acid dramatically reduced plasma free fatty acid levels in both trials, averaging 127 +/- 21 mumol/l immediately before the immersion. Cold water immersion did not significantly alter those levels. Plasma glucose levels were significantly reduced after cold water immersion to a similar extent in both trials (18 +/- 4%). Mean respiratory exchange ratio at rest and during immersion was greater in HIGH than LOW, whereas there were no intertrial differences in O2 uptake. The calculated average metabolic heat production during immersion tended to be lower (P = 0.054) in LOW than in HIGH (15.3 +/- 1.9 vs. 17.5 +/- 1.9 kJ/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We tested the hypothesis that a shift to carbohydrate diet after prolonged adaptation to fat diet would lead to decreased glucose uptake and impaired muscle glycogen breakdown during exercise compared with ingestion of a carbohydrate diet all along. We studied 13 untrained men; 7 consumed a high-fat (Fat-CHO; 62% fat, 21% carbohydrate) and 6 a high-carbohydrate diet (CHO; 20% fat, 65% carbohydrate) for 7 wk, and thereafter both groups consumed the carbohydrate diet for an eighth week. Training was performed throughout. After 8 wk, during 60 min of exercise (71 +/- 1% pretraining maximal oxygen uptake) average leg glucose uptake (1.00 +/- 0.07 vs. 1.55 +/- 0.21 mmol/min) was lower (P < 0.05) in Fat-CHO than in CHO. The rate of muscle glycogen breakdown was similar (4.4 +/- 0.5 vs. 4.2 +/- 0.7 mmol. min(-1). kg dry wt(-1)) despite a significantly higher preexercise glycogen concentration (872 +/- 59 vs. 688 +/- 43 mmol/kg dry wt) in Fat-CHO than in CHO. In conclusion, shift to carbohydrate diet after prolonged adaptation to fat diet and training causes increased resting muscle glycogen levels but impaired leg glucose uptake and similar muscle glycogen breakdown, despite higher resting levels, compared with when the carbohydrate diet is consumed throughout training.  相似文献   

8.
This investigation determined whether ingestion of a tolerable amount of medium-chain triglycerides (MCT; approximately 25 g) reduces the rate of muscle glycogen use during high-intensity exercise. On two occasions, seven well-trained men cycled for 30 min at 84% maximal O(2) uptake. Exactly 1 h before exercise, they ingested either 1) carbohydrate (CHO; 0.72 g sucrose/kg) or 2) MCT+CHO [0.36 g tricaprin (C10:0)/kg plus 0.72 g sucrose/kg]. The change in glycogen concentration was measured in biopsies taken from the vastus lateralis before and after exercise. Additionally, glycogen oxidation was calculated as the difference between total carbohydrate oxidation and the rate of glucose disappearance from plasma (R(d) glucose), as measured by stable isotope dilution techniques. The change in muscle glycogen concentration was not different during MCT+CHO and CHO (42.0 +/- 4.6 vs. 38.8 +/- 4.0 micromol glucosyl units/g wet wt). Furthermore, calculated glycogen oxidation was also similar (331 +/- 18 vs. 329 +/- 15 micromol. kg(-1). min(-1)). The coingestion of MCT+CHO did increase (P < 0.05) R(d) glucose at rest compared with CHO (26.9 +/- 1.5 vs. 20.7 +/- 0. 7 micromol.kg(-1). min(-1)), yet during exercise R(d) glucose was not different during the two trials. Therefore, the addition of a small amount of MCT to a preexercise CHO meal did not reduce muscle glycogen oxidation during high-intensity exercise, but it did increase glucose uptake at rest.  相似文献   

9.
This study examined the ability of well-trained eumenorrheic women to increase muscle glycogen content and endurance performance in response to a high-carbohydrate diet (HCD; approximately 78% carbohydrate) compared with a moderate-carbohydrate diet (MD; approximately 48% carbohydrate) when tested during the luteal phase of the menstrual cycle. Six women cycled to exhaustion at approximately 80% maximal oxygen uptake (VO(2 max)) after each of the randomly assigned diet and exercise-tapering regimens. A biopsy was taken from the vastus lateralis before and after exercise in each trial. Preexercise muscle glycogen content was high after the MD (625.2 +/- 50.1 mmol/kg dry muscle) and 13% greater after the HCD (709.0 +/- 44.8 mmol/kg dry muscle). Postexercise muscle glycogen was low after both trials (MD, 91.4 +/- 34.5; HCD, 80.3 +/- 19.5 mmol/kg dry muscle), and net glycogen utilization during exercise was greater after the HCD. The subjects also cycled longer at approximately 80% VO(2 max) after the HCD vs. MD (115:31 +/- 10:47 vs. 106:35 +/- 8:36 min:s, respectively). In conclusion, aerobically trained women increased muscle glycogen content in response to a high-dietary carbohydrate intake during the luteal phase of the menstrual cycle, but the magnitude was smaller than previously observed in men. The increase in muscle glycogen, and possibly liver glycogen, after the HCD was associated with increased cycling performance to volitional exhaustion at approximately 80% VO(2 max).  相似文献   

10.
Our laboratory recently showed that six sessions of sprint interval training (SIT) over 2 wk increased muscle oxidative potential and cycle endurance capacity (Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, and Gibala MJ. J Appl Physiol 98: 1895-1900, 2005). The present study tested the hypothesis that short-term SIT would reduce skeletal muscle glycogenolysis and lactate accumulation during exercise and increase the capacity for pyruvate oxidation via pyruvate dehydrogenase (PDH). Eight men [peak oxygen uptake (VO2 peak)=3.8+/-0.2 l/min] performed six sessions of SIT (4-7x30-s "all-out" cycling with 4 min of recovery) over 2 wk. Before and after SIT, biopsies (vastus lateralis) were obtained at rest and after each stage of a two-stage cycling test that consisted of 10 min at approximately 60% followed by 10 min at approximately 90% of VO2 peak. Subjects also performed a 250-kJ time trial (TT) before and after SIT to assess changes in cycling performance. SIT increased muscle glycogen content by approximately 50% (main effect, P=0.04) and the maximal activity of citrate synthase (posttraining: 7.8+/-0.4 vs. pretraining: 7.0+/-0.4 mol.kg protein -1.h-1; P=0.04), but the maximal activity of 3-hydroxyacyl-CoA dehydrogenase was unchanged (posttraining: 5.1+/-0.7 vs. pretraining: 4.9+/-0.6 mol.kg protein -1.h-1; P=0.76). The active form of PDH was higher after training (main effect, P=0.04), and net muscle glycogenolysis (posttraining: 100+/-16 vs. pretraining: 139+/-11 mmol/kg dry wt; P=0.03) and lactate accumulation (posttraining: 55+/-2 vs. pretraining: 63+/-1 mmol/kg dry wt; P=0.03) during exercise were reduced. TT performance improved by 9.6% after training (posttraining: 15.5+/-0.5 vs. pretraining: 17.2+/-1.0 min; P=0.006), and a control group (n=8, VO2 peak=3.9+/-0.2 l/min) showed no change in performance when tested 2 wk apart without SIT (posttraining: 18.8+/-1.2 vs. pretraining: 18.9+/-1.2 min; P=0.74). We conclude that short-term SIT improved cycling TT performance and resulted in a closer matching of glycogenolytic flux and pyruvate oxidation during submaximal exercise.  相似文献   

11.
The effects of carbohydrate or water ingestion on metabolism were investigated in seven male subjects during two running and two cycling trials lasting 60 min at individual lactate threshold using indirect calorimetry, U-14C-labeled tracer-derived measures of the rates of oxidation of plasma glucose, and direct determination of mixed muscle glycogen content from the vastus lateralis before and after exercise. Subjects ingested 8 ml/kg body mass of either a 6.4% carbohydrate-electrolyte solution (CHO) or water 10 min before exercise and an additional 2 ml/kg body mass of the same fluid after 20 and 40 min of exercise. Plasma glucose oxidation was greater with CHO than with water during both running (65 +/- 20 vs. 42 +/- 16 g/h; P < 0.01) and cycling (57 +/- 16 vs. 35 +/- 12 g/h; P < 0.01). Accordingly, the contribution from plasma glucose oxidation to total carbohydrate oxidation was greater during both running (33 +/- 4 vs. 23 +/- 3%; P < 0.01) and cycling (36 +/- 5 vs. 22 +/- 3%; P < 0.01) with CHO ingestion. However, muscle glycogen utilization was not reduced by the ingestion of CHO compared with water during either running (112 +/- 32 vs. 141 +/- 34 mmol/kg dry mass) or cycling (227 +/- 36 vs. 216 +/- 39 mmol/kg dry mass). We conclude that, compared with water, 1) the ingestion of carbohydrate during running and cycling enhanced the contribution of plasma glucose oxidation to total carbohydrate oxidation but 2) did not attenuate mixed muscle glycogen utilization during 1 h of continuous submaximal exercise at individual lactate threshold.  相似文献   

12.
To examine the influence of exercise intensity on the increases in vastus lateralis GLUT4 mRNA and protein after exercise, six untrained men exercised for 60 min at 39 +/- 3% peak oxygen consumption (V(O2 peak)) (Lo) or 27 +/- 2 min at 83 +/- 2% V(O2 peak) (Hi) in counterbalanced order. Preexercise muscle glycogen levels were not different between trials (Lo: 408 +/- 35 mmol/kg dry mass; Hi: 420 +/- 43 mmol/kg dry mass); however, postexercise levels were lower (P < 0.05) in Hi (169 +/- 18 mmol/kg dry mass) compared with Lo (262 +/- 35 mmol/kg dry mass). Thus calculated muscle glycogen utilization was greater (P < 0.05) in Hi (251 +/- 24 mmol/kg) than in Lo (146 +/- 34). Exercise resulted in similar increases in GLUT4 gene expression in both trials. GLUT4 mRNA was increased immediately at the end of exercise (approximately 2-fold; P < 0.05) and remained elevated after 3 h of postexercise recovery. When measured 3 h after exercise, total crude membrane GLUT4 protein levels were 106% higher in Lo (3.3 +/- 0.7 vs. 1.6 +/- 0.3 arbitrary units) and 61% higher in Hi (2.9 +/- 0.5 vs. 1.8 +/- 0.5 arbitrary units) relative to preexercise levels. A main effect for exercise was observed, with no significant differences between trials. In conclusion, exercise at approximately 40 and approximately 80% V(O2 peak), with total work equal, increased GLUT4 mRNA and GLUT4 protein in human skeletal muscle to a similar extent, despite differences in exercise intensity and duration.  相似文献   

13.
We determined the effect of an acute bout of swimming (8 x 30 min) followed by either carbohydrate administration (0.5 mg/g glucose ip and ad libitum access to chow; CHO) or fasting (Fast) on postexercise glycogen resynthesis in soleus muscle and liver from female lean (ZL) and obese insulin-resistant (ZO) Zucker rats. Resting soleus muscle glycogen concentration ([glycogen]) was similar between genotypes and was reduced by 73 (ZL) and 63% (ZO) after exercise (P < 0.05). Liver [glycogen] at rest was greater in ZO than ZL (334 +/- 31 vs. 247 +/- 16 micromol/g wet wt; P < 0.01) and fell by 44 and 94% after exercise (P < 0.05). The fractional activity of glycogen synthase (active/total) increased immediately after exercise (from 0.22 +/- 0.05 and 0.32 +/- 0.04 to 0.63 +/- 0.08 vs. 0.57 +/- 0.05; P < 0.01 for ZL and ZO rats, respectively) and remained elevated above resting values after 30 min of recovery. During this time, muscle [glycogen] in ZO increased 68% with CHO (P < 0.05) but did not change in Fast. Muscle [glycogen] was unchanged in ZL from postexercise values after both treatments. After 6 h recovery, GLUT-4 protein concentration was increased above resting levels by a similar extent for both genotypes in both fasted (approximately 45%) and CHO-supplemented (approximately 115%) rats. Accordingly, during this time CHO refeeding resulted in supercompensation in both genotypes (68% vs. 44% for ZL and ZO). With CHO, liver [glycogen] was restored to resting levels in ZL but remained at postexercise values for ZO after both treatments. We conclude that the increased glucose availability with carbohydrate refeeding after glycogen-depleting exercise resulted in glycogen supercompensation, even in the face of muscle insulin-resistance.  相似文献   

14.
Skeletal muscle glycogen metabolism was investigated in eight male subjects during and after six sets of 70% one repetition maximum (1 RM, I-70) and 35% 1 RM (I-35) intensity weight-resistance leg extension exercise. Total force application to the machine lever arm was determined via a strain gauge and computer interfaced system and was equated between trials. Compared with the I-70 trial, the I-35 trial was characterized by almost double the repetitions (13 +/- 1 vs. 6 +/- 0) and half the peak concentric torque for each repetition (12.4 +/- 0.5 vs. 24.2 +/- 1.0 Nm). After the sixth set, muscle glycogen degradation was similar between I-70 and I-35 trials (47.0 +/- 6.6 and 46.6 +/- 6.0 mmol/kg wet wt, respectively), as was muscle lactate accumulation (13.8 +/- 0.7 and 16.7 +/- 4.2 mmol/kg wet wt, respectively). After 2 h of passive recovery without caloric intake, muscle glycogen increased by 22.2 +/- 6.8 and 14.2 +/- 2.5 mmol/kg wet wt in the I-70 and I-35 trials, respectively. Optical absorbance measurement of periodic acid-Schiff-stained muscle sections after the 2 h of recovery revealed larger absorbance increases in fast-twitch than in slow-twitch fibers (0.119 +/- 0.024 and 0.055 +/- 0.024, P = 0.02). Data indicated that when external work was constant, the absolute amount of muscle glycogenolysis was the same regardless of the intensity of resistance exercise. Nevertheless the rate of glycogenolysis during the I-70 trial was approximately double that of the I-35 trial.  相似文献   

15.
In the present study, we investigated possible sites of regulation of long-chain fatty acid (LCFA) oxidation in contracting human skeletal muscle. Leg plasma LCFA kinetics were determined in eight healthy men during bicycling (60 min, 65% peak oxygen uptake) with either high (H-FOX) or low (L-FOX) leg fat oxidation (H-FOX: 1,098 +/- 140; L-FOX: 494 +/- 84 micromol FA/min, P < 0.001), which was achieved by manipulating preexercise muscle glycogen (H-FOX: 197 +/- 21; L-FOX: 504 +/- 25 mmol/kg dry wt, P < 0.001). Several blood metabolites and hormones were kept nearly similar between trials by allocating a preexercise meal and infusing glucose intravenously during exercise. During exercise, leg plasma LCFA fractional extraction was identical between trials (H-FOX: 17.8 +/- 1.6; L-FOX: 18.2 +/- 1.8%, not significant), suggesting similar LCFA transport capacity in muscle. On the contrary, leg plasma LCFA oxidation was 99% higher in H-FOX than in L-FOX (421 +/- 47 vs. 212 +/- 37 micromol/min, P < 0.001). Probably due to the slightly higher (P < 0.01) plasma LCFA concentration in H-FOX than in L-FOX, leg plasma LCFA uptake was nonsignificantly (P = 0.17) higher (25%) in H-FOX than in L-FOX, yet the fraction of plasma LCFA uptake oxidized was 61% higher (P < 0.05) in H-FOX than in L-FOX. Accordingly, the muscle content of several lipid-binding proteins did not differ significantly between trials, although fatty acid translocase/CD36 and caveolin-1 were elevated (P < 0.05) by the high-intensity exercise and dietary manipulation allocated on the day before the experimental trial. The present data suggest that, in contracting human skeletal muscle with different fat oxidation rates achieved by manipulating preexercise glycogen content, transsarcolemmal transport is not limiting plasma LCFA oxidation. Rather, the latter seems to be limited by intracellular regulatory mechanisms.  相似文献   

16.
The purpose of this investigation was to examine the effects of moderate hypohydration (HY) on skeletal muscle glycogen resynthesis after exhaustive exercise. On two occasions, eight males completed 2 h of intermittent cycle ergometer exercise (4 bouts of 17 min at 60% and 3 min at 80% of maximal O2 consumption/10 min rest) to reduce muscle glycogen concentrations (control values 711 +/- 41 mumol/g dry wt). During one trial, cycle exercise was followed by several hours of light upper body exercise in the heat without fluid replacement to induce HY (-5% body wt); in the second trial, sufficient water was ingested during the upper body exercise and heat exposure to maintain euhydration (EU). In both trials, 400 g of carbohydrate were ingested at the completion of exercise and followed by 15 h of rest while the desired hydration level was maintained. Muscle biopsy samples were obtained from the vastus lateralis immediately after intermittent cycle exercise (T1) and after 15 h of rest (T2). During the HY trial, the muscle water content was lower (P less than 0.05) at T1 and T2 (288 +/- 9 and 265 +/- 5 ml/100 g dry wt, respectively; NS) than during EU (313 +/- 8 and 301 +/- 4 ml/100 g dry wt, respectively; NS). Muscle glycogen concentration was not significantly different during EU and HY at T1 (200 +/- 35 vs. 251 +/- 50 mumol/g dry wt) or T2 (452 +/- 34 vs. 491 +/- 35 mumol/g dry wt). These data indicate that, despite reduced water content during the first 15 h after heavy exercise, skeletal muscle glycogen resynthesis is not impaired.  相似文献   

17.
To determine whether increases in muscle mitochondrial capacity are necessary for the characteristic lower exercise glycogen loss and lactate concentration observed during exercise in the trained state, we have employed a short-term training model involving 2 h of cycling per day at 67% maximal O2 uptake (VO2max) for 5-7 consecutive days. Before and after training, biopsies were extracted from the vastus lateralis of nine male subjects during a continuous exercise challenge consisting of 30 min of work at 67% VO2max followed by 30 min at 76% VO2max. Analysis of samples at 0, 15, 20, and 60 min indicated a pronounced reduction (P less than 0.05) in glycogen utilization after training. Reductions in glycogen utilization were accompanied by reductions (P less than 0.05) in muscle lactate concentration (mmol/kg dry wt) at 15 min [37.4 +/- 9.3 (SE) vs. 20.2 +/- 5.3], 30 min (30.5 +/- 6.9 vs. 17.6 +/- 3.8), and 60 min (26.5 +/- 5.8 vs. 17.8 +/- 3.5) of exercise. Maximal aerobic power, VO2max (l/min) was unaffected by the training (3.99 +/- 0.21 vs. 4.05 +/- 0.26). Measurements of maximal activities of enzymes representative of the citric acid cycle (succinic dehydrogenase and citrate synthase) were similar before and after the training. It is concluded that, in the voluntary exercising human, altered metabolic events are an early adaptive response to training and need not be accompanied by changes in muscle mitochondrial capacity.  相似文献   

18.
This study was intended to compare exogenous [(13)C]glucose (Glu(exo)) oxidation in boys with insulin-dependent diabetes mellitus (IDDM) and healthy boys of similar age, weight, and maximal O(2) uptake. In a control trial with water intake (CT) and in a (13)C-enriched glucose trial (GT), subjects cycled for 60 min (58.8 +/- 0.9% maximal O(2) uptake) while the utilization of total glucose, total fat, and Glu(exo) was assessed. In CT, total glucose was 84.7 +/- 9.2 vs. 91.3 +/- 6.6 g/60 min (not significantly different) and total fat was 13.3 +/- 2.2 vs. 11.1 +/- 1.7 g/60 min (not significantly different) in IDDM vs. healthy boys, respectively. In GT, Glu(exo) was 10.4 +/- 1.7 vs. 14.8 +/- 1.1 g/60 min, corresponding to 9.0 +/- 1.0 vs. 12.4 +/- 0.5% of the total energy supply in IDDM and healthy boys, respectively (P < 0.05). Endogenous glucose was spared in both groups by 12.6 +/- 3.5% (P < 0.05). Blood glucose and plasma insulin concentrations were two- to threefold higher in IDDM vs. healthy boys in both trials. In conclusion, Glu(exo) is impaired in exercising boys with IDDM, even when plasma insulin levels are elevated.  相似文献   

19.
To examine the influence of muscle glycogen on the thermal responses to passive rewarming subsequent to mild hypothermia, eight subjects completed two cold-water immersions (18 degrees C), followed by 75 min of passive rewarming (24 degrees C air, resting in blanket). The experiments followed several days of different exercise-diet regimens eliciting either low (LMG; 141.0 +/- 10.5 mmol.kg.dry wt-1) or normal (NMG; 526.2 +/- 44.2 mmol.kg.dry wt-1) prewarming muscle glycogen levels. Cold-water immersion was performed for 180 min or to a rectal temperature (Tre) of 35.5 degrees C. In four subjects (group A, body fat = 20 +/- 1%), postimmersion Tre was similar to preimmersion Tre for both trials (36.73 +/- 0.18 vs. 37.26 +/- 0.18 degrees C, respectively). Passive rewarming in group A resulted in an increase in Tre of only 0.13 +/- 0.08 degrees C. Conversely, initial rewarming Tre for the other four subjects (group B, body fat = 12 +/- 1%) averaged 35.50 +/- 0.05 degrees C for both trials. Rewarming increased Tre similarly in group B during both LMG (0.76 +/- 0.25 degrees C) and NMG (0.89 +/- 0.13 degrees C). Afterdrop responses, evident only in those individuals whose body core cooled during immersion (group B), were not different between LMG and NMG. These data support the contention that Tre responses during passive rewarming are related to body insulation. Furthermore these results indicate that low muscle glycogen levels do not impair rewarming time nor alter after-drop responses during passive rewarming after mild-to-moderate hypothermia.  相似文献   

20.
We determined the effect of coingestion of caffeine (Caff) with carbohydrate (CHO) on rates of muscle glycogen resynthesis during recovery from exhaustive exercise in seven trained subjects who completed two experimental trials in a randomized, double-blind crossover design. The evening before an experiment subjects performed intermittent exhaustive cycling and then consumed a low-CHO meal. The next morning subjects rode until volitional fatigue. On completion of this ride subjects consumed either CHO [4 g/kg body mass (BM)] or the same amount of CHO + Caff (8 mg/kg BM) during 4 h of passive recovery. Muscle biopsies and blood samples were taken at regular intervals throughout recovery. Muscle glycogen levels were similar at exhaustion [ approximately 75 mmol/kg dry wt (dw)] and increased by a similar amount ( approximately 80%) after 1 h of recovery (133 +/- 37.8 vs. 149 +/- 48 mmol/kg dw for CHO and Caff, respectively). After 4 h of recovery Caff resulted in higher glycogen accumulation (313 +/- 69 vs. 234 +/- 50 mmol/kg dw, P < 0.001). Accordingly, the overall rate of resynthesis for the 4-h recovery period was 66% higher in Caff compared with CHO (57.7 +/- 18.5 vs. 38.0 +/- 7.7 mmol x kg dw(-1) x h(-1), P < 0.05). After 1 h of recovery plasma Caff levels had increased to 31 +/- 11 microM (P < 0.001) and at the end of the recovery reached 77 +/- 11 microM (P < 0.001) with Caff. Phosphorylation of CaMK(Thr286) was similar after exercise and after 1 h of recovery, but after 4 h CaMK(Thr286) phosphorylation was higher in Caff than CHO (P < 0.05). Phosphorylation of AMP-activated protein kinase (AMPK)(Thr172) and Akt(Ser473) was similar for both treatments at all time points. We provide the first evidence that in trained subjects coingestion of large amounts of Caff (8 mg/kg BM) with CHO has an additive effect on rates of postexercise muscle glycogen accumulation compared with consumption of CHO alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号