首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil salinity and alkalinity are common constraints to crop productivity in low rainfall regions of the world. However, the physiological difference of plant response to these two stresses was short of deep investigation. This study has identified a set of differentially expressed proteins of tomato root exploring to NaCl and NaHCO3 stress by iTRAQ (isobaric tags for relative and absolute quantitation) assay. A total of 313 proteins responsive to NaCl and NaHCO3 were observed. Among these proteins, 70 and 114 proteins were up-regulated by salt and alkali stress, respectively. While down-regulated proteins were 80 in salt treatment and 83 in alkali treatment. Only 39 up-regulated proteins and 30 down-regulated proteins were shared by salt and alkali stresses. The majority of the down-regulated proteins accounted for metabolism and energy conversion, and the up-regulated proteins were involved in signaling or transport. Compared with salt stress, alkali stress down-regulated proteins related with the respiratory metabolism, fatty acid oxidative metabolism and nitrogenous metabolism of tomato roots, and up-regulated protein with the reactive oxygen species (ROS) scavenging and ion transport. This study provides a novel insight into tomato roots response to salt and alkali stress at a large translation level.  相似文献   

2.
Liu C  Cai L  Han X  Ying T 《Gene》2011,486(1-2):56-64
To obtain an overall view on gene expression during the early stage (24 h) of tomato fruit in response to postharvest UV-C irradiation (4 kJ/m(2)), we performed a microarray analysis by using Affymetrix Tomato Genechip. The results showed that 274 and 403 genes were up- or down-regulated, respectively, more than two folds in postharvest tomato fruit irradiated with UV-C as compared with that in control fruit. The up-regulated genes mainly involve in signal transduction, defense response and metabolism. Conversely, genes related to cell wall disassembly, photosynthesis and lipid metabolism were generally down-regulated. These results opened ways to probe into the molecular mechanisms of the effects of postharvest UV-C irradiation on increased disease resistance, delayed softening, better quality maintenance and prolonged postharvest life in tomato fruit.  相似文献   

3.
4.
Shoresh M  Harman GE 《Plant physiology》2008,147(4):2147-2163
Trichoderma spp. are effective biocontrol agents for several soil-borne plant pathogens, and some are also known for their abilities to enhance systemic resistance to plant diseases and overall plant growth. Root colonization with Trichoderma harzianum Rifai strain 22 (T22) induces large changes in the proteome of shoots of maize (Zea mays) seedlings, even though T22 is present only on roots. We chose a proteomic approach to analyze those changes and identify pathways and genes that are involved in these processes. We used two-dimensional gel electrophoresis to identify proteins that are differentially expressed in response to colonization of maize plants with T22. Up- or down-regulated spots were subjected to tryptic digestion followed by identification using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry and nanospray ion-trap tandem mass spectrometry. We identified 91 out of 114 up-regulated and 30 out of 50 down-regulated proteins in the shoots. Classification of these revealed that a large portion of the up-regulated proteins are involved in carbohydrate metabolism and some were photosynthesis or stress related. Increased photosynthesis should have resulted in increased starch accumulation in seedlings and did indeed occur. In addition, numerous proteins induced in response to Trichoderma were those involved in stress and defense responses. Other processes that were up-regulated were amino acid metabolism, cell wall metabolism, and genetic information processing. Conversely, while the proteins involved in the pathways noted above were generally up-regulated, proteins involved in other processes such as secondary metabolism and protein biosynthesis were generally not affected. Up-regulation of carbohydrate metabolism and resistance responses may correspond to the enhanced growth response and induced resistance, respectively, conferred by the Trichoderma inoculation.  相似文献   

5.
6.
Rice overexpressed thaumatin-like protein gene and the proteins from the leaf blades of 2-week-old transgenic rice seedlings were fractionated into cytosolic and membrane fractions, and separated by two-dimensional polyacrylamide gel electrophoresis and stained with Commassie brilliant blue. Among of 440 detected proteins, 5 proteins were up-regulated and 5 proteins were down-regulated by the overexpression of thaumatin-like protein. In the sense thaumatin-like protein transgenic rice and/or in rice inoculated with Xanthomonas oryzae pv. oryzae (Xo7435), 2-cys peroxiredoxin, thaumatin-like protein and glycine cleavage H protein were up-regulated, while oxygen evolving complex protein 2 was down-regulated. These results suggest that thaumatin-like protein-mediated disease resistance of rice against bacterial blight disease is the results of changes in proteins related to oxidative stress and energy metabolism in addition to changes in proteins related to defence.  相似文献   

7.
利用酵母双杂交系统,以黄瓜花叶病毒(Cucumber mosaic virus,CMV)的外壳蛋白(coat protein,CP)为诱饵,从番茄叶片c DNA文库中筛选与其互作的蛋白。结果显示,诱饵载体pBT3-SUC-CMV-CP均能在酵母细胞中正确表达,无自激活活性而且对酵母无毒性;通过对酵母双杂交文库的筛选和回转验证,共获得了98个阳性克隆,分别编码67个可能与CMV-CP相互作用的蛋白,分别参与植物防御反应、光合作用、物质转运、信号转导、能量代谢、氨基酸代谢、细胞壁的形态建成、植物的激素代谢等。本研究结果表明,CMV CP可同时调控寄主的多个代谢过程,在CMV的致病过程中有多重功能。  相似文献   

8.
9.
10.
11.
12.
Salinity is a major abiotic stress that affects plant growth and development. In this study, we performed a proteomic analysis of cotton roots and leaf tissue following exposure to saline stress. 611 and 1477 proteins were differentially expressed in the roots and leaves, respectively. In the roots, 259 (42%) proteins were up-regulated and 352 (58%) were down-regulated. In the leaves, 748 (51%) proteins were up-regulated and 729 (49%) were down-regulated. On the basis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, we concluded that the phenylalanine metabolism and starch and sucrose metabolism were active for energy homeostasis to cope with salt stress in cotton roots. Moreover, photosynthesis, pyruvate metabolism, glycolysis / gluconeogenesis, carbon fixation in photosynthetic organisms and phenylalanine metabolism were inhabited to reduce energy consumption. Characterization of the signaling pathways will help elucidate the mechanism activated by cotton in response to salt stress.  相似文献   

13.
14.
DNA microarrays were used to investigate the expression profile of yeast genes in response to ethanol. Up to 3.1% of the genes encoded in the yeast genome were up-regulated by at least a factor of three after 30 min ethanol stress (7% v/v). Concomitantly, 3.2% of the genes were down-regulated by a factor of three. Of the genes up-regulated in response to ethanol 49.4% belong to the environmental stress response and 14.2% belong to the stress gene family. Our data show that in addition to the previously identified ethanol-induced genes, a very large number of genes involved in ionic homeostasis, heat protection, trehalose synthesis and antioxidant defence also respond to ethanol stress. It appears that a large number of the up-regulated genes are involved in energy metabolism. Thus, 'management' of the energy pool (especially ATP) seems to constitute an ethanol stress response and to involve different mechanisms.  相似文献   

15.
16.
17.
18.
19.
赵欣  白伟 《植物研究》2018,38(3):422-432
为研究干旱胁迫下杜仲幼苗生理生化及分子响应机制,利用盆栽试验,通过持续(3、6、9、12、15 d)干旱胁迫处理和复水处理,研究杜仲幼苗的生理响应特性。同时,通过研究对照与处理15 d后的杜仲幼苗差异蛋白质组,分析杜仲幼苗对干旱胁迫的分子响应机制。结果表明,随着干旱处理时间的延长,杜仲叶片的水分饱和亏逐渐增加;光合速率、蒸腾速率、胞间二氧化碳浓度、气孔导度均逐渐减小;SOD、POD、CAT活性呈先上升后降低的趋势;丙二醛含量则呈现先上升,然后下降,最后又上升的变化特点;脯氨酸和可溶性糖含量的变化趋势与SOD等活性变化一致,前期上升,后期下降。在复水后,杜仲叶片的所有指标均有所恢复,但未达到干旱处理之前的水平。表明干旱胁迫影响了杜仲叶片的正常生长代谢。通过对干旱处理15 d后杜仲叶片总蛋白进行双向电泳分离和MALDI-TOF-TOF生物质谱鉴定,成功鉴定出36个差异表达蛋白,其中22个上调表达,14个下调表达。对36个差异蛋白进行功能分析发现,这些差异蛋白主要涉及信号传导、光合作用、碳代谢、能量代谢、次级代谢物合成、抗氧化保护酶、氨基酸代谢和蛋白质代谢。推测杜仲为适应干旱胁迫,首先是感应干旱胁迫信号,并传导至细胞内,影响杜仲叶片中光合作用、次级代谢物合成和蛋白质的生物合成;同时,通过过氧化物保护酶的作用,将过多活性氧加以清除;另一方面,则是通过增强糖酵解,磷酸戊糖途径,产生能量供杜仲正常生长所需。从生理机制来看,杜仲叶片同过增加胞内脯氨酸、可溶性糖含量,降低胞内渗透势,减少叶片中水分损失,与氨基酸合成和糖代谢相关蛋白的表达量上升的结果一致。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号