首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiple anthropogenic stressors have been shown to impact animal and plant communities in freshwater ecosystems, but the responses of aquatic fungi remain largely unknown. Stressor effects on fungal communities may, however, result in changes of decomposition of plant litter and, thus, impact nutrient cycling, a key process for ecosystem functioning. We tested the impact of increased chloride and sediment levels, as well as reduced water flow velocity, on eukaryotic freshwater communities, with an emphasis on fungi, in a mesocosm experiment. Each of the three stressors was applied individually and in all combinations in a full-factorial design. Litterbags with non-sterilised tree leaves and sterile ceramic tiles were added to the mesocosms, to analyse the responses of communities in decaying plant material and in biofilms. Fungi preferably occurring in biofilms were supposed to represent indigenous aquatic fungi, while litterbag communities should be predominantly composed of fungi known from terrestrial litter. Community composition was assessed by high-throughput sequencing of amplified barcoding regions. Similarity matrices of operational taxonomic unit (OTU) tables calculated by UCLUST and CD-HIT-OTU-Illumina were significantly correlated. Preferred occurrence in biofilm and litter communities, respectively, was used for the grouping of OTUs into three ecological guilds. Stressor sensitivity varied among the guilds. While non-fungal, in particular autotrophic, OTUs responded to several treatments, two of the fungal guilds, i.e. those exclusively colonising litter and those preferably occurring on the ceramic tiles, showed no response to any applied treatment. Only fungi preferably, but not exclusively, colonising litter significantly responded to chloride addition. Their distribution patterns again correlated significantly with those of non-fungal OTUs, indicating possible interdependencies between both groups. The results indicate that eukaryotic freshwater communities are composed of different guilds, with distinctive sensitivity and tolerance to anthropogenic stressors.  相似文献   

2.
Phyllosphere fungi on living and decomposing leaves of giant dogwood   总被引:3,自引:0,他引:3  
Phyllosphere fungi on living leaves and their succession on decomposing leaves were studied on giant dogwood (Swida controversa). A total of 12 and 34 fungal species were isolated from the interior and surface, respectively, of living leaves, and 15 frequent species were considered as phyllosphere fungi. Six of these 15 species were also frequent on decomposing litter. Characteristic successional trends were observed in the 6 phyllosphere fungi during decomposition. The sum of frequencies of endophytes decreased as decomposition progressed, and no endophytes were isolated from the litter at the 11th month of decomposition. The sum of frequencies of epiphytes increased as decomposition progressed. Endophytes and epiphytes showed different responses to litter mass loss and concentrations of nitrogen, lignin, and total carbohydrates during the decomposition process. These results suggested that epiphytes may survive on decomposing leaves as primary decomposers on the ground, thereby excluding endophytes by competition for available energy sources, and that epiphytes may have a greater contribution to decomposition than endophytes in dogwood leaves.  相似文献   

3.
Fungi, especially basidiomycetous litter decomposers, are pivotal to the turnover of soil organic matter in forest soils. Many litter decomposing fungi have a well-developed capacity to translocate resources in their mycelia, a feature that may significantly affect carbon (C) and nitrogen (N) dynamics in decomposing litter. In an eight-month long laboratory study we investigated how the external availability of N affected the decomposition of Scots pine needles, fungal biomass production, N retention and N-mineralization by two litter decomposing fungi – Marasmius androsaceus and Mycena epipterygia. Glycine additions had a general, positive effect on fungal biomass production and increased accumulated needle mass loss after 8 months, suggesting that low N availability may limit fungal growth and activity in decomposing pine litter. Changes in the needle N pool reflected the dynamics of the fungal mycelium. During late decomposition stages, redistribution of mycelium and N out from the decomposed needles was observed for M. epipterygia, suggesting autophagous self degradation.  相似文献   

4.
栓皮栎林下主要丝状真菌的分解能力   总被引:7,自引:0,他引:7  
利用纯培养试验方法 ,研究了栓皮栎林下凋落物中可培养的 10种主要丝状真菌对群落建群种栓皮栎 (Quercus variabilis)和林下主要伴生树种山胡椒 (L indera glauca)叶片的分解能力。结果表明 :在 10种真菌的作用下 ,9周时间内 ,栓皮栎叶片的平均失重率是山胡椒叶片的 2倍 ;两种叶片前期 (前 5周 )失重率均显著高于后期 (后 4周 )。分析结果显示叶片失重率与叶片初始木质素 /氮素、碳素 /氮素的比值成反比。根据每个菌株对每种叶片在前期和后期的重量失重率 (W)、木质素失重率 / W和木质素失重率 /全碳化合物失重率的值的相互关系 ,分解菌可以分为如下类型 :Trichoderma sp.1和 Cladosporium berbarum是对全碳化合物有一定利用能力的分解菌 ;Trichoderma sp.2、 Aspergillus fumigatus、Alternaria sp.、Penicillium sp.2对木质素、全碳化合物都有分解能力但偏向全碳化合物的分解 ,是分解能力相对较强的真菌 ;Chaetomium bostrychodes、Pestalotia sp.对木质素、全碳化合物都有分解能力并偏向木质素的分解 ,但分解能力较弱 ;Aspergillus niger、Penicillium sp.1只在试验分解前期内对木质素、全碳化合物都有一定的分解能力。不同真菌对叶片的分解能力不同 ,即使是同属真菌之间也有显著的差异  相似文献   

5.
Summary The oxygen uptake of decomposing oak leaves in three litter layers was determined with a Gilson respirometer at least once a month. Samples were taken from Meerdink forest over a period of two years. The determinations were made at the same temperatures as those prevailing in the soil in the field at the moment of sampling. Due probably to the supply of fresh litter, the respiration in the L layer is the same in the winter as in the summer, when high temperatures have a stimulatory effect on respiration. In the F and H layers the composition of the material is much more constant, and there is a distinct effect of soil temperature on respiration corresponding with a Q10 of 2. It must be taken into account here, however, that in the H layer root respiration accounts on average for 40 per cent of the total respiration. The moisture content of the decomposing material seems to have a marked effect only in the L layer during prolonged periods of drought. No relationship was found between the level of respiration and the degree of mycelial growth on nylon gauze, although the main contribution to respiration was made by fungi. The respiration of the various litter layers represents an energy consumption which is in good agreement with the annual decomposition of organic matter in the soil. R.I.N.-communication nr. 102. R.I.N.-communication nr. 102.  相似文献   

6.
Fungal decomposition of Abies needle and Betula leaf litter   总被引:1,自引:0,他引:1  
Osono T  Takeda H 《Mycologia》2006,98(2):172-179
The effect of litter type and incubation temperature on the ability of fungi to decompose leaf litter of subalpine trees was examined by a pure-culture test. Mass loss of Abies needle and Betula leaf litter and utilization patterns of lignin and carbohydrates were investigated under two temperature conditions (20 C and 10 C) and compared for 29 species in basidiomycetes, ascomycetes and zygomycetes. The decomposing ability was generally higher in basidiomycetes than in ascomycetes and zygomycetes. Mass loss (% original mass) of litter was higher in Betula than in Abies and higher at 20 C than at 10 C. The 29 fungi were divided into lignocellulose decomposers, cellulose decomposers and sugar fungi based on their substrate utilization in Abies and Betula litter. Mass loss of lignin and carbohydrates by lignocellulose and cellulose decomposers was higher in Betula than in Abies. Mass loss of carbohydrates was higher at 20 C than at 10 C, but the temperature did not influence mass loss of lignin, indicating lignin decomposition by fungi was less sensitive to temperature than carbohydrate decomposition. Lignin/carbohydrate loss ratio (L/C) of Collybia spp. that caused selective delignification was lower at 20 C than at 10 C. These results indicate that the decomposability of litter, lignin and carbohydrate was different between Abies and Betula and that temperature affected not only the rate at which fungi decompose litter but also the ability of fungi to use lignin and carbohydrates.  相似文献   

7.
Endophytic fungi occur on various types of leaf litter, but few studies have been done on their roles as saprophytes in decomposition. This study examined the succession of fungi in live, newly shed, and decomposing leaves at 2 months of decomposition of Camellia japonica and chemical changes in decomposing leaves colonized by endophytes. Coccomyces nipponicum, Lophodermium sp., Geniculosporium sp. 1, and Colletotrichum gloeosporioides were isolated from living leaves. Coccomyces nipponicum and Lophodermium sp. were also isolated frequently from newly shed and decomposing leaves. These two fungi caused a decrease of lignin content and bleaching in decomposing leaves under field and laboratory conditions. Total hyphal length in decomposing leaves was higher in bleached portions than in surrounding nonbleached portions, which probably reflected the early onset of hyphal growth of endophytes inside leaf tissue at leaf senescence or death. Incubation of newly shed leaves that were sterilized to exclude previously established endophytes resulted in no occurrence of bleached portions in decomposing leaves on the forest floor. This result indicated that these endophytes were incapable of colonizing leaves directly after litterfall and that the persistence of endophytes from live leaves was crucial for their colonization in decomposing leaves.  相似文献   

8.
Summary Studies have been made on the production of ammonia and nitrate nitrogen, rate of decomposition along with comparative changes in microbial population during decomposition of deciduous and coniferous litters. At the same time the effect of addition of antibiotics on the microbial population and rate of decomposition of coniferous litter was investigated.Liberation of nitrogen in the form of ammonia occurred somewhat more rapidly in decomposing deciduous litter than in that of the coniferous litter. Towards the end of the experiment the nitrification process commenced in the deciduous litter but was absent in the coniferous litter.The deciduous litter decomposed more rapidly than the coniferous litter.The bacteria and actinomycetes were consistently more numerous in the deciduous litter than in the coniferous litter; in the case of fungi the reverse occured. An antifungal antibiotic (cycloheximide) had little or no effect on numbers of fungi in the decomposing coniferous litter while antibacterial antibiotics (streptomycin and chloramphenicol) reduced slightly the numbers of bacteria and actinomycetes. Numbers of bacteria and actinomycetes were increased greatly in cultures receiving the antifungal antibiotic and fungal growth was apparently stimulated where antibacterial antibiotics were added. In spite of the observed shift in the microbial population brought about by the addition of antibiotics the rate of decomposition of the coniferous litter appeared to be unaffected. This would suggest that the type of microbia l population is not as important as the type of litter or some other factor in regard to decomposition rate.Joint contribution from the Divisions of Bacteriology (No. 469) and Chemistry (No. 412), Science Service.  相似文献   

9.
The effects of litter quality and site characteristics on the decomposition process were investigated using a litterbag method. Pine needle litters with differing nitrogen concentrations (0.8, 0.6 and 0.4%) were placed on the upper and lower slopes of a Pinus thunbergii Parl. plantation. After both 3 and 6 months, the mass of decomposing litter with the lower nitrogen concentration was larger than the litter with higher nitrogen concentrations. After 9 months, there were no significant differences in the litter mass remaining, regardless of the initial nitrogen concentration. Moisture content in the litter was always higher on the lower slope, although the mass of litter was smaller. Nitrogen concentration of the decomposing litter increased linearly with accumulated mass loss. The increase in nitrogen concentration of decomposing litter was greater on the lower slope, but this increase did not differ between initial nitrogen concentrations. The nitrogen release from the decomposing litter with higher initial nitrogen concentration was larger than the release from litter bags with lower nitrogen concentrations. This result suggests that there may be positive feedback between soil nutrient availability, litter quality and nutrient release from decomposing litter at the intraspecific level.  相似文献   

10.
Decomposition of leaf litter is a microbial mediated process that helps to transfer energy and nutrients from leaves to higher trophic levels in woodland streams. Generally, aquatic hyphomycetes are viewed as the major fungal group responsible for leaf litter decomposition. In this study, traditional microscopic examination (based on identification of released conidia) and phylogenetic analysis of 18S rRNA genes from cultivated fungi were used to compare fungal community composition on decomposing leaves of two species (sugar maple and white oak) from a NE Ohio stream. No significant differences were found in sporulation rates between maple and oak leaves and both had similar species diversity. From the 18S rRNA gene sequence data, identification was achieved for 12 isolates and taxonomic affiliation of 12 of the remaining 14 isolates could be obtained. A neighbor-joining tree (with bootstrap values) was constructed to examine the taxonomic distribution of the isolates relative to sequences of known operational taxonomic units (OTUs). Surprisingly, only 2 of the isolates obtained were aquatic hyphomycetes based on phylogenetic analysis. Overall, there were no differences between the two leaf types and a higher diversity was observed via culturing and subsequent 18S rRNA gene sequencing than by conidia staining. These differences resulted from the fact that traditional microscopy provides estimates of aquatic hyphomycete diversity while the other approach revealed the presence of both aquatic hyphomycete and non-aquatic hyphomycete taxa. The presence of this broad array of taxa suggests that the role of aquatic hyphomycetes relative to other fungi be re-evaluated. Even though the functional role of these non-aquatic hyphomycetes taxa is unknown, their presence and diversity demonstrates the need to delve further into fungal community structure on decomposing leaves.  相似文献   

11.
ATP and ergosterol were compared as indicators of fungal biomass associated with leaves decomposing in laboratory microcosms and streams. In all studies, the sporulation rates of the fungi colonizing leaves were also determined to compare patterns of fungal reproductive activity with patterns of mycelial growth. During leaf degradation, ATP concentrations exhibited significant, positive correlations with ergosterol concentrations in the laboratory and when leaves had been air dried prior to being submerged in a stream. However, when freshly shed leaves were submerged in a stream, concentrations of ATP and ergosterol were negatively correlated during degradation. This appeared to be due to the persistence of leaf-derived ATP in freshly shed leaves during the first 1 to 2 weeks in the stream. Estimates of fungal biomass from ergosterol concentrations of leaf litter were one to three times those calculated from ATP concentrations. ATP, ergosterol, and sporulation data generally provided similar information about the fungi associated with decomposing leaves in streams during periods when fungi were growing. Ergosterol concentrations provide a more accurate indication of fungal biomass in situations in which other organisms make significant contributions to ATP pools.  相似文献   

12.
Microorganisms associated with decomposing deciduous leaf litter in a woodland stream were examined by scanning electron microscopy. The use of a critical point drying method allowed the preservation of a wide variety of microorganisms as well as the decomposing litter with a minimum of distortion. The micrographs provide evidence that the aquatic hyphomycetes are the major fungal flora present during decomposition. Two distinct groups of these fungi were found during the seasonal cycle with one group occurring only in the summer while the other occurred throughout the rest of the year. The presence of all developmental stages of these organisms in the environment is considered further evidence of their active role in the decomposition of litter.  相似文献   

13.
Decomposition of deciduous leaf litter in a woodland stream   总被引:1,自引:0,他引:1  
Microorganisms associated with decomposing deciduous leaf litter in a woodland stream were examined by scanning electron microscopy. The use of a critical point drying method allowed the preservation of a wide variety of microorganisms as well as the decomposing litter with a minimum of distortion. The micrographs provide evidence that the aquatic hyphomycetes are the major fungal flora present during decomposition. Two distinct groups of these fungi were found during the seasonal cycle with one group occurring only in the summer while the other occurred throughout the rest of the year. The presence of all developmental stages of these organisms in the environment is considered further evidence of their active role in the decomposition of litter.  相似文献   

14.
The ecology of endophytic and epiphytic phyllosphere fungi of forest trees is reviewed with special emphasis on the development of decomposer fungal communities and decomposition processes of leaf litter. A total of 41 genera of phyllosphere fungi have been reported to occur on leaf litter of tree species in 19 genera. The relative proportion of phyllosphere fungi in decomposer fungal communities ranges from 2% to 100%. Phyllosphere fungi generally disappear in the early stages of decomposition, although a few species persist until the late stages. Phyllosphere fungi have the ability to utilize various organic compounds as carbon sources, and the marked decomposing ability is associated with ligninolytic activity. The role of phyllosphere fungi in the decomposition of soluble components during the early stages is relatively small in spite of their frequent occurrence. Recently, the roles of phyllosphere fungi in the decomposition of structural components have been documented with reference to lignin and cellulose decomposition, nutrient dynamics, and accumulation and decomposition of soil organic matter. It is clear from this review that several of the common phyllosphere fungi of forest trees are primarily saprobic, being specifically adapted to colonize and utilize dead host tissue, and that some phyllosphere fungi with marked abilities to decompose litter components play important roles in decomposition of structural components, nutrient dynamics, and soil organic matter accumulation.  相似文献   

15.
The distribution of microbial populations that decomposed sugar, cellulose and lignin-related substrates was examined in a beech Fagus grandifolia Ehrh. and maple Acer saccharum Marsh. dominated woodlot developed on glacial till. The topography of the woodlot, characterized by rises, depressions and more extensive level areas about 1 m in diameter with a 0.5 m vertical maximum, produced a mosaic of decomposer habitats designated as high, level and low sites.
In general, populations of sugar, cellulose and lignin decomposing organisms (based on ten estimates made from April to October) were two to four times higher in litter and soil samples from low sites than those from high sites. Sugar decomposing bacteria in litter were most abundant at all topographic sites. 135 × 106 g−1 dry litter at high sites, 396 × 106 g−1 at level sites and 456 × 106 g−1 at low sites; lignolytic fungi were least abundant, 391 × 102 g−1 dry litter at high sites. 700 × 106 g−1 at level sites and 954 × 102 g−1 at low sites. Numbers of microbial decomposers in the topographic sites were correlated with organic matter content. Distribution of fungal genera did not appear to be related to topographic site. Most populations examined showed two numerical peaks, one in late May or June and one in late September or October. It is suspected that these peaks were influenced by the coincident timing of favourable physical conditions and priming by soluble nutrients leached from litter.  相似文献   

16.
Decomposition processes of beech leaf litter were studied over a 3-year period in a cool temperate deciduous forest in Japan. Organic chemical and nutrient dynamics, fungal biomass and succession were followed on upper (Moder) and lower (Mull) of a forest slope. Litter decomposition rates were similar between the sites. Nutrient dynamics of the decomposing litter was categorized into two types: weight changes in nitrogen and phosphorus showed two phases, the immobilization (0–21 months) and the mobilization phase (21–35 months), while those in potassium, calcium and magnesium showed only the mobilization phase. The rate of loss of organic chemical constituents was lignin < holocellulose < soluble carbohydrate < polyphenol in order. The changes in lignocellulose index (LCI), the ratio of holocellulose in lignin and holocellulose, were significantly correlated to the changes in nitrogen and phosphorus concentrations during the decomposition. During the immobilization phase, increase in total fungal biomass contributed to the immobilization of nitrogen and phosphorus. The percentage of clamp-bearing fungal biomass (biomass of the Basidiomycota) to total fungal biomass increased as the decomposition proceeded and was significantly correlated to LCI. Two species in the xylariaceous Ascomycota were dominantly isolated by the surface sterilization method from decomposing litter collected in the 11th month. The organic chemical, nitrogen and phosphorus dynamics during the decomposition were suggested to be related to the ingrowth, substrate utilization and succession of the Xylariaceae and the Basidiomycota. Twenty-one species in the other Ascomycota and the Zygomycota isolated by the washing method were classified into three groups based on their occurrence patterns: primary saprophytes, litter inhabitants and secondary sugar fungi. These species showed different responses to LCI and soluble carbohydrate concentration of the litter between the groups.  相似文献   

17.
Anthropogenic nitrogen (N) enrichment can alter N dynamics associated with decomposing plant litter. However, it is unclear to what extent these alterations occur via microbial effects (e.g., changes in gene regulation, physiology, or community composition) versus plant litter effects (e.g., changes in composition of N and C compounds). To isolate microbial effects from plant litter effects, we collected plant litter from long-term N fertilized and control plots, reciprocally inoculated it with microbes from the two treatments, and incubated it in a common field setting for three months. We used quantum dots (QDs) to track fungal uptake of glycine and chitosan. Glycine is a relatively simple organic N compound; chitosan is more complex. We found that microbial and litter origins each contributed to a shift in fungal uptake capacities under N fertilization. Specifically, N fungi preferred glycine over chitosan, but control fungi did not. In comparison, litter effects were more subtle, and manifested as a three-way interaction between litter origin, microbial origin, and type of organic N (glycine versus chitosan). In particular, control fungi tended to target chitosan only when incubated with control litter, while N fungi targeted glycine regardless of litter type. Overall, microbial effects may mediate how N dynamics respond to anthropogenic N enrichment in ecosystems.  相似文献   

18.
Bacterial and fungal decomposers of aquatic plant litter may exhibit either synergistic or antagonistic interactions, which are likely to influence microbial growth as well as the decomposition of litter and, eventually, the carbon metabolism of aquatic systems. To elucidate such interactions, we inoculated decomposing Phragmites culms in microcosms with fungal isolates and with natural communities of bacteria and fungi in different combinations. The development of fungal and bacterial biomass and the carbon dynamics were studied during several months of degradation. The results show a bilateral antagonistic relationship between bacteria and fungi. After 3 months, fungal biomass accumulation was approximately 12 times higher in the absence than in the presence of bacteria. Bacterial biomass accumulation was about double in the absence of fungi compared to when fungi were present. Similar interactions developed between a natural assemblage of bacteria and five different fungal strains isolated from Phragmites litter (three identified hyphomycetes and two unidentified strains). Despite the great difference in biomass development between the treatments, the carbon metabolism was similar regardless of whether fungi and/or bacteria were present alone or in coexistence. We suggest that the antagonism between bacteria and fungi is an important controlling factor for microbial colonization and growth on aquatic plant litter.  相似文献   

19.
Distinct O1 and O2 layers, representing annual litter fall, enabled the sequential loss of biomass and nutrients (phosphorus and nitrogen) to be reconstructed in undisturbed litter layers of Banksia ornata in the Dark Island heathland, South Australia. Apart from an initial loss in biomass and nitrogen, the dry weight and nutrient content of the O1 layer, exposed to the desiccating influence of the atmosphere, remained relatively constant until covered by the following year's leaf fall. Under the blanket of newly fallen leaves, biomass decomposition proceeded continuously through autumn, winter, spring, into the dry summer season. Even though the biomass of the decomposing leaf (O2) layer decreased continuously, its nutrient content remained relatively constant until the summer season was reached when total decomposition and nutrient loss occurred. During spring, fine rootlets invaded the decomposing litter layer (O2) and, together with decomposer fungi, bacteria and soil fauna, maintained the total nutrient content of the decomposing leaf at a constant level. By late spring-early summer shoot growth of the dominant heath species was initiated, inducing the mobilization of the nutrients stored in the decomposing litter layer.  相似文献   

20.
We investigated arbuscular mycorrhizal fungi (AMF) alteration of microbial mediation of litter decomposition. AMF (Glomus hoi) were either allowed access to or excluded from Plantago lanceolata L. root litter embedded in soil; litter was labeled with either (13) C only or (13) C and (15) N. Plant N uptake was significantly increased if AMF accessed the litter, and (15) N analysis of the plant material indicated that 2-3% of plant N originated from litter. Succession of the soil community mediating decomposition was assessed by phospholipid fatty acids (PLFA) combined with (13) C-PLFA. During the first 21?days of decomposition, saprotrophic fungi and Gram-negative bacteria were the dominant consumers of litter C. As decomposition progressed however, (13) C content of the fungal biomarkers declined substantially, and Gram-negative and Gram-positive bacteria became the primary reservoirs of labeled litter C. The putative PLFA marker for AMF (16:1ω5c) originated primarily from non-AMF sources. In AMF-invaded root litter, Gram-negative, Gram-positive, and 16:1ω5c markers became less (13) C-enriched relative to their counterparts in non-AMF-invaded microcosms during active decomposition. These patterns of (13) C: (12) C enrichment may result from AMF supply of (12) C from the plant to the decomposing soil microbial community; such C inputs could alter the microbial mediation of litter decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号