首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When grown on 3,4,5-trimethoxycinnamic acid, a strain of Pseudomonas putida oxidized this compound and also 3,4,5-trimethoxybenzoic, 3,5-dimethoxy-4-hydroxybenzoic (syringic), and 3,4-dihydroxy-5-methoxybenzoic (3-O-methylgallic) acids, but 3,5-dimethoxy-4-hydroxycinnamic and other acids bearing structural resemblances to the growth substrate were oxidized only slowly. These results indicate that two carbon atoms of the side chain of 3,4,5-trimethoxycinnamate were released before oxidative demethylation occurred to give the ring-fission substrate, 3-O-methylgallate. Oxidation of 3,4,5-trimethoxycinnamate by intact cells gave equimolar amounts of methanol, which was derived from the methoxyl group of 3-O-methylgallate. The tricarboxylic acids, 4-carboxy-2-keto-3-hexenedioic and 4-carboxy-4-hydroxy-2-ketoadipic acids, were shown to be formed by the action of a cell extract upon 3-O-methylgallate; therefore, methanol was released either during or immediately after fission of the benzene nucleus. Cell extracts, prepared from several independent soil isolates after growth on 3,4,5-trimethoxy derivatives of benzoic, cinnamic, and beta-phenylpropionic acids, rapidly oxidized 3-O-methylgallate without added cofactors. It is concluded that the reactions investigated serve generally as a source of methanol in nature.  相似文献   

2.
Bacterial degradation of the nitrobenzoic acids   总被引:11,自引:0,他引:11       下载免费PDF全文
  相似文献   

3.
4.
Bacterial degradation of emulsan.   总被引:2,自引:3,他引:2       下载免费PDF全文
Emulsan is a polyanionic heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1. A mixed bacterial population was obtained by enrichment culture that was capable of degrading emulsan and using it as a carbon source. From this mixed culture, an emulsan-degrading bacterium, termed YUV-1, was isolated. Strain YUV-1 is an aerobic, gram-negative, non-spore-forming, rod-shaped bacterium which grows best in media containing yeast extract. When placed on preformed lawns of A. calcoaceticus RAG-1, strain YUV-1 produced translucent plaques which grew in size until the entire plate was covered. Plaque formation was due to solubilization of the emulsan capsule of RAG-1. Plaque formation was not observed on emulsan-negative mutants of RAG-1. As a consequence of the solubilization of the emulsan capsule, RAG-1 cells became more hydrophobic, as determined by adherence to hexadecane. Growth of YUV-1 on a medium containing yeast extract and emulsan was biphasic. During the initial 24 h, cell concentration increased 10-fold, but emulsan was not degraded; during the lag in growth (24 to 48 h), emulsan was inactivated and depolymerized but not consumed; during the second growth phase (48 to 70 h) the depolymerized emulsan products were consumed.  相似文献   

5.
6.
7.
Bacterial degradation of m-nitrobenzoic acid.   总被引:2,自引:0,他引:2       下载免费PDF全文
Pseudomonas sp. strain JS51 grows on m-nitrobenzoate (m-NBA) with stoichiometric release of nitrite. m-NBA-grown cells oxidized m-NBA and protocatechuate but not 3-hydroxybenzoate, 4-hydroxy-3-nitrobenzoate, 4-nitrocatechol, and 1,2,4-benzenetriol. Protocatechuate accumulated transiently when succinate-grown cells were transferred to media containing m-NBA. Respirometric experiments indicated that the conversion of m-NBA to protocatechuate required 1 mol of oxygen per mol of substrate. Conversions conducted in the presence of 18O2 showed the incorporation of both atoms of molecular oxygen into protocatechuate. Extracts of m-NBA-grown cells cleaved protocatechuate to 2-hydroxy-4-carboxymuconic semialdehyde. These results provide rigorous proof that m-NBA is initially oxidized by a dioxygenase to produce protocatechuate which is further degraded by a 4,5-dioxygenase.  相似文献   

8.
9.
10.
11.
12.
Degradation of EDTA (ethylenediaminetetraacetic acid) or metal-EDTA complexes by cell suspensions of the bacterial strain DSM 9103 was studied. The activity of EDTA degradation was the highest in the phase of active cell growth and decreased considerably in the stationary phase, after substrate depletion in the medium. Exponential-phase cells were incubated in HEPES buffer (pH 7.0) with 1 mM of uncomplexed EDTA or EDTA complexes with Mg2+, Ca2+, Mn2+, Pb2+, Co2+, Cd2+, Zn2+, Cu2+, or Fe3+. The metal-EDTA complexes (Me-EDTA) studied could be divided into three groups according to their degradability. EDTA complexes with stability constants K below 10(16) (lg K < 16), such as Mg-EDTA, Ca-EDTA, and Mn-EDTA, as well as uncomplexed EDTA, were degraded by the cell suspensions at a constant rate to completion within 5-10 h of incubation. Me-EDTA complexes with lg K above 16 (Zn-EDTA, Co-EDTA, Pb-EDTA, and Cu-EDTA) were not completely degraded during a 24-hour incubation, which was possibly due to the toxic effect of the metal ions released. No degradation of Cd-EDTA or Fe(III)-EDTA by cell suspensions of strain DSM 9103 was observed under the conditions studied.  相似文献   

13.
Emulsan is a polyanionic heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1. A mixed bacterial population was obtained by enrichment culture that was capable of degrading emulsan and using it as a carbon source. From this mixed culture, an emulsan-degrading bacterium, termed YUV-1, was isolated. Strain YUV-1 is an aerobic, gram-negative, non-spore-forming, rod-shaped bacterium which grows best in media containing yeast extract. When placed on preformed lawns of A. calcoaceticus RAG-1, strain YUV-1 produced translucent plaques which grew in size until the entire plate was covered. Plaque formation was due to solubilization of the emulsan capsule of RAG-1. Plaque formation was not observed on emulsan-negative mutants of RAG-1. As a consequence of the solubilization of the emulsan capsule, RAG-1 cells became more hydrophobic, as determined by adherence to hexadecane. Growth of YUV-1 on a medium containing yeast extract and emulsan was biphasic. During the initial 24 h, cell concentration increased 10-fold, but emulsan was not degraded; during the lag in growth (24 to 48 h), emulsan was inactivated and depolymerized but not consumed; during the second growth phase (48 to 70 h) the depolymerized emulsan products were consumed.  相似文献   

14.
15.
Summary Studies on the degradation of 6,7-dimethylquinoxaline-2,3-diol-(methyl-14C) by Pseudomonas RF are described. Evidence is presented that this degradation product of riboflavin is assimilated by at least two different pathways which are affected by growth conditions. One leads to the previously identified 3,4-dimethyl-6-carboxy--pyrone and the other to intermediates which in turn are metabolized to various cell constituents.Analyses of amino acids from protein hydrolysates and organic acids excreted into the medium disclosed the presence of 14C-labelled alanine, butyrate, propionate and acetate, all predominantly labelled in the terminal methyl group. Results of studies with various inhibitors of the two pathways are given and the data are compared with previous work on this organism. A scheme for bacterial degradation of 6,7-dimethylquinoxaline-2,3-diol is postulated.  相似文献   

16.
Bacterial degradation of benzalphthalide   总被引:2,自引:0,他引:2  
APseudomonas sp., isolated by an enrichment culture technique, grew on benzalphthalide at up to 1 g/l as sole carbon source. Cells oxidized both benzalphthalide ando-phthalate at enhanced rates compared with glucose-grown cells, but catechol, gentisate and protocatechuate were oxidized slowly and equally by benzalphthalide-and glucose-grown cells.  相似文献   

17.
Bacterial dehalogenation of halogenated alkanes and fatty acids.   总被引:7,自引:5,他引:2       下载免费PDF全文
Sewage samples dehalogenated 1,9-dichloronane, 1-chloroheptane, and 6-bromohexanoate, but an organism able to use 1,9-dichlorononane as the sole carbon source could not be isolated from these samples. Resting cells of Pseudomonas sp. grown on n-undecane, but not cells grown on glycerol, dehalogenated 1,9-dichlorononane in the presence of chloramphenicol. Resting cells of five other n-undecane-utilizing bacteria cleaved the halogen from dichlorononane and 6-bromohexanoate, and four dehalogenated 1-chloroheptane; however, none of these organisms used 1,9-dichlorononane for growth. By contrast, four benzoate-utilizing bacteria removed bromine from 6-bromohexanoate but had little or no activity on the chlorinated hydrocarbons. Incubation of sewage with 1,9-dichlorononane increased its subsequent capacity to dehalogenate 1,9-dichlorononane and 6-bromohexanoate but not 1-chloroheptane. A soil isolate could dehalogenate several dichloralkanes, three halogenated heptanes, and halogen-containing fatty acids. An enzyme preparation from this bacterium released chloride from 1,9-dichlorononane.  相似文献   

18.
19.
20.
Assimilation of ethyleneglycol (EG) ethers by polyethyleneglycol-utilizing bacteria was examined. Ethyleneglycol ether-utilizing bacteria were also isolated from soil and activated sludge samples by enrichment-culture techniques. Three strains (4-5-3, EC 1-2-1 and MC 2-2-1) were selected and characterized as Pseudomonas sp. 4-5-3, Xanthobacter autotrophicus, and an unidentified gram-negative, non-spore-forming rod respectively. Their growth characteristics were examined: Pseudomonas sp. 4-5-3 assimilated EG (diethyleneglycol, DEG) monomethyl, monoethyl and monobutyl ethers, DEG, propanol and butanol. X. autotrophicus EC 1-2-1 grew well on EG monoethyl and monobutyl ethers, EG and primary alcohols (C1-C4), and slightly on EG monomethyl ether. The strain MC 2-2-1 grew on EG monomethyl ether, EG, primary alcohols (C1-C4), and 1,2-propyleneglycol (PG). The mixed culture of Pseudomonas sp. 4-5-3 and X. autotrophicus EC 1-2-1 showed better growth and improved degradation than respective single cultures towards EG monomethyl, monoethyl or monobutyl ethers. Intact cells of Pseudomonas sp. 4-5-3 degraded various kinds of monoalkyl ethers, which cannot be assimilated by the strain. Metabolic products were characterized from reaction supernatants of intact cells of Pseudomonas sp. 4-5-3 with EG or DEG monoethyl ethers: they were analyzed by thin-layer chromatography and GC-MS and found to be ethoxyacetic acid and ethoxyglycoxyacetic acid. Also, PG monoalkyl ethers (C1-C4), dipropyleneglycol monoethyl and monomethyl ethers and tripropyleneglycol monomethyl ether were assimilated by polypropyleneglycol-utilizing Corynebacterium sp. 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号