首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Thromboxane A(2) (TXA(2)) causes bronchoconstriction and bronchial hyperresponsiveness. Two types of TXA(2) modifiers, one synthase inhibitor and one receptor antagonist, are widely used for the treatment of asthma in Japan. Although the target of TXA(2) modifiers is to inhibit bioactivity of TXA(2), the pharmacological properties are somewhat different between these drugs. We studied the inhibitory effects of the TXA(2) synthase inhibitor CS-518 and the TXA(2) receptor antagonist S-1452 alone and in combination on antigen-induced bronchoconstriction in passively sensitized guinea pigs treated with diphenhydramine.Both CS-518 and S-1452 inhibited the antigen-induced bronchoconstriction dose-dependently with the plateau. The combination of these drugs at the maximal inhibitory doses did not have any more effect compared with each single dosing. The combination at the submaximal doses tended to show an additive effect, but the effect was not significant.These findings suggest that other prostanoids such as PGE(2), PGI(2), PGD(2) and PGF(2alpha) may not take an important role in the antiasthmatic effects of TXA(2) modifiers.  相似文献   

2.
Effects of a thromboxane A2 receptor antagonist (S-1452) on bronchoconstriction induced by inhaled leukotriene C4 and a leukotriene receptor antagonist (AS-35) on bronchoconstriction caused by inhalation of a thromboxane A2 mimetic (STA2) were studied in anesthetized, artificially ventilated guinea pigs in order to examine the interaction of thromboxane A2 and leukotrienes in airways. 0.01-1.0 mu g/ml of leukotriene C4 and 0.1-1.0 mu g/ml of STA 2 inhaled from ultrasonic nebulizer developed for small animals caused dose-dependent increase of pressure at the airway opening (Pao) which is considered to be an index representing bronchial response. Pretreatment of the animals with inhaled S-1452 (0.01, 0.033 mg/ml) significantly reduced the airway responses produced by 0.01,0.033,0.1,0.33 and 1.0 mu g/ml of leukotriene C4 in a dose dependent manner. While pretreatment with inhaled AS-35 (1mg) did not affect the STA2 dose-response curve. These findings suggest that leukotriene C4 activates thromboxane A2 generation while thromboxane A2 does not influence 5-lipoxygenase pathway in the airways.  相似文献   

3.
Thromboxan A(2) (TXA(2)) is the main product of arachidonic acid metabolism in activated platelets. Platelet-released supernatants (PRS) can induce osteoclast-like cell formation in murine bone marrow cultures via a cyclooxygenase (COX)/receptor activator of NF-kB-ligand (RANKL)-dependent pathway. Here we investigated a possible linkage between platelet-released TXA(2) and osteoclastogenesis. The stable analog of TXA(2), carbocyclic TXA(2) (CTXA(2)) can induce the formation of tartrate-resistant acid phosphatase positive multinucleated cells in murine bone marrow cultures via a RANKL-dependent pathway and requires the presence of stromal cells. Interestingly, the platelet-released instable TXA(2) does not account for osteoclastogenic effects as: (a) PRS-induced osteoclastogenesis in the presence of the TXA(2) receptor antagonist SQ29548; (b) inhibition of platelet TXA(2) synthesis by indomethacin and acetylsalicylic acid failed to decrease the osteoclastogenic potential of the corresponding supernatants; and (c) CTXA(2)-induced osteoclast-like cell formation independent of indomethacin and the selective COX-2 inhibitor NS398.  相似文献   

4.
The effects were studied of three novel thromboxane A2 (TXA2) receptor antagonists (S-1452, AA-2414 and ONO-3708) on the increase in pulmonary pressure caused by Forssman anaphylaxis in guinea-pigs. Three TXA2 antagonists at doses of between 1 and 10 mg/kg administered orally 1 h before the challenge clearly inhibited the pulmonary pressure increase. At a dose of 10 mg/kg, all three antagonists inhibited the pulmonary pressure increase caused by leukotriene D4 (LTD4) and U-46619, but not that caused by histamine. The decrease in peripheral platelet counts caused by Forssman anaphylaxis was also clearly inhibited by the three TXA2 antagonists. However, the decreased peripheral leukocyte counts were unaffected by the three agents. The decrease in serum complement activity (CH50) was inhibited by S-1452 and AA-2414 at a dose of 10 mg/kg. In bronchoalveolar lavage fluid (BALF), significant increases in eosinophils and neutrophils were observed after Forssman anaphylaxis. Three TXA2 antagonists at a dose of 10 mg/kg (except for AA-2414 on eosinophils) did not affect the changes of leukocyte counts in BALF. Moreover, increases in the TXB2 and 6-keto-PGF1 alpha levels of the BALF brought about by Forssman anaphylaxis were unaffected by the three TXA2 receptor antagonists. Histamine and LTD4 were not changed in the BALF after Forssman anaphylaxis. These results indicate the efficacy of TXA2 receptor antagonists on the increase in pulmonary pressure caused by Forssman anaphylaxis in guinea-pigs by direct antagonism to released TXA2.  相似文献   

5.
The stable PGI2-analogue iloprost and the TXA2-receptor antagonist sulotroban (BM 13177) were investigated for possible synergistic effects on platelet aggregation in human platelet rich plasma in vitro. Iloprost and sulotroban synergistically inhibited U 46619, collagen, and the second wave of ADP-induced platelet aggregation. Iloprost and sulotroban at concentrations showing little or no inhibition alone resulted, in combination, in marked or complete inhibition of U 46619 or collagen induced aggregation. Combination of iloprost 10(-10) M, which had no effect on the concentration-response curve (CRC) to U 46619, with sulotroban 5 x 10(-6) M, which shifted the CRC to U 46619 by a factor of 3 to the right, resulted in a rightward shift of the U 46619 CRC by a factor of 4.5. To attain a 4.5-fold shift with either compound alone, a concentration of 5 x 10(-10) M iloprost or 10(-5) M sulotroban was required. A similar mutual enhancement of inhibitory effects was seen for combinations of the PGI2-analogue cicaprost (ZK 96.480) with sulotroban or the TXA2-receptor antagonist SQ 29548 with iloprost. When the TXA2-dependent part of collagen-induced aggregation was fully inhibited by sulotroban, the concentrations of iloprost necessary for 90% inhibition were reduced by a factor of 2.5 - 3. In the presence of acetylsalicylic acid, the synergistic action of sulotroban and iloprost was reduced and merely additive effects against U 46619-induced platelet aggregation were found, suggesting that the release of endogenous TXA2 plays an important role for the synergistic effect of the two compounds. The combination of a PGI2-analogue and a TXA2-antagonist may lead to a safer and more effective control of platelet activation than with either compound alone.  相似文献   

6.
The effects of the PAF receptor antagonists WEB 2086, WEB 2170, BN 50739 and BN 52021 on AA-induced platelet aggregation (PA) and TXA2 formation were investigated in comparison with the TXA2 synthetase inhibitor HOE 944 and the TXA2 receptor antagonist BM 13.177. All PAF antagonists tested were weak inhibitors of AA-induced PA and TXA2 formation (IC50 values between 80 and 2,737 mumol/l). HOE 944 was effective in concentrations 2-3 orders of magnitude lower than PAF antagonists in inhibiting TXA2 generation. These results imply that the inhibition of TXA2 formation is of minor relevance for the actions of the investigated PAF antagonists in AA-induced PA.  相似文献   

7.
OBJECTIVE AND DESIGN: The involvement of PAF, TXA2 and NO in LPS-induced pulmonary neutrophil sequestration an hyperlactataemia was studied in conscious rats. As pharmacological tools WEB 2170 (PAF receptor antagonist, 20 mg/kg), camongarel (inhibitor of TXA2 synthase, 30 mg/kg), N(G)-nitro L-arginine methyl ester (L-NAME -- non-selective nitric oxide synthase inhibitor, 30 mg/kg) were used. METHODS: Plasma lactate and NO2-/NO3- levels as well as myeloperoxidase (MPO) activity in lung tissue were measured one and five hours after administration of LPS (4 mg/kg(-1)). RESULTS: LPS induced a twofold increase in plasma lactate levels and nearly 10-fold increase in plasma NO2-/NO3- levels five but not one hour after LPS administration. However, LPS-induced increase in pulmonary MPO activity was seen at both time intervals. Neither WEB 2170 nor camonagrel changed one or five hours responses to LPS (lactate, NO2-/NO3-, MPO). L-NAME potentiated LPS-induced rise in MPO activity in the lung and this potentiation was not affected by WEB 2170 or camonagrel. L-NAME supressed plasma NO2-/NO3- response and substantially potentiated plasma lactate response to LPS and both effects were partially reversed by WEB 2170 or camonagrel. CONCLUSIONS: In summary, we demonstrated that PAF and TXA 2 play a role in overproduction of lactate during endotoxaemia in NO-deficient rats. However, these lipids do not mediate endotoxin-induced sequestration of neutrophils in the lung.  相似文献   

8.
The stimulation of platelets by low doses of collagen induces extracellular signal-regulated kinase 2 (ERK2) activation. In this report, we demonstrate that collagen-induced ERK2 activation depends on thromboxane A(2) (TXA(2)) formation and ADP release. The collagen-induced ERK2 activation was inhibited by indomethacin (88%) and by AR-C69931MX (70%), a specific antagonist of P2Y12, a Gi-coupled ADP receptor. AR-C69931MX (10 microM) inhibition was overcome by epinephrine (1 microM), an agonist of the Gi-coupled alpha(2A)-adrenergic receptor, suggesting that the Gi-coupled receptor was necessary for ERK2 activation by collagen. By contrast, MRS 2179 (10 microM), a specific antagonist of P2Y1, a Gq-coupled ADP receptor, did not affect collagen-induced ERK2 activation. Little or no ERK2 activation was observed with ADP alone (10 microM). By contrast, U46619 (10 microM), a stable analog of TXA(2), induced ERK2 activation in an ADP-dependent manner, via the P2Y12 receptor. These results suggest that the Gi-dependent signaling pathway, stimulated by ADP or epinephrine, was not the only pathway required for ERK2 activation by collagen. Costimulation of the specific G(12/13)-coupled TXA(2) receptor with a low dose of U46619 (10 nM) and of Gi- and Gq-coupled ADP receptor (10 microM) induced very low levels of ERK2 activation, similar to those observed with ADP alone, suggesting that G(12/13) is not involved or not sufficient to induce the additional pathway necessary for ERK2 activation. The Gq-coupled TXA(2) receptor was required for ERK2 activation by U46619 (10 microM) and low doses of collagen, clearly showing that a coordinated pathway through both Gq from TXA(2) and Gi from ADP was necessary for ERK2 activation. Finally, we demonstrate that ERK2 activation is involved in collagen-induced aggregation and secretion.  相似文献   

9.
H Patscheke 《Blut》1990,60(5):261-268
Urinary and plasma metabolites of thromboxane A2 (TxA2) indicate an increased TxA2 synthesis in a number of diseases, whereby TxA2 is assumed to contribute to the underlying pathomechanisms by its profound effects on platelet aggregation and smooth muscle contraction. In some clinical situations the increment in TxA2 biosynthesis is accompanied by an increased formation of prostacyclin (PGI2) which is one of the most potent inhibitors of platelet activation and smooth muscle contraction. Therefore, drugs are being developed which suppress the formation or action of TxA2 without interfering with its functional antagonist PGI2. Low doses of acetylsalicyclic acid (ASA) preferentially inhibit cyclooxygenase activity in platelets and the synthesis of TxA2 in vivo. However, neither low doses (approximately 300 mg/day) nor very low doses spare the formation of PGI2 completely. Despite its limited selectivity, very low dose ASA (approximately 40 mg/day) provides an attractive perspective in TxA2 pharmacology. Although thromboxane synthase inhibitors selectively suppress TxA2 biosynthesis PGH2 can accumulate instead of TxA2 and substitute for TxA2 at their common TxA2/PGH2 receptors. Thromboxane synthase inhibitors can only exert platelet-inhibiting and vasodilating effects if PGH2 rapidly isomerizes to functional antagonists like PGI2 that can be formed from platelet-derived PGH2 by the vessel wall. TxA2/PGH2 receptor antagonists provide a specific and effective approach for inhibition of TxA2. These inhibitors do not interfere with the synthesis of PGI2 and other prostanoids but prevent TxA2 and PGH2 from activating platelets and inducing smooth muscle contractions. Most of the available TxA2/PGH2 receptor antagonists produce a competitive antagonism that can be overcome by high agonist concentrations. Since in certain disease states very high local TxA2 concentrations are to be antagonized, non-competitive receptor antagonists may be of particular interest. Some recent TxA2/PGH2 receptor antagonists produce such a non-competitive type of inhibition due to their low dissociation rate constant. As a consequence, agonists like TxA2 or PGH2 only reach a hemiequilibrium state at their receptors, previously occupied by those antagonists. A combination of a thromboxane synthase inhibitor with a TxA2/PGH2 receptor antagonist presents a very high inhibitory potential that utilizes the dual activities of the synthase inhibitor to increase PGI2 formation and of the receptor antagonist to antagonize PGH2 and TxA2. Such combinations or dual inhibitors, combining both moieties in one compound, prolong the skin bleeding time to a greater extent than thromboxane synthase inhibitors and even more than low dose ASA or TxA2/PGH2 receptor antagonists.  相似文献   

10.
BACKGROUND: Although prostaglandin D2 (PGD2), a mast cell-derived inflammatory mediator, may trigger allergic airway inflammation, its potency and the mechanism by which it induces airway microvascular leakage, a component of airway inflammation, is not clear. OBJECTIVE: We wanted to evaluate the relative potency of PGD2 to cause microvascular leakage as compared to airflow obstruction, because both responses were shown to occur simultaneously in allergic airway diseases such as asthma. The role of thromboxane A2 receptors (TP receptors) in inducing these airway responses was also examined. METHODS: Anesthetized and mechanically ventilated guinea pigs were given i.v. Evans blue dye (EB dye) and, 1 min later, PGD2 (30, 100, 300 or 1,000 nmol/kg). For comparison, the effect of 150 nmol/kg histamine or 2 nmol/kg leukotriene D4 (LTD4) was also examined. Lung resistance (R(L)) was measured for 6 min (or 25 min for selected animals) and the lungs were removed to calculate the amount of extravasated EB dye into the airways as a marker of leakage. In some of the animals, specific TP receptor antagonists, S-1452 (10 microg/kg) or ONO-3708 (10 mg/kg), or a thromboxane A2 synthase inhibitor, OKY-046 (30 mg/kg), was pretreated before giving PGD2. RESULTS: Injection of PGD2 produced an immediate and dose-dependent increase in RL (peaking within 1 min), which was significant at all doses studied. At 1,000 nmol/kg, PGD2 induced a later increase in R(L), starting at 3 min and reaching a second peak at 8 min. By contrast, only PGD2 at doses of 300 and 1,000 nmol/kg produced a significant increase in EB dye extravasation. The relative potency of 1,000 nmol/kg PGD2 to induce leakage as compared to airflow obstruction was comparable to histamine at most of airway levels, but less than LTD4. Both responses caused by PGD2 were completely abolished by S-1452 and ONO-3708, but not by OKY-046. CONCLUSION: PGD2 may induce airway microvascular leakage by directly stimulating TP receptors without generating TXA2 in guinea pigs. Microvascular leakage may play a role in the development of allergic airway inflammation caused by PGD2.  相似文献   

11.
All-trans-retinol induced aggregation of rabbit platelets, and this effect could be inhibited by a cyclooxygenase inhibitor and a thromboxane A2 (TXA2) receptor antagonist, indicating an essential role for endogenously produced TXA2. We found a two-phase arachidonic acid release in retinol-stimulated platelets. The first phase was induced by the action of retinol alone and not inhibited by TXA2 receptor antagonist. The second phase was induced via synergistic action of retinol and initially generated small amount of TXA2, and was inhibited by the antagonist. Moreover, we discussed that the arachidonic acid release may be mediated by the action of phospholipase A2.  相似文献   

12.
13.
Antagonism of the TXA2 receptor by seratrodast: a structural approach.   总被引:1,自引:0,他引:1  
The crystal structure of seratrodast (AA-2414), a potent thromboxane A2 (TXA2) receptor antagonist, served as starting point to docking studies with the modeled human TXA2 receptor. This structural approach provides rational basis for the design of new antagonists within the aryl sulfonamide family.  相似文献   

14.
15.
Feeding rats with a high fructose diet results in insulin resistance and hypertension. Fructose-hypertensive rats (FHR) have increased vascular levels of endothelin-1 (ET-1) and thromboxane (TXA2). We have previously shown that chronic treatment with either the dual endothelin receptor blocker, bosentan, or the thromboxane synthase inhibitor, dazmegrel, prevented fructose-induced increases in blood pressure, suggesting that both ET-1 and TXA2 play important roles in the development of hyperinsulinemia/insulin resistance-associated hypertension. In this study, we investigated the potential interrelationship between ET-1 and TXA2 in the development of fructose-induced hypertension in vivo. Male Wistar rats were fed on a high fructose diet for 9 weeks. Either bosentan or dazmegrel treatment (daily by oral gavage) was initiated 3 weeks after the start of fructose feeding for a total duration of 6 weeks. At the end of drug treatment, blood and aorta were collected from each animal. Plasma thromboxane B2 (TXB2), a stable TXA2 metabolite, increased significantly in FHR and was reduced to control level by both chronic bosentan and dazmegrel treatment. Protein expression of cyclooxygenase 2 (COX2) was elevated significantly in FHR aortas and treatment with bosentan and dazmegrel corrected these changes. These results indicate that the actions of ET-1 in the aorta of FHR may be mediated through COX2-derived TXA2. Bosentan may prevent the development of hypertension in fructose-fed rats through inhibition of COX2 induction and subsequently the reduction in plasma TXA2.  相似文献   

16.
Antiplatelet actions of aqueous extract of onion were investigated in rat and human platelet. IC(50)values of onion extract for collagen-, thrombin-, arachidonic acid (AA)-induced aggregations and collagen-induced thromboxane A(2)(TXA(2)) formation were 0.17 +/- 0. 01, 0.23 + 0.03, 0.34 +/- 0.02 and 0.12 +/- 0.01 g/ml, respectively. [(3)H]-AA release induced by collagen (10 microg/ml) in rat platelet was decreased by onion compared to control (22.1 +/- 2.13 and 5.2 +/- 0.82% of total [(3)H]-AA incorporated, respectively). In fura-2 loaded platelets, the elevation of intracellular Ca(2+)concentration stimulated by collagen was inhibited by onion. Onion had no cytotoxic effect in platelet. Onion significantly inhibited TXA(2)synthase activity without influence on COX activity. Platelet aggregation induced by U46619, a stable TXA(2)mimetic, was inhibited by onion, indicating its antagonism for TXA(2)/PGH(2)receptor. These results suggest that the mechanism for antiplatelet effect of onion may, at least partly, involve AA release diminution, TXA(2)synthase inhibition and TXA(2)/PGH(2)receptor blockade.  相似文献   

17.
We studied the effects on pulmonary hemodynamics of U-46619, a thromboxane A2 (TXA2) agonist, before and after administration of a novel TXA2 receptor antagonist and synthase inhibitor (BM-573). Six anesthetized pigs (Ago group) received 6 consecutive injections of U-46619 at 30-min interval and were compared with six anesthetized pigs (Anta group) which received an increasing dosage regimen of BM-573 10 min before each U-46619 injection. Consecutive changes in pulmonary hemodynamics, including characteristic resistance, vascular compliance, and peripheral vascular resistance, were continuously assessed during the experimental protocol using a four-element Windkessel model. At 2 mg/kg, BM-573 completely blocked pulmonary hypertensive effects of U-46619 but pulmonary vascular compliance still decreased. This residual effect can probably be explained by a persistent increase in the tonus of the pulmonary vascular wall smooth muscles sufficient to decrease vascular compliance but not vessel lumen diameter. Such molecule could be a promising therapeutic approach in TXA2 mediated pulmonary hypertension as it is the case in pulmonary embolism, hyperacute lung rejection and endotoxinic shock.  相似文献   

18.
Some 3-amino 4,6-diarylpyridazine derivatives were tested for their effects on TXA2 and PGI2 biosyntheses in vitro and on the TXA2- and PGI2-synthesizing activities of cardiac tissue. Horse platelet and aorta microsomes were used as sources of thromboxane and prostacyclin synthetases respectively. The TXA2- and PGI2-synthesizing activities of cardiac tissue were studied on isolated perfused rabbit hearts (the heart microsomes being used both as TXA2 synthetase and PGI2 synthetase sources). TXB2 and 6-keto PGF1 alpha were determined by RIA. Among the compounds under study, 3-morpholino 4,6-diphenylpyridazine (III) was shown to inhibit specifically the TXA2 synthetase. Substitution of the morpholino group by a dimethylamino one (I) reinforced the inhibiting effects on TXA2 synthetase but it also revealed a slight anti-prostacyclin synthetase action of the molecule. Replacement of 3-morpholino moieties by either a 3-hydrazino (IV), or a 2-dimethylaminoethylamino (V), or a 2-morpholinoethylamino group (VI) abolished completely the effects of the molecule on TXA2 and PGI2 synthetases. Likewise the addition of chlorine on the para-position on the phenyl ring of I neutralized all its inhibitory effects both on TXA2 and PGI2 synthetases in vitro. None of the 3-amino 4,6-diarylpyridazine derivatives was active on either the TXA2- or PGI2-synthesizing activities of cardiac tissue.  相似文献   

19.
Hyperglycemia increases glucose metabolism via the polyol pathway, which results in elevations of intracellular sorbitol concentration. Thus we hypothesized that elevated level of sorbitol contributes to the development of hyperglycemia-induced dysfunction of microvessels. In isolated, pressurized (80 mmHg) rat gracilis muscle arterioles (approximately 150 microm), high glucose treatment (25 mM) induced reduction in flow-dependent dilation (from maximum of 39 +/- 2% to 15 +/- 1%), which was significantly mitigated by an aldose reductase inhibitor, zopolrestat (maximum 27 +/- 2%). Increasing doses of sorbitol (10(-10)-10(-4) M) elicited dose-dependent constrictions (maximum 22 +/- 3%), which were abolished by endothelium removal, a prostaglandin H(2)/thromboxane A(2) (PGH(2)/TXA(2)) receptor (TP) antagonist SQ-29548, or superoxide dismutase (SOD) plus catalase (CAT). Incubation of arterioles with sorbitol (10(-7) M) reduced flow-dependent dilations (from maximum of 39 +/- 2% to 20 +/- 1.5%), which was not further affected by inhibition of nitric oxide synthase by N(omega)-nitro-l-arginine methyl ester but was prevented by SOD plus CAT and mitigated by SQ-29548. Nitric oxide donor sodium nitroprusside-induced (10(-9)-10(-6) M) dilations were also decreased in a SQ-29548 and SOD plus CAT-reversible manner, whereas adenosine dilations were not affected by sorbitol exposure. Sorbitol significantly increased arterial superoxide production detected by lucigenin-enhanced chemiluminescence, which was inhibited by SOD plus CAT. Sorbitol treatment also increased arterial formation of 3-nitrotyrosine. We suggest that hyperglycemia by elevating intracellular sorbitol induces oxidative stress, which interferes with nitric oxide bioavailability and promotes PGH(2)/TXA(2) release, both of which affect regulation of vasomotor responses of arterioles. Thus increased activity of the polyol pathway may contribute to the development of microvascular dysfunction in diabetes mellitus.  相似文献   

20.
The aim of our study was to evaluate the effects of thromboxane A2 (TXA2) agonist, U-46619, on systemic circulatory parameters in the pigs before and after administration of a novel TXA2 receptor antagonist and synthase inhibitor (BM-573). Twelve anesthetized pigs were randomly assigned in two groups: in Ago group (n=6), the animals received six consecutive injections of U-46619 at 30 min interval, while in Anta group (n=6) they received an increasing dosage regimen of BM-573 10 min before each U-46619 injection. The effects of each dose of BM-573 on ex vivo platelet aggregation induced by arachidonic acid, collagen or ADP were also evaluated. Vascular properties such as characteristic impedance, peripheral resistance, compliance, arterial elastance were estimated using a windkessel model. Intravenous injections of 0.500 mg/ml of BM-573 and higher doses resulted in a complete inhibition of platelet aggregation induced by arachidonic acid. In the same conditions, BM-573 completely blocked the increase of arterial elastance, and stabilized both mean aortic blood pressure and mean systemic blood flow. In conclusion, BM-573 could therefore be a promising therapeutic approach in pathophysiological states where TXA2 plays a main role in the increase of vascular resistance like in pathologies such as systemic hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号