首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several detergents were investigated for their ability to increase activity of 2':3'-cyclic nucleotide 3'-phosphodiesterase in isolated myelin. The ability of Triton X-100 and Sulfobetaine DLH to solubilize the enzyme was also examined. Solubilization with Triton X-100 was only effective in the presence of salt, for example with NaCl 51% of the activity was solubilized. A single extraction with Sulfobetaine DLH yielded slightly more solubilized enzyme and did not require added salt. Both activation and solubilization of 2':3'-cyclic nucleotide 3'-phosphodiesterase appeared to be similarly dependent on detergent concentration, suggesting a common action of the detergent in the two processes. Myelin basic protein was solubilized more readily than the enzyme. In contrast with the enzyme in myelin, 2':3'-cyclic nucleotide 3'-phosphodiesterase activity in C6 cells was not increased in the presence of Triton X-100, and was partially solubilized by either Triton X-100 or NaCl alone. No myelin basic protein could be detected in C6 cells by radioimmunoassay.  相似文献   

2.
Myclin from rat brain contained adenosine 3′, 5′-monophosphate (cyclic AMP)-dependent protein kinase activity, which was solubilized by 0.2% Triton X-100 and required exogenous protein substrate for its activity. Also present was a protein kinase which catalysed the phosphorylation of the endogenous substrate and which was neither solubilized by Triton X-100 nor stimulated by cyclic AMP. Sodium fluoride was required to maintain the activity of the endogenous phosphorylation, probably by inhibiting ATPase activity, but had no effect on the phosphorylation of histone by the solubilized enzyme. Protamine and myelin basic protein served as well as histone as a substrate for the solubilized enzyme. A protein kinase modulator had no effect on the endogenous phosphorylation, but inhibited histone phosphorylation by the solubilized enzyme. Cyclic AMP-binding activity was observed in both the solubilized and non-solubilized preparations. The concentration of cyclic AMP required to give half-maximal binding activity of the preparations was about 2.5 nM. The results indicate that the cyclic AMP-binding site of the protein kinase in myelin may partially be accessible, whereas the catalytic site may be integrated into the membrane structure of myelin.  相似文献   

3.
1. Xanthine oxidase (EC 1.2.3.2) was found to represent more than 8% of the intrinsic protein of the bovine milk-fat-globule membranes. 2. Less than 25% of the xanthine oxidase activity of the fat-globule membrane was solubilized with 0.1 M-sodium pyrophosphate buffer or 2M-NaCl. Of the particulate activity remaining 56% was solubilized with Triton X-100. 3. The xanthine oxidase activity solubilized with buffer, 2M-NaCl or Triton X-100 was not liberated as the free enzyme. Only tryptic digestion was found to release the free enzyme from the fat-globule membrane. Tryptic digestion also liberated free xanthine oxidase from those fractions solubilized by buffer or NaCl, but not from those fractions solubilized with Triton X-100 or by sonication. 4. The effect of membrane association on the catalytic properties of the enzyme could be mimicked by low pH or by the presence in the assay mixture of certain concentrations of 2-methyl-propan-2-ol, but not 1,4-dioxan, suggesting that hydrogen-bonding rather than low dielectric constant may be involved. 5. The origin of the milk-fat-globule membrane is discussed with reference to the intrinsic nature of the associated xanthine oxidase activity.  相似文献   

4.
Succinate dehydrogenase (SDH) was solubilized from membranes of Mycobacterium phlei by Triton X-100 with a recovery of about 90%. The solubilized SDH was purified about 90-fold by Sephacryl S-300, DEAE-cellulose, hydroxylapatite, and isoelectric focusing in the presence of Triton X-100 with a 20% recovery. SDH was homogeneous, as determined by polyacrylamide gel electrophoresis in nondenaturing gels containing Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme revealed two subunits with molecular weights of 62,000 and 26,000. SDH is a flavoprotein containing 1 mol of flavin adenine dinucleotide, 7 to 8 mol of nonheme iron, and 7 to 8 mol of acid-labile sulfide per mol of protein. Using phenazine methosulfate and 2,6-dichloroindophenol as electron acceptors, the enzyme had an apparent Km of 0.12 mM succinate. SDH exhibited a sigmoidal relationship of rate to succinate concentration, indicating cooperativity. The enzyme was competitively inhibited by fumarate with a Ki of 0.15 mM. In the absence of Triton X-100, the enzyme aggregated, retained 50% of the activity, and could be resolubilized with Triton X-100 with full restoration of activity. Cardiolipin had no effect on the enzyme activity in the absence of Triton X-100, but it stimulated the activity by about 30% in the presence of 0.1% Triton X-100 in the assay mixture. Menaquinone-9(2H), isolated from M. phlei, had no effect on the enzyme activity either in the presence or absence of Triton X-100.  相似文献   

5.
Mechanism of autolysis of Neisseria gonorrhoeae.   总被引:7,自引:0,他引:7       下载免费PDF全文
The major autolysin(s) of Neisseria gonorrhoeae was solubilized from envelopes by extraction with 2% Triton X-100 containing 0.5 M NaCl. Neither Triton X-100 nor NaCl alone could effectively release the autolysin(s). The major autolysin is N-acetylmuramyl-L-alanine amidase (EC 3.5.1.28). The pH optimum for this reaction was broad, ranging from 5.5 to 8.5. Optimal hydrolysis of peptidoglycan occurred in 2% Triton X-100 in 0.1 M KCl. Attempts to purify the autolysin were unsuccessful. A rapid assay for enzyme activity was developed using radioactive cell walls as a substrate ([3H]diaminopimelic acid).  相似文献   

6.
Activation and membrane binding of carboxypeptidase E   总被引:3,自引:0,他引:3  
Carboxypeptidase E (CPE) is a carboxypeptidase B-like enzyme that is thought to be involved in the processing of peptide hormones and neurotransmitters. Soluble and membrane-associated forms of CPE have been observed in purified secretory granules from various hormone-producing tissues. In this report, the influence of membrane association on CPE activity has been examined. A substantial amount of the membrane-associated CPE activity is solubilized upon extraction of bovine pituitary membranes with either 100 mM sodium acetate buffer (pH 5.6) containing 0.5% Triton X-100 and 1 M NaCl, or by extraction with high pH buffers (pH greater than 8). These treatments also lead to a two- to threefold increase in CPE activity. CPE extracted from membranes with either NaCl/Triton X-100 or high pH buffers hydrolyzes the dansyl-Phe-Ala-Arg substrate with a lower Km than the membrane-associated CPE. The Vmax of CPE present in extracts and membrane fractions after the NaCl/Triton X-100 treatment is twofold higher than in untreated membranes. Treatment of membranes with high pH buffers does not affect the Vmax of CPE in the soluble and particulate fractions. Pretreatment of membranes with bromoacetyl-D-arginine, an active site-directed irreversible inhibitor of CPE, blocks the activation by NaCl/Triton X-100 treatment. Thus the increase in CPE activity upon extraction from membranes is probably not because of the conversion of an inactive form to an active one, but is the result of changes in the conformation of the enzyme that effect the catalytic activity.  相似文献   

7.
Microsomal membranes were solubilized by incubation with lysolecithin which caused considerable release of galactosyl- and N-acetylglucosaminyl-transferase into a high-speed supernatant fraction. With a critical concentration of lysolecithin (2.5 mg/10 mg protein in 1 mL microsome suspension), there was a maximal binding of radioactive lysolecithin to the sediment fraction obtained after high-speed centrifugation. Increase of lysolecithin concentration (above 2.5 mg/mL) in the incubation mixture caused a progressive release of the enzymes into the supernatant fraction. Lysolecithin binding to the membrane was greatly inhibited by 1 M NaCl, and high salt concentration also inactivated galactosyltransferase in the sediment, suggesting an electrostatic interaction between lysolecithin and membrane enzyme. In contrast, high NaCl concentration had no inhibitory effect on the enzyme activity in the sediment when the fraction was prepared by treatment with Triton X-100. Lysolecithin-treated microsomal sediment and supernatant galactosyltransferase was inactivated by oleoyllysophosphatidic acid but not by palmitoyllysophosphatidic acid or egg yold lysophosphatidic acid. Triton X-100 treated microsomal fractions were also similarly affected by different species of lysophosphatidic acid. The results suggested a similarity of interactions of lysophosphatidic fatty acyl species with lysolecithin and Triton-treated galactosyltransferase.  相似文献   

8.
Cholinesterases are activated at low substrate concentration, and this is followed by inhibition as the level of substrate increases. However, one of these two components is sometimes lacking. In Drosophila acetylcholinesterase, the two phases are present, allowing both phenomena to be studied. Several kinetic schemes can explain this complex kinetic behavior. Among them, one model assumes that activation results from the binding of a substrate molecule to a non-productive site affecting the entrance of a substrate molecule into the active site. To test this hypothesis, we looked for an inhibitor competitive for activation and we found Triton X-100. Using organophosphates or carbamates as hemisubstrates, we showed that Triton X-100 inhibits or increases phosphorylation or carbamoylation of the enzyme. In vitro mutagenesis of the residues lining the active site gorge allowed us to locate the Triton X-100 binding site at the rim of the gorge with glutamate 107 playing the major role. These results led to the hypothesis that substrate binding at this site affects the entrance of another substrate molecule into the active site cleft.  相似文献   

9.
Extraction of membranes of Lactobacillus plantarum with Triton X-100/glycerol solubilized up to 80% of the undecaprenol kinase activity. Fractionation of the extract by gel chromatography separated endogenous phospholipid from the enzyme but simultaneously inactivated the enzyme. The kinase was reactivated by reconstitution with various synthetic phosphatidylcholines and purified L. plantarum phospholipids. Ditetradecanoylphosphatidylcholine and lysylphosphatidylglycerol were the best activators. Furthermore, the optimal environment for enzyme stimulation was provided by different defined molar ratios of Triton X-100/phospholipid. The ratios for the phospholipids tested ranged from 1.25 to 6.3. Similar substrate specificity and kinetic constants were observed for both the solubilized and reconstituted enzymes suggesting that no fundamental changes in the enzyme activity occurred during the delipidation-reconstitution process.  相似文献   

10.
Triton X-100 is increasingly effective in solubilizing human liver glycoprotein (asialofetuin) sialytransferase (CMP-N-acetylneuraminate:D-galactosyl-glycoprotien N-acetylneuraminyltransferase, EC 2.4.99.1) activity as its concentration is increased in the homogenizing buffer. At the optimal concentration of 1.5% (v/v), essentially all of the homogenate sialyltransferase activity was solubilized into the supernatant fluid. Higher concentrations of Triton X-100 inhibited sialyltransferase activity. Several kinetic properties of the solubilized asialofetuin-sialyltransferase activity were compared to those of the membrane-bound enzyme(s) (in homogenates made without Triton X-100 or in resuspended pellets). No major difference was apparent, suggesting that solubilization has not significantly altered the properties of sialyltransferase. The solubilized sialyltransferase activity is quite unstable, losing approximately 50% of its activity after one week of storage at 4 degrees C. Various detergents (Zwittergent, sodium taurocholate and sodium deoxycholate) are differentially effective in stabilizing the solubilized activity. Sodium taurocholate (1.5%, w/v) was most effective with no loss in activity after 40 days and minimal loss (14%) after 60 days storage at 4 degrees C. The solubilized sialyltransferase preparation retains full activity after storage in the frozen state (-20 degrees C) for at least 159 days.  相似文献   

11.
The solubilization of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from the membrane fraction was studied in whole leaf extracts and chloroplasts from pea. The amount of membrane-bound Rubisco was dependent on the pH of the chloroplastic lysate buffer. Maximum binding was found at pH 8.0, with about 8% of total leaf Rubisco being bound. The binding of Rubisco to the membranes was strong, and it was not released by repeated washing with hypotonic buffer or by changing ionic strength. Detergents such as Triton X-100, Tween 20, deoxycholate and dodecylsulfate were effective in solubilizing the membrane-bound Rubisco. Triton X-100 was most effective in the range of 0.04% to 0.2% and it solubilized Rubisco from the membrane without any decrease in enzyme activity.Abbreviations BSA bovine serum albumin - CABP carboxyarabinitol-1,5-bisphosphate - DTT dithiothreitol - LDS lithium dodecylsulfate - LHC light-harvesting chlorophyll protein complex - RuBP ribulose-1,5-bisphosphate - Rubisco RuBP carboxylase/oxygenase - SDS sodium dodecylsulfate - SDS-PAGE SDS-polyacrylamide gel electrophoresis  相似文献   

12.
Homogenate preparations of human liver have been prepared and over 75% of the particulate neuraminidase activity (which comprises approx. 90% of the total activity) has been solubilized using 0.85% (w/v) Triton X-100 in 25 mM phosphate buffer (pH 6.8). The solubilized neuraminidase activity is extremely labile, but can be stabilized for at least 4 weeks at 2–4°C, using 10 mM N-acetylneuraminic acid. Kinetic characterization of homogenate and solubilized supernatant fluid neuraminidase activities indicated comparable pH optimum curves (maximum activity at pH 4.5–4.7) and apparent Km values (0.2–0.4 mM) for the synthetic fluorometric substrate 4-methylbelliferyl-α-D-N-acetylneuraminic acid. Isoelectric focusing has been performed on human liver homogenates and Triton X-100-solubilized neuraminidase activities, and the presence of several forms (4–6) with isoelectric points (pI values) between 4.4 and 5.2 has been demonstrated in both preparations. The similar kinetic and isoelectric focusing properties of the two preparations suggest that the solubilized enzyme activity is representative of the homogenate activity and that the solubilized enzyme is suitable for purification purposes.  相似文献   

13.
The solubilization of plasma membrane fractions FI and FII associated protein kinases has been attempted using monovalent salts of high ionic strength and various detergent treatments. Extraction of FI and FII plasma membranes with high ionic strength salt solutions did not release more than 20% of the protein kinase activity. Similarly, monovalent salts released little adenosine 3':5'-monophosphate (cyclic AMP) binding activity, but after extraction binding capacity of cyclic [3H]AMP to plasma membranes was increased about 150-200%. Triton X-100 was a better solubilizing agent that Lubrol WX or deoxycholate. In addition to solubilization, 0.1% Triton X-100 also stimulated the protein kinase activity 150-200%. The properties of Triton X-100 solubilized FI and FII and purified cytosol KII were characterized with respect to protein substrate specificity, effect of cyclic AMP, cyclic nucleotide specificity, effects of divalent metal ion and gonadotropins. Upon sucrose density gradient centrifugation, FI solubilized protein kinase and cyclic AMP binding activities co-sedimented with a sedimentation coefficient of 6.3 S. The FII solubilized protein kinase sedimented as two components with sedimentation coefficients of 7.7 S and 5.5 S. The cyclic AMP binding activity also sedimented as two components with sedimentation coefficient 6.7 S and 5.5 S. Cyclic AMP caused dissociation of solubilized protein kinase from FI into a single catalytic (4.8 S) and two cyclic AMP binding subunits (8.1 S and 6.7 S). FII solubilized enzyme was dissociated into one catalytic (4.8 S) and one cyclic AMP binding subunit (6.3 S). Fractionation of FI and FII solubilized enzymes on DEAE-cellulose column chromatography resolved them each into two peaks Ia, Ib and IIa, IIb, respectively. Peaks Ib and IIb were more sensitive to cyclic AMP STIMULATION THAN Ia and IIa peaks. From these studies it is concluded that the plasma-membrane associated and cytosol protein kinases have similar catalytic properties but differ in some of their physical properties.  相似文献   

14.
Transverse tubule (TT) membrane vesicles contain a very active Mg-ATPase (EC 3.6.1.3). Concanavalin A (ConA) and other lectins were found to activate the TT Mg-ATPase from chicken skeletal muscle up to 25-fold yielding specific activities greater than 800 mumol/h/mg. The sarcoplasmic reticulum Ca-ATPase and the sarcolemma Na,K-ATPase were unaffected by ConA. 125I-Labeled lectin binding to the TT membrane Mr 102,000 glycoprotein supports the contention that this protein is identical with or is intimately associated with the TT Mg-ATPase. The ATPase exhibited non-Michaelis-Menton kinetics with both apparent negative cooperativity (n = 0.723; S0.5, Mg-ATP = 14 microM) and substrate inhibition (Ki, Mg-ATP = 10.2 mM), both of which were eliminated in the presence of ConA. Under the same conditions, ConA also abolished the unusual temperature dependence and potent Triton X-100 inhibition. The similarities in ConA suppression of both Triton and substrate inhibition suggest that these ligands may be interacting through a non-catalytic site and that Triton is serving as a nucleotide-mimetic agent. The unique kinetic responses are consistent with a homotropic substrate modifier mechanism wherein the enzyme can be viewed as possessing a single catalytic and a single regulatory site on a single polypeptide chain. It is proposed that ConA interferes either with ligand interaction at a putative regulatory site or blocks communication between a regulatory site and the catalytic site. The possible nature of the regulatory site and its modulation by a ConA-like, endogenous, skeletal muscle lectin and their combined role in excitation-contraction coupling is discussed.  相似文献   

15.
Fat cells particulate phosphodiesterase activity can be solubilized in high yield (80--100%) in a buffer system (30 mM Tris - HCl, pH 8.0) containing non-ionic detergents (0.1% Brij 30, 1.0% Triton X-100), salt (3.0 mM MgSO4, 5.0 mM NaBr) and dithiothreitol (5.0 mM). Polyacrylamide gel electrophoresis of the solubilized enzyme activity indicated the presence of two bands of activities of different electrophoretic mobilities, both of which hydrolyzed cyclic AMP and cyclic GMP. The solubilized activity eluted from DEAE Bio-Gel columns as a somewhat broad profile with at least two peaks of activity. Activity against both cyclic AMP and cyclic GMP eluted in similar but not identical patterns. The solubilized enzyme and DEAE column eluates wxhibited low (less than 1 micronM) Michaelis constants for cyclic AMP and cyclic GMP. In addition, the increases in phosphodiesterase activity induced by incubation of intact fat cells with insulin or adrenocorticotropic hormone are maintained in the solubilized state.  相似文献   

16.
The effect of 26 different membrane-perturbing agents on the activity and phase distribution of inositol phosphorylceramide synthase (IPC synthase) activity in crude Candida albicans membranes was investigated. The nonionic detergents Triton X-100, Nonidet P-40, Brij, Tween, and octylglucoside all inactivated the enzyme. However, at moderate concentrations, the activity of the Triton X-100- and octylglucoside-solubilized material could be partially restored by inclusion of 5 mM phosphatidylinositol (PI) in the solubilization buffer. The apparent molecular mass of IPC synthase activity solubilized in 2% Triton X-100 was between 1.5 x 10(6) and 20 x 10(6) Da, while under identical conditions, octylglucoside-solubilized activity remained associated with large presumably membrane-like structures. Increased detergent concentrations produced more drastic losses of enzymatic activity. The zwitterionic detergents Empigen BB, N-dodecyl-N,N-(dimethylammonio)butyrate (DDMAB), Zwittergent 3-10, and amidosulfobetaine (ASB)-16 all appeared capable of solubilizing IPC synthase. However, these agents also inactivated the enzyme essentially irreversibly. Solubilization with lysophospholipids again resulted in drastic losses of enzymatic activity that were not restored by the inclusion of PI. Lysophosphatidylinositol also appeared to compete, to some extent, with the donor substrate phosphatidylinositol. The sterol-containing agent digitonin completely inactivated IPC synthase. By contrast, sterol-based detergents such as 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO), and taurodeoxycholate (tDOC) had little or no effect on the enzyme activity. The IPC synthase activity in C. albicans membranes remained largely intact and sedimentable at CHAPS concentrations (4%) where >90% of the phospholipids and 60% of the total proteins were extracted from the membranes. At 2.5% CHAPS, a concentration where approximately 50% of the protein and 80% of the phospholipids are solubilized, there was no detectable loss of enzyme activity, and it was found that the detergent-treated membranes had significantly improved properties compared to crude, untreated membranes as the source of IPC synthase activity. In contrast to assays utilizing intact membranes or Triton X-100 extracts, assays using CHAPS- or tDOC-washed membranes were found to be reproducible, completely dependent on added acceptor substrate (C(6)-7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-ceramide), and >95% dependent on added donor substrate (PI). Product formation was linear with respect to both enzyme concentration and time, and transfer efficiency was improved more than 20-fold as compared to assays using crude membranes. Determination of kinetic parameters for the two IPC synthase substrates using CHAPS-washed membranes resulted in K(m) values of 3.3 and 138.0 microM for C(6)-NBD-ceramide and PI, respectively. In addition, the donor substrate, PI, was found to be inhibitory at high concentrations with an apparent K(i) of 588.2 microM.  相似文献   

17.
A sphingomyelinase, which specifically hydrolyzes sphingomyelin into ceramide and phosphocholine, was solubilized from nuclear matrix fraction of rat ascites hepatoma, AH7974 cells. The solubilized enzyme was subjected to Mono Q column chromatography in an FPLC system. The sphingomyelinase which was adsorbed on the column and eluted at 0.25-0.5 M NaCl was characterized. The enzyme required 10 mM MgCl2, 0.01% Triton X-100, 1 mM dithiothreitol, and a higher concentration of buffer than 1 M for its maximal activity, and the optimal pH was 6.7-7.2 in 2 M Tris/acetic acid or 7.5 in 2 M potassium acetate/acetic acid. N-Ethylmaleimide completely inhibited the enzyme activity at 0.2 mM. Therefore, this enzyme is classified as a Mg2+-dependent, neutral sphingomyelinase. The sphingomyelinase sedimented at 4.3S through a 10-30% glycerol gradient containing 2 M potassium acetate. This enzyme was highly specific to sphingomyelin and did not hydrolyze phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol. Various characteristics of the nuclear sphingomyelinase were similar to those of the plasma membrane enzyme except its requirement for a high concentration of buffer and SH-reagent.  相似文献   

18.
The binding of triton X-100 to bovine serum albumin has been shown to exhibit positive cooperativity. Subsequent equilibrium dialysis studies indicate that the binding of Triton X-100 to sheep serum albumin likewise shows positive cooperativity, the first two stepwise equilibrium constants being K1 = 1.24 X 10(4) M-1 and K2 = 1.62 X 10(4) M-1. However, the mechanism for Triton X-100 binding to human serum albumin differs in that the binding isotherm indicates the binding sites are independent and identical. In the latter case the binding is described by the Scatchard model with an equilibrium constant of K = 7.2 X 10(3) M-1. The studies were conducted at 16 degrees C in pH 7.0, I = 0.05 phosphate buffer.  相似文献   

19.
The previously observed differences in properties of human leucocyte and fibroblast cerebroside sulphate sulphatase (cerebroside-3-sulphate 3-sulphohydrolase, EC 3.1.6.8) measured in vitro have been found to be due to subtle differences in incubation conditions. Maximum enzyme activity was observed with either crude sodium taurocholate or with pure sodium taurodeoxycholate. The optimum bile salt concentration of the enzyme in leucocyte or fibroblast extracts, but not the pure ox liver enzyme, was critically dependent on protein concentration. At low concentrations of the latter (less than 0.1 mg/ml), maximum activity was observed at taurocholate concentrations less than 0.5 mg/ml; at protein concentrations greater than 0.20 mg/ml substantially more bile acid (more than 1.3 mg/ml) was required to stimulate maximum activity. Addition of Triton X-100 or bovine serum albumin to the incubation mixtures increased the optimum taurocholate concentration. The dependence of the bile salt optimum on protein concentration appears to be related to the binding of the lipid substrate to membranous protein present in the tissue extracts. Release of the bound lipid is effected either by increasing the bile salt concentration or by adding Triton X-100. In the presence of excess bile salt human leucocyte, fibroblast and liver cerebroside sulphate sulphatase activity is stimulated by Triton at low protein concentrations; under identical conditions the pure or crude ox-liver enzyme is substatially inhibited. Our data also show that cerebroside sulphate sulphatase activity measured in extracts from leucocytes and fibroblasts, the tissues normally used to effect a diagnosis of metachromatic leucodystrophy, is the result of a complex interaction of bile salt, protein, Triton X-100 and probably the substrate itself. Any slight alteration in any of those factors, without a corresponding change in any or all of the others, can have a marked effect on the measured enzyme activity, and may lead to errors in the diagnosis of metachromatic leucodystrophy.  相似文献   

20.
To obtain information about the mode of attachment of amphiphilic monomers of acetylcholinesterase (AChE) in sarcoplasmic reticulum (SR) of skeletal muscle, attempts were made to release the enzyme by alkaline hydroxylamine. About half of the activity measured in microsomes preincubated with 0.5% (w/v) Triton X-100 is detached by incubation of SR with bicarbonate buffer (pH 10.5). Addition of 1 M hydroxylamine to the alkaline buffer did not improve enzyme solubilization. Molecular forms of 16S (A12), 10.5S (G4) and 4.0S (G1) are separated by sedimentation analyses of Triton X-100 or bicarbonate-solubilized AChE. Monomeric AChE, released under alkaline conditions (G1A), displays amphiphilic properties. G1A, but not G4 and A12, forms are retained in a phenyl-Sepharose column and this allows its separation from hydrophilic forms. Isolated monomers extracted with Triton X-100 (G1D) or alkaline buffer showed identical kinetic behaviour. The two forms reacted with lectins in a similar manner. However, thermal inactivation experiments revealed that about 90 and 40% of the activity in the G1D and G1A forms were lost by heating at 50 degrees C, following the same rate constant (k = 0.130 min-1). Addition of Triton X-100 to the G1A form leads to an increase of its thermal sensitivity, the enzyme being fully inactivated very rapidly (k = 0.230 min-1). The results suggest that the hydrophobic moiety of the enzyme might be exposed or hidden depending on the environmental hydrophobicity. Changes in the composition of the solvent will determine the final conformational state of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号