首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prions, the causative agents of Creutzfeldt-Jacob Disease (CJD) in humans and bovine spongiform encephalopathy (BSE) and scrapie in animals, are principally composed of PrPSc, a conformational isomer of cellular prion protein (PrPC). The propensity of PrPC to adopt alternative folds suggests that there may be an unusually high proportion of alternative conformations in dynamic equilibrium with the native state. However, the rates of hydrogen/deuterium exchange demonstrate that the conformation of human PrPC is not abnormally plastic. The stable core of PrPC has extensive contributions from all three alpha-helices and shows protection factors equal to the equilibrium constant for the major unfolding transition. A residual, hyper-stable region is retained upon unfolding, and exchange analysis identifies this as a small nucleus of approximately 10 residues around the disulfide bond. These results show that the most likely route for the conversion of PrPC to PrPSc is through a highly unfolded state that retains, at most, only this small nucleus of structure, rather than through a highly organized folding intermediate.  相似文献   

2.
Binding of prion proteins to lipid membranes   总被引:5,自引:0,他引:5  
A key molecular event in prion diseases is the conversion of the normal cellular form of the prion protein (PrPC) to an aberrant form known as the scrapie isoform, PrPSc. Under normal physiological conditions PrPC is attached to the outer leaflet of the plasma membrane via a GPI-anchor. It has been proposed that a direct interaction between PrP and lipid membranes could be involved in the conversion of PrPC to its disease-associated corrupted conformation, PrPSc. Recombinant PrP can be refolded into an alpha-helical structure, designated alpha-PrP isoform, or into beta-sheet-rich states, designated beta-PrP isoform. The current study investigates the binding of recombinant PrP isoforms to model lipid membranes using surface plasmon resonance spectroscopy. The binding of alpha- and beta-PrP to negatively charged lipid membranes of POPG, zwitterionic membranes of DPPC, and model raft membranes composed of DPPC, cholesterol, and sphingomyelin is compared at pH 7 and 5, to simulate the environment at the plasma membrane and within endosomes, respectively. It is found that PrP binds strongly to lipid membranes. The strength of the association of PrP with lipid membranes depends on the protein conformation and pH, and involves both hydrophobic and electrostatic lipid-protein interactions. Competition binding measurements established that the binding of alpha-PrP to lipid membranes follows a decreasing order of affinity to POPG>DPPC>rafts.  相似文献   

3.
The molecular hallmark of prion disease is the conversion of normal prion protein (PrPC) to an insoluble, proteinase K-resistant, pathogenic isoform (PrPSc). Once generated, PrPSc propagates by complexing with, and transferring its pathogenic conformation onto, PrPC. Defining the specific nature of this PrPSc-PrPC interaction is critical to understanding prion genesis. To begin to approach this question, we employed a prion-infected neuroblastoma cell line (ScN2a) combined with a heterologous yeast expression system to independently model PrPSc generation and propagation. We additionally applied fluorescence resonance energy transfer analysis to the latter to specifically study PrP-PrP interactions. In this report we focus on an N-terminal hydrophobic palindrome of PrP (112-AGAAAAGA-119) thought to feature intimately in prion generation via an unclear mechanism. We found that, in contrast to wild type (wt) PrP, PrP lacking the palindrome (PrPDelta112-119) neither converted to PrPSc when expressed in ScN2a cells nor generated proteinase K-resistant PrP when expressed in yeast. Furthermore, PrPDelta112-119 was a dominant-negative inhibitor of wtPrP in ScN2a cells. Both wtPrP and PrPDelta112-119 were highly insoluble when expressed in yeast and produced distinct cytosolic aggregates when expressed as fluorescent fusion proteins (PrP::YFP). Although self-aggregation was evident, fluorescence resonance energy transfer studies in live yeast co-expressing PrPSc-like protein and PrPDelta112-119 indicated altered interaction properties. These results suggest that the palindrome is required, not only for the attainment of the PrPSc conformation but also to facilitate the proper association of PrPSc with PrPC to effect prion propagation.  相似文献   

4.
Transmissible spongiform encephalopathies in mammals are believed to be caused by PrPSc, the insoluble, oligomeric isoform of the cellular prion protein PrPC. PrPC and the subunits of PrPSc have identical covalent but different tertiary structure. To address the question of whether parts of the structure of PrPC are sufficiently stable to be retained in PrPSc, we have constructed two deletion variants of the C-terminal PrPC domain, PrP(121-231), which is the only part of recombinant PrP with defined tertiary structure. One of the variants, H2-H3, comprises the last two alpha-helices of PrP(121-231) that have been proposed to be preserved in models of PrP(Sc). In the other variant, PrP(121-231)-deltaH1, the first alpha-helix of PrP(121-231) was deleted and replaced by introduction of the beta-turn dipeptide Asn-Gly between the strands of the single beta-sheet of PrP(121-231). Although both deletion constructs still show alpha-helical CD-spectra, they are more disordered and thermodynamically strongly destabilized compared to PrP(121-231), with free energies of folding close to zero. These data demonstrate that the tertiary structure context is critical for the conformation of the segment comprising alpha-helix 2 and 3 in the solution structure of recombinant PrP.  相似文献   

5.
A key molecular event in prion diseases is the conversion of the prion protein (PrP) from its normal cellular form (PrPC) to the disease-specific form (PrPSc). The transition from PrPC to PrPSc involves a major conformational change, resulting in amorphous protein aggregates and fibrillar amyloid deposits with increased beta-sheet structure. Using recombinant PrP refolded into a beta-sheet-rich form (beta-PrP) we have studied the fibrillization of beta-PrP both in solution and in association with raft membranes. In low ionic strength thick dense fibrils form large networks, which coexist with amorphous aggregates. High ionic strength results in less compact fibrils, that assemble in large sheets packed with globular PrP particles, resembling diffuse aggregates found in ex vivo preparations of PrPSc. Here we report on the finding of a beta-turn-rich conformation involved in prion fibrillization that is toxic to neuronal cells in culture. This is the first account of an intermediate in prion fibril formation that is toxic to neuronal cells. We propose that this unusual beta-turn-rich form of PrP may be a precursor of PrPSc and a candidate for the neurotoxic molecule in prion pathogenesis.  相似文献   

6.
A wealth of evidence supports the view that conformational change of the prion protein, PrPC, into a pathogenic isoform, PrPSc, is the hallmark of sporadic, infectious, and inherited forms of prion disease. Although the central role played by PrPSc in the pathogenesis of prion disease is appreciated, the cellular mechanisms that recognize PrPSc and modulate its production, clearance, and neural toxicity have not been elucidated. To address these questions, we used a tissue-specific expression system to express wild-type and disease-associated PrP molecules heterologously in Drosophila melanogaster. Our results indicate that Drosophila brain possesses a specific and saturable mechanism that suppresses the accumulation of PG14, a disease-associated insertional PrP mutant. We also found that wild-type PrP molecules are maintained in a detergent-soluble conformation throughout life in Drosophila brain neurons, whereas they become detergent-insoluble in retinal cells as flies age. PG14 protein expression in Drosophila eye did not cause retinal pathology. Our work reveals the presence of mechanisms in neurons that specifically counterbalance the production of misfolded PrP conformations, and provides an opportunity to study these processes in a model organism amenable to genetic analysis.  相似文献   

7.
Prion diseases are a group of neurodegenerative disorders associated with conversion of a normal prion protein, PrPC, into a pathogenic conformation, PrPSc. The PrPSc is thought to promote the conversion of PrPC. The structure and stability of PrPC are well characterized, whereas little is known about the structure of PrPSc, what parts of PrPC undergo conformational transition, or how mutations facilitate this transition. We use a computational knowledge-based approach to analyze the intrinsic structural propensities of the C-terminal domain of PrP and gain insights into possible mechanisms of structural conversion. We compare the properties of PrP sequences to those of a PrP paralog, Doppel, and to the distributions of structural propensities observed in known protein structures from the Protein Data Bank. We show that the prion protein contains at least two sequence fragments with highly unusual intrinsic propensities, PrP(114-125) and helix B. No segments with unusual properties were found in Doppel protein, which is topologically identical to PrP but does not undergo structural rearrangements. Known disease-promoting PrP mutations form a statistically significant cluster in the region comprising helices B and C. Due to their unusual properties, PrP(114-125) and the C terminus of helix B may be considered as primary candidates for sites involved in conformational transition from PrPC to PrPSc. The results of our study also show that most PrP mutations associated with neurodegenerative disorders increase local hydrophobicity. We suggest that the observed increase in hydrophobicity may facilitate PrP-to-PrP or/and PrP-to-cofactor interactions, and thus promote structural conversion.  相似文献   

8.
Local environmental effects on the structure of the prion protein   总被引:1,自引:0,他引:1  
Prion diseases are neurodegenerative diseases causally linked to the partial unfolding and subsequent misfolding and aggregation of the prion protein (PrP). While most proteins fold into a single low energy state, PrP can fold into two distinct isoforms. In its innocuous state, denoted as PrPC, the protein has predominantly alpha-helical secondary structure, however, PrPC can misfold into an isoform rich in extended structure capable of forming toxic and infectious aggregates. While prion disease is believed to be a protein-only disease, one not requiring any non-protein elements for propagation, the different environments the protein finds itself in vivo likely influence its ability to misfold and aggregate. In this review we will examine various molecules, covalent modifications and environments PrP faces in vivo and the effect they have on PrP's local environment and, potentially, conformation. Included in this discussion are: (1) pH, (2) carbohydrates, (3) lipid membranes, (4) metal ions, and (5) small molecules.  相似文献   

9.
Conformational conversion of the cellular PrPC protein to PrPSc is a central aspect of the prion diseases, but how PrP initially converts to this conformation remains a mystery. Here we show that PrP expressed in the yeast cytoplasm, instead of the endoplasmic reticulum, acquires the characteristics of PrPSc, namely detergent insolubility and a distinct pattern of protease resistance. Neuroblastoma cells cultured under reducing, glycosylation-inhibiting conditions produce PrP with the same characteristics. We therefore describe what is, to our knowledge, the first conversion of full-length PrP in a heterologous system, show the importance of reducing and deglycosylation conditions in PrP conformational transitions, and suggest a model for initiating events in sporadic and inherited prion diseases.  相似文献   

10.
Prions and prion proteins   总被引:7,自引:0,他引:7  
N Stahl  S B Prusiner 《FASEB journal》1991,5(13):2799-2807
Neurodegenerative diseases of animals and humans including scrapie, bovine spongiform encephalopathy, and Creutzfeldt-Jakob disease are caused by unusual infectious pathogens called prions. There is no evidence for a nucleic acid in the prion, but diverse experimental results indicate that a host-derived protein called PrPSc is a component of the infectious particle. Experiments with scrapie-infected cultured cells show that PrPSc is derived from a normal cellular protein called PrPC through an unknown posttranslational process. We have analyzed the amino acid sequence and posttranslational modifications of PrPSc and its proteolytically truncated core PrP 27-30 to identify potential candidate modifications that could distinguish PrPSc from PrPC. The amino acid sequence of PrP 27-30 corresponds to that predicted from the gene and cDNA. Mass spectrometry of peptides derived from PrPSc has revealed numerous modifications including two N-linked carbohydrate moieties, removal of an amino-terminal signal sequence, and alternative COOH termini. Most molecules contain a glycosylinositol phospholipid (GPI) attached at Ser-231 that results in removal of 23 amino acids from the COOH terminus, whereas 15% of the protein molecules are truncated to end at Gly-228. The structure of the GPI from PrPSc has been analyzed and found to be novel, including the presence of sialic acid. Other experiments suggest that the N-linked oligosaccharides are not necessary for PrPSc formation. Although detailed comparison of PrPSc with PrPC is required, there is no obvious way in which any of the modifications might confer upon PrPSc its unusual physical properties and allow it to act as a component of the prion. If no chemical difference is found between PrPC and PrPSc, then the two isoforms of the prion protein may differ only in their conformations or by the presence of bound cellular components.  相似文献   

11.
朊病毒是一种全新类型的致病因子,以一种全新的致病机制造成许多神经退化性疾病。它的致病性主要由于PrP^C向PrP^Sc构象转变而造成。为了探讨PrP^C向PrP^Sc转变过程中PrP分子构象变化的机制,我们计算分析了人天然PrP分子及不同的单残基突变体(如M166V,S170N,E200K和R220K)的氨基酸残基溶剂可及性,并对天然PrP分子及其突变体进行了结构重叠模拟RMS偏量分析。结果表明:由于166位等单个残基的突变,造成PrP突变体与天然蛋白的局部结构出现较大差别,使得部分残基的溶剂可及表面积发生了较大变化,并且部分残基改变了它们的位置,同时也影响蛋白质表面的电倚分布,这些改变是为了更好地适应次级相互作用的局部环境。分析表明PrP与一般球蛋白在性质上有一定的差异,说明PrP分子并不是一种稳定的球蛋白结构,只是一种折叠中间物。  相似文献   

12.
PrPSc [abnormal disease-specific conformation of PrP (prion-related protein)] accumulates in prion-affected individuals in the form of amorphous aggregates. Limited proteolysis of PrPSc results in a protease-resistant core of PrPSc of molecular mass of 27-30 kDa (PrP27-30). Aggregated forms of PrP co-purify with prion infectivity, although infectivity does not always correlate with the presence of PrP27-30. This suggests that discrimination between PrPC (normal cellular PrP) and PrPSc by proteolysis may underestimate the repertoire and quantity of PrPSc subtypes. We have developed a CDI (conformation-dependent immunoassay) utilizing time-resolved fluorescence to study the conformers of disease-associated PrP in natural cases of sheep scrapie, without using PK (proteinase K) treatment to discriminate between PrPC and PrPSc. The capture-detector CDI utilizes N-terminal- and C-terminal-specific anti-PrP monoclonal antibodies that recognize regions of the prion protein differentially buried or exposed depending on the extent of denaturation of the molecule. PrPSc was precipitated from scrapie-infected brain stem and cerebellum tissue following sarkosyl extraction, with or without the use of sodium phosphotungstic acid, and native and denatured PrPSc detected by CDI. PrPSc was detectable in brain tissue from homozygous VRQ (V136 R154 Q171) and ARQ (A136 R154 Q171) scrapie-infected sheep brains. The highest levels of PrPSc were found in homozygous VRQ scrapie-infected brains. The quantity of PrPSc was significantly reduced, up to 90% in some cases, when samples were treated with PK prior to the CDI. Collectively, our results show that the level of PrPSc in brain samples from cases of natural scrapie display genotypic differences and that a significant amount of this material is PK-sensitive.  相似文献   

13.
Prion diseases are a set of brain degenerative syndromes developed by many mammals. The epidemiological characteristics are remarkable, the origin of the disease is either infectious, genetics or sporadic. A protein synthesised by the host, the so-called prion protein (PrP), seems to be both the etiologic agent and it is also responsible for the induced pathology. This protein is found under two very different conformations. The normal cellular form (PrPC) is alpha-helix rich while the pathological (PrPSc) conformation is mainly composed of beta-sheet structures and resist proteinase-K attack. The conversion of the PrPC isoform to a structure resisting to proteinase-K has been demonstrated in vitro. In order to understand these phenomena, physico-chemical models have been proposed.  相似文献   

14.
A mutant of mouse prion protein (PrPC) carrying a deletion of residues 114-121 (PrPDelta114-121) has previously been described to lack convertibility into the scrapie-associated isoform of PrP (PrPSc) and to exhibit a dominant-negative effect on the conversion of wild-type PrPC into PrPSc in living cells. Here we report the characterization of recombinantly expressed PrPDelta114-121 by Fourier-transformation infrared spectroscopy (FTIR) and circular dichroism (CD) spectroscopy. The analysis of spectra revealed an increased antiparallel beta-sheet content in the deletion mutant compared to wild-type PrPC. This additional short beta-sheet stabilized the fold of the mutant protein by DeltaDeltaG(0)'=3.4+/-0.3 kJ mol(-1) as shown by chemical unfolding experiments using guanidine hydrochloride. Secondary structure predictions suggest that the additional beta-sheet in PrPDelta114-121 is close to the antiparallel beta-sheet in PrPC. The high-affinity Cu2+-binding site outside the octarepeats, which is located close to the deletion and involves His110 as a ligand, was not affected, as detected by electron paramagnetic resonance (EPR) spectroscopy, suggesting that Cu2+ binding does not contribute to the protection of PrPDelta114-121 from conversion into PrPSc. We propose that the deletion of residues 114-121 stabilizes the mutant protein. This stabilization most likely does not obstruct the interaction of PrPDelta114-121 with PrPSc but represents an energy barrier that blocks the conversion of PrPDelta114-121 into PrPSc.  相似文献   

15.
Liemann S  Glockshuber R 《Biochemistry》1999,38(11):3258-3267
Transmissible spongiform encephalopathies (TSEs) are caused by a unique infectious agent which appears to be identical with PrPSc, an oligomeric, misfolded isoform of the cellular prion protein, PrPC. All inherited forms of human TSEs, i.e., familial Creutzfeldt-Jakob disease, Gerstmann-Str?ussler-Scheinker syndrome, and fatal familial insomnia, segregate with specific point mutations or insertions in the gene coding for human PrP. Here we have tested the hypothesis that these mutations destabilize PrPC and thus facilitate its conversion into PrPSc. Eight of the disease-specific amino acid replacements are located in the C-terminal domain of PrPC, PrP(121-231), which constitutes the only part of PrPC with a defined tertiary structure. Introduction of all these replacements into PrP(121-231) yielded variants with the same spectroscopic characteristics as wild-type PrP(121-231) and similar to full-length PrP(23-231), which excludes the possibility that the exchanges a priori induce a PrPSc-like conformation. The thermodynamic stabilities of the variants do not correlate with specific disease phenotypes. Five of the amino acid replacements destabilize PrP(121-231), but the other variants have the same stability as the wild-type protein. These data suggest that destabilization of PrPC is neither a general mechanism underlying the formation of PrPSc nor the basis of disease phenotypes in inherited human TSEs.  相似文献   

16.
Evidence for synthesis of scrapie prion proteins in the endocytic pathway.   总被引:28,自引:0,他引:28  
Infectious scrapie prions are composed largely, if not entirely, of an abnormal isoform of the prion protein (PrP) which is designated PrPSc. A chromosomal gene encodes both the cellular prion protein (PrPC) as well as PrPSc. Pulse-chase experiments with scrapie-infected cultured cells indicate that PrPSc is formed by a post-translational process. PrP is translated in the endoplasmic reticulum, modified as it passes through the Golgi, and is transported to the cell surface. Release of nascent PrP from the cell surface by phosphatidylinositol-specific phospholipase C or hydrolysis with dispase prevented PrPSc synthesis. At 18 degrees C, the synthesis of PrPSc was inhibited under conditions that other investigators report a blockage of endosomal fusion with lysosomes. Our results suggest that PrPSc synthesis occurs after PrP transits from the cell surface. Whether all of the PrP molecules have an equal likelihood to be converted into PrPSc or only a distinct subset is eligible for conversion remains to be established. Identifying the subcellular compartment(s) of PrPSc synthesis should be of considerable importance in defining the molecular changes that distinguish PrPSc from PrPC.  相似文献   

17.
The essential component of infectious prions is a misfolded protein termed PrPSc, which is produced by conformational change of a normal host protein, PrPC. It is currently unknown whether PrPSc molecules exist in a unique conformation or whether they are able to undergo additional conformational changes. Under commonly used experimental conditions, PrPSc molecules are characteristically protease-resistant and capable of inducing the conversion of PrPC molecules into new PrPSc molecules. We describe the effects of ionic strength, copper, and zinc on the conformation-dependent protease resistance and conversion-inducing activity of PrPSc molecules in scrapie-infected hamster brains. In the absence of divalent cations, PrPSc molecules were > 20-fold more sensitive to proteinase K digestion in low ionic strength buffers than in high ionic strength buffers. Addition of micromolar concentrations of copper or zinc ions restored the protease resistance of PrPSc molecules under conditions of low ionic strength. These transition metals also controlled the conformation of purified truncated PrP-(27-30) molecules at low ionic strength, confirming that the N-terminal octapeptide repeat region of PrPSc is not required for binding to copper or zinc ions. The protease-sensitive and protease-resistant conformations of PrPSc were reversibly interchangeable, and only the protease-resistant conformation of PrPSc induced by high ionic strength was able to induce the formation of new protease-resistant PrP (PrPres) molecules in vitro. These findings show that PrPSc molecules are structurally interconvertible and that only a subset of PrPSc conformations are able to induce the conversion of other PrP molecules.  相似文献   

18.
Familial prion disorders are believed to result from spontaneous conversion of mutant prion protein (PrPM) to the pathogenic isoform (PrPSc). While most familial cases are heterozygous and thus express the normal (PrPC) and mutant alleles of PrP, the role of PrPC in the pathogenic process is unclear. Plaques from affected cases reveal a heterogeneous picture; in some cases only PrPM is detected, whereas in others both PrPC and PrPM are transformed to PrPSc. To understand if the coaggregation of PrPC is governed by PrP mutations or is a consequence of the cellular compartment of PrPM aggregation, we coexpressed PrPM and PrPC in neuroblastoma cells, the latter tagged with green fluorescent protein (PrPC-GFP) for differentiation. Two PrPM forms (PrP231T, PrP217R/231T) that aggregate spontaneously in the endoplasmic reticulum (ER) were generated for this analysis. We report that PrPC-GFP aggregates when coexpressed with PrP231T or PrP217R/231T, regardless of sequence homology between the interacting forms. Furthermore, intracellular aggregates of PrP231T induce the accumulation of a C-terminal fragment of PrP, most likely derived from a potentially neurotoxic transmembrane form of PrP (CtmPrP) in the ER. These findings have implications for prion pathogenesis in familial prion disorders, especially in cases where transport of PrPM from the ER is blocked by the cellular quality control.  相似文献   

19.
Abnormal folding of the cellular prion protein (PrPC) is a key feature in prion diseases. Here we show that two pathogenic mutations linked to inherited prion diseases in humans severely affect folding and maturation of PrPC in the secretory pathway of neuronal cells. PrP-T183A and PrP-F198S adopt a misfolded and partially protease-resistant conformation, lack the glycosylphosphatidylinositol anchor, and are not complex glycosylated. These misfolded PrP mutants are not retained in the endoplasmic reticulum and are not subjected to the endoplasmic reticulum-associated degradation pathway. They rather are secreted, moreover, these mutants can be internalized by heterologous cells. Structural studies indicated that the side chains of Thr183 and Phe198 contribute to interactions between secondary structure elements in the C-terminal globular domain of PrPC. Consequently, we reasoned that a destabilized tertiary structure of these mutants could account for the defect in maturation. Indeed, mutations predicted to interfere selectively with the packing of the hydrophobic core of PrPC prevented the addition of the glycosylphosphatidylinositol anchor. Our study reveals that formation of the C-terminal globular domain of PrPC has an impact on membrane anchoring and indicates that misfolded secreted forms of the prion protein are linked to inherited prion diseases in humans.  相似文献   

20.
Purification and properties of the cellular and scrapie hamster prion proteins   总被引:23,自引:0,他引:23  
During scrapie infection an abnormal isoform of the prion protein (PrP), designated PrPSc, accumulates and is found to copurify with infectivity; to date, no nucleic acid has been found which is scrapie-specific. Both uninfected and scrapie-infected cells synthesize a PrP isoform, denoted PrPC, which exhibits physical properties that differentiate it from PrPSc. PrPC was purified by immunoaffinity chromatography using a PrP-specific monoclonal antibody cross-linked to protein-A--Avidgel. PrPSc was purified by detergent extraction, poly(ethylene glycol) precipitation and repeated differential centrifugation of PrPSc polymers. Both PrP isoforms were found to have the same N-terminal amino acid sequence which begins at a predicted signal peptide cleavage site. The first 8 residues of PrPC were found to be KKXPKPGG and the first 29 residues of PrPSc were found to be KKXPKPGGWNTGGSXYPGQGSPGGNRYPP. Arg residues 3 and 15 in PrPSc and 3 in PrPC appear to be modified since no detectable signals (denoted X) were found at these positions during gas-phase sequencing. Both PrP isoforms were found to contain an intramolecular disulfide bond, linking Cys 179 and 214, which creates a loop of 36 amino acids containing the two N-linked glycosylation sites. Development of a purification protocol for PrPC should facilitate comparisons of the two PrP isoforms and lead to an understanding of how PrPSc is synthesized either from PrPC or a precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号