首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lamin proteins are components of metazoan cell nuclei. During evolution, two classes of lamin proteins evolved, A- and B-type lamins. B-type lamins are expressed in nearly all cell types and in all developmental stages and are thought to be indispensable for cellular survival. In contrast, A-type lamins have a more restricted expression pattern. They are expressed in differentiated cells and appear late in embryogenesis. In the earliest steps of mammalian development, A-type lamins are present in oocytes, pronuclei and during the first cleavage stages of the developing embryo. But latest after the 16-cell stage, A-type lamin proteins are not any longer detectable in embryonic cells. Amphibian oocytes and early embryos do not express lamin A. Moreover, extracts of Xenopus oocytes and eggs have the ability to selectively remove A-type lamins from somatic nuclei. This observation and the restricted expression pattern suggest that the presence of lamin A might interfere with developmental processes in the early phase of embryogenesis. To test this, we ectopically expressed lamin A during early embryonic development of Xenopus laevis by microinjection of synthetic mRNA. Here, we show that introducing mature lamin A does not interfere with normal development. However, expression of prelamin A or lamin A variants that cannot be fully processed cause severe disturbances and lead to apoptosis during gastrulation. The toxic effect is due to lack of the conversion of prenylated prelamin A to its mature form. Remarkably, even a cytoplasmic prelamin A variant that is excluded from the nucleus drives embryos into apoptosis.  相似文献   

2.
3.
Changes in the cellular adhesion pattern during the early embryogenesis of a starfish Asterias amurensis were examined using carboxyfluorescein (CF) dye as a probe. CF that was injected into one of the blastomeres at the 2- or 4-cell stage was in all cases restricted to the progeny cells of the CF-labelled blastomere. With the advancement of gastrulation, however, the injected dye was distributed not only to the progeny of the labelled blastomere, but also to cells that originated from non-injected blastomeres. At the beginning of mesenchyme cell release, the injected dye spread uniformly to most cells comprising the embryo. When one of the blastomeres situated in the vegetal hemisphere of an 8-cell embryo was labelled, the resulting embryo showed more intense fluorescence in the cells surrounding the archenteron than in the ectodermal layer, suggesting that the cells in ectodermal layer became associated more intimately or earlier than those surrounding the archenteron. Likewise, in double embryos formed by combining two denuded eggs, in which one egg had been labelled with CF, dye spread was observed when the ectodermal layer began to expand. The intercellular spread of CF dye in starfish embryo suggests that there is a dramatic change in the cellular adhesion pattern during the course of gastrulation.  相似文献   

4.
5.
Vasa is a DEAD-box RNA helicase that functions in translational regulation of specific mRNAs. In many animals it is essential for germ line development and may have a more general stem cell role. Here we identify vasa in two sea urchin species and analyze the regulation of its expression. We find that vasa protein accumulates in only a subset of cells containing vasa mRNA. In contrast to vasa mRNA, which is present uniformly throughout all cells of the early embryo, vasa protein accumulates selectively in the 16-cell stage micromeres, and then is restricted to the small micromeres through gastrulation to larval development. Manipulating early embryonic fate specification by blastomere separations, exposure to lithium, and dominant-negative cadherin each suggest that, although vasa protein accumulation in the small micromeres is fixed, accumulation in other cells of the embryo is inducible. Indeed, we find that embryos in which micromeres are removed respond by significant up-regulation of vasa protein translation, followed by spatial restriction of the protein late in gastrulation. Overall, these results support the contention that sea urchins do not have obligate primordial germ cells determined in early development, that vasa may function in an early stem cell population of the embryo, and that vasa expression in this embryo is restricted early by translational regulation to the small micromere lineage.  相似文献   

6.
During C. elegans embryogenesis an 8-cell stage blastomere, called MS, undergoes a reproducible cleavage pattern, producing pharyngeal cells, body wall muscles, and cell deaths. We show here that maternal-effect mutations in the pie-1 and mex-1 genes cause additional 8-cell stage blastomeres to adopt a fate very similar to that of the wild-type MS blastomere. In pie-1 mutants one additional posterior blastomere adopts an MS-like fate, and in mex-1 mutants four additional anterior blastomeres adopt an MS-like fate. We propose that maternally provided pie-1(+) and mex-1(+) gene products may function in the early embryo to localize or regulate factors that determine the fate of the MS blastomere.  相似文献   

7.
8.
Cellular interactions in early C. elegans embryos   总被引:8,自引:0,他引:8  
J R Priess  J N Thomson 《Cell》1987,48(2):241-250
In normal development both the anterior and posterior blastomeres in a 2-cell C. elegans embryo produce some descendants that become muscles. We show that cellular interactions appear to be necessary in order for the anterior blastomere to produce these muscles. The anterior blastomere does not produce any muscle descendants after either the posterior blastomere or one of the daughters of the posterior blastomere is removed from the egg. Moreover, we demonstrate that a daughter of the anterior blastomere that normally does not produce muscles appears capable of generating muscles when interchanged with its sister, a cell that normally does produce muscles. Embryos develop normally after these blastomeres are interchanged, suggesting that cellular interactions play a major role in determining the fates of some cells in early embryogenesis.  相似文献   

9.
We have examined the importance of the extracellular environment on the ability of separated cells of sea urchin embryos (Strongylocentrotus purpuratus) to carry out patterns of mRNA accumulation and decay characteristic of intact embryos. Embryos were dissociated into individual blastomeres at 16-cell stage and maintained in calcium-free sea water so that daughter cells continuously separated. Levels of eleven different mRNAs in these cells were compared to those in control embryos when the latter reached mesenchyme blastula stage, by which time cells in major regions of the intact embryo have assumed distinctive patterns of message accumulation. Abrogation of interactions among cells resulted in marked differences in accumulation and/or turnover of the individual mRNAs, which are expressed with diverse temporal and spatial patterns of prevalence in intact embryos. In general, separated cells are competent to execute initial events of mRNA accumulation and decay that occur uniformly in most or all blastomeres of the intact embryo and are likely to be regulated by maternal molecules. The ability of separated cells to accumulate mRNAs that appear slightly later in development depends upon the presumptive tissue in which a given mRNA is found in the normal embryo. Messages that normally accumulate in cells at the vegetal pole also accumulate in dissociated cells either at nearly normal levels or at increased levels. In one such case, that of actin CyIIa, which is normally restricted to mesenchyme cells, in situ hybridization demonstrates that the fraction of dissociated cells expressing this message is 4- to 5-fold higher than in the normal embryo. In contrast, separated cells accumulate significant levels of a message expressed uniformly in the early ectoderm but are unable to execute accumulation and decay of different messages that distinguish oral and aboral ectodermal regions. These data are consistent with the idea that interactions among cells in the intact embryo are important for both positive and negative control of expression of different genes that are early indicators of the specification of cell fate.  相似文献   

10.
We have used in situ hybridization to ovarian tissue sections to study the pattern of histone gene expression during oogenesis in Drosophila melanogaster. Our studies suggest that there are two distinct phases of histone gene expression during oogenesis. In the first phase, which occurs during early to middle oogenesis (stages 5-10A), we observe a mosaic pattern of histone mRNA in the 15 nurse cells of the egg chamber: some cells have very high levels of mRNA, while others have little or no mRNA. Our analysis suggests that there is a cyclic accumulation and subsequent degradation of histone mRNA in the egg chamber and that very little histone mRNA is transported into the growing oocyte. Moreover, since the endomitotic replication cycles of the nurse cells are asynchronous during this period, the mosaic distribution of histone message would suggest that the expression of the histone genes in each nurse cell nucleus is probably coupled to DNA replication as in most somatic cells. The second phase begins at stage 10B. During this period, histone gene expression appears to be "induced" in all 15 nurse cells of the egg chamber, and instead of a mosaic pattern, high levels of histone mRNA are found in all cells. Unlike the earlier phase, this expression is apparently uncoupled from the endomitotic replication of the nurse cells (which are completed by the end of stage 10A). Moreover, much of the newly synthesized histone mRNA is transported from the nurse cells into the oocyte where it accumulates and is stored for use during early embryogenesis. Finally, we have also observed tightly clustered grains within nurse cell nuclei in non-denatured tissue sections. As was the case with cytoplasmic histone mRNA, there is a mosaic distribution of nuclear grains from stages 5 to 10A, while at stage 10B, virtually all nurse cell nuclei have grain clusters. These grain clusters appear to be due to the hybridization of nurse cell histone gene DNA to our probe, and are localized in specific regions of the nucleus.  相似文献   

11.
本研究选用枸杞体细胞胚发生体系中的继代愈伤组织(对照)、胚性愈伤组织和早期胚体为实验材料,提取细胞总RNA,在12种锚定真核生物mRNA3'末端的OligodT12VN中,随机选用OligodT12GA为引物合成了以上三种材料的cDNA第一链,以此cDNA为模板,用随机引物进行PCR扩增,选择差别表达的片段。我们选用了OPA、OPH、OPK和OPB四组的60个随机引物对所得的c DNA进行了PCR扩增,得到了三个在体细胞胚发生早期组织中基因特异表达的片段。结果表明,在体细胞胚发生早期有胚胎发生特异性基因的表达,而且这种特异表达的基因在继代愈伤组织中没有表达,说明植物的体细胞胚发生过程就是细胞内基因差别表达的结果。 Abstract:Embryogenic calli and early embryo can be obtained from both auxin and auxin-free medium.The analysis of differential gene expression in early somatic embryogenesis has been hindered by above-mentioned material.The modifications of the recently described mRNA differential display method were reported and differential gene expression in early slmatic embryogenesis was analyzed.We have obtained three differential bands of cDNA in early somatic embryogenesis.The results indicate that gene expression has temperal and spalil order in early somatic embryogenesis of Lycium barbarum L.Plant somatic embryogenesis is the results of differential gene expression in cell.  相似文献   

12.
13.
14.
Required to supply nutrients and oxygen to the growing embryo, the vascular system is the first functional organ system to develop during vertebrate embryogenesis. Although there has been substantial progress in identifying the genetic cascade regulating vascular development, the initial stages of vasculogenesis, namely, the origin of vascular endothelial cells within the early embryo, remain unclear. To address this issue we constructed a fate map for specific vascular structures, including the aortic arches, endocardium, dorsal aorta, cardinal veins, and lateral abdominal veins, as well as for the red blood cells at the 16-cell stage and the 32-cell stage of Xenopus laevis. Using genetic markers to identify these cell types, our results suggest that vascular endothelial cells can arise from virtually every blastomere of the 16-cell-stage and the 32-cell-stage embryo, with different blastomeres preferentially, though not exclusively, giving rise to specific vascular structures. Similarly, but more surprisingly, every blastomere in the 16-cell-stage embryo and all but those in the most animal tier of the 32-cell-stage embryo serve as progenitors for red blood cells. Taken together, our results suggest that during normal development, both dorsal and ventral blastomeres contribute significantly to the vascular endothelial and red blood cell lineages.  相似文献   

15.
In the early Caenorhabditis elegans embryo five somatic founder cells are born during the first cleavages. The first of these founder cells, named AB, gives rise to 389 of the 558 nuclei present in the hatching larva. Very few genes directly involved in the specification of the AB lineage have been identified so far. Here we describe a screen of a large collection of maternal-effect embryonic lethal mutations for their effect on the early expression of a pes-1::lacZ fusion gene. This fusion gene is expressed in a characteristic pattern in 14 of the 32 AB descendants present shortly after the initiation of gastrulation. Of the 37 mutations in 36 genes suspected to be required specifically during development, 12 alter the expression of the pes-1::lacZ marker construct. The gene expression pattern alterations are of four types: reduction of expression, variable expression, ectopic expression in addition to the normal pattern, and reduction of the normal pattern together with ectopic expression. We estimate that approximately 100 maternal functions are required to establish the pes-1 expression pattern in the early embryo.  相似文献   

16.
ROCK is a Rho-GTPase effector that is important for actin assembly and is involved in various cellular functions, including cell contraction, migration, motility, and tumor cell invasion. In this study, we investigated ROCK expression and function during early mouse embryo development. Inhibiting ROCK by Y-27632 treatment at the zygote stage resulted in first cleavage failure, and most embryos failed to develop to the 8-cell stage. When adding Y-27632 at the 8-cell stage, embryos failed to undergo compaction and could not develop into blastocysts. In addition, fluorescence staining intensity analysis indicated that actin expression at blastomere membranes was significantly reduced. After ROCK inhibition, two or more nuclei were observed in a cell, which indicated possible cytokinesis failure. Moreover, after ROCK inhibition with Y-27632, the phosphorylation levels of LIMK1/2, a downstream molecule of ROCK, were decreased at blastomere membranes. Thus, our results showed conserved roles for ROCK in this mammalian embryo model and indicated that a ROCK-LIMK1/2-actin pathway might regulate cleavage and blastocyst formation during early mouse embryo development.  相似文献   

17.
Cell lineages during embryogenesis of the ascidian Halocynthia roretzi were analyzed up until the stage where each blastomere was fated to be only a single tissue type (i.e., the tissue restricted stage) by intracellular injection of horseradish peroxidase using the iontophoretic injection method. Initially, the developmental fates of all blastomeres of the 64-cell stage embryo were examined, and thereafter, only the fates of daughter blastomeres of those blastomeres that were not tissue restricted at the 64-cell stage were traced. The developmental fates of blastomeres were highly invariant except for two candidates for "equivalence groups" (J. Kimble, J. Sulston, and J. White (1979). In "Cell Lineage, Stem Cells and Cell Determination," pp. 59-68. Elsevier, Amsterdam/New York), in which cellular interaction is suggested to be involved in the specification of the fates. The right and left a8.25 cells gave rise to the otolith and ocellus, and the right and left b8.17 cells gave rise to the spinal cord and endodermal strand in a complementary manner. No fixed relationship existed between the position of the blastomere and its derivative. Most restrictions of cell fates occurred early in cleavage. The numbers of blastomeres which generated a single type of tissue were 44 at the 64-cell stage and 94 at the 110-cell stage. Eight pairs of blastomeres had not yet become tissue restricted by the 110-cell stage. Almost complete lineages of epidermis, nervous system, muscle, mesenchyme, notochord, and endodermal tissues were described, and a fate map was constructed for the blastula. For certain tissues, the primordial cells occupied two different regions. Supplementary investigations of the lineage of muscle cells were also performed on embryos of another species, Ciona intestinalis.  相似文献   

18.
During the successive interphases of cleaving mouse embryos the nuclear periphery diminishes its reactivity to anti-lamin A and C antibodies. This developmentally regulated characteristic can be modified by exposure of the blastomere nuclei to metaphase II (M II) oocyte cytoplasm followed by activation. In the current study we define the cytoplasmic conditions necessary for this modification of 8-cell and 16-cell stage nuclei in hybrids obtained by fusion with metaphase II arrested oocytes, oocytes at various time points after parthenogenetic activation, naturally fertilized eggs (zygotes) and interphase 2-cell embryo blastomeres. The intensity of fluorescence obtained with anti-lamins A/C in the blastomere nuclei increases as a result of fusion with freshly activated oocytes or early zygotes (first 3.0-5.5 h in the case of parthenogenetic activation), and not when eggs or 2-cell blastomeres advanced in interphase are used as partners for fusion. This transformation of the A/C lamin pattern is correlated with the ability to promote pronucleus-like growth of blastomere nuclei in hybrids. Blastomere nuclei introduced into M II-arrested oocytes undergo premature chromatin condensation and dissolution of the nuclear lamina. The results are discussed with regard to certain particularities of the first embryonic interphase of the mouse and the potential involvement of nuclear lamins in pronuclear growth.  相似文献   

19.
We describe two different cell interactions that appear to be required for the proper development of a pair of bilaterally symmetrical cells in Caenorhabditis elegans called the intestinal valve cells. Previous experiments have shown that at the beginning of the 4-cell stage of embryogenesis, two sister blastomeres called ABa and ABp are equivalent in development potential. We show that cell interactions between ABp and a neighboring 4-cell-stage blastomere called P2 distinguish the fates of ABa and ABp by inducing descendants of ABp to produce the intestinal valve cells, a cell type not made by ABa. A second cell interaction appears to occur later in embryogenesis when two bilaterally symmetrical descendants of ABp, which both have the potential to produce valve cells, contact each other; production of the valve cells subsequently becomes limited to only one of the two descendants. This second interaction does not occur properly if the two symmetrical descendants of ABp are prevented from contacting each other. Thus the development of the intestinal valve cells appears to require both an early cell interaction that establishes a bilaterally symmetrical pattern of cell fate and a later interaction that breaks the symmetrical cell fate pattern by restricting to only one of two cells the ability to produce a pair of valve cells.  相似文献   

20.
We used in situ hybridization to investigate Kunitz trypsin inhibitor gene expression programs at the cell level in soybean embryos and in transformed tobacco seeds. The major Kunitz trypsin inhibitor mRNA, designated as KTi3, is first detectable in a specific globular stage embryo region, and then becomes localized within the axis of heart, cotyledon, and maturation stage embryos. By contrast, a related Kunitz trypsin inhibitor mRNA class, designated as KTi1/2, is not detectable during early embryogenesis. Nor is the KTi1/2 mRNA detectable in the axis at later developmental stages. Outer perimeter cells of each cotyledon accumulate both KTi1/2 and KTi3 mRNAs early in maturation. These mRNAs accumulate progressively from the outside to inside of each cotyledon in a "wave-like" pattern as embryogenesis proceeds. A similar KTi3 mRNA localization pattern is observed in soybean somatic embryos and in transformed tobacco seeds. An unrelated mRNA, encoding [beta]-conglycinin storage protein, also accumulates in a wave-like pattern during soybean embryogenesis. Our results indicate that cell-specific differences in seed protein gene expression programs are established early in development, and that seed protein mRNAs accumulate in a precise cellular pattern during seed maturation. We also show that seed protein gene expression patterns are conserved at the cell level in embryos of distantly related plants, and that these patterns are established in the absence of non-embryonic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号