首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lipid hydroperoxides (LOOHs) can be generated in cells when cholesterol (Ch) and other unsaturated lipids in cell membranes are degraded under conditions of oxidative stress. If LOOHs escape reductive detoxification by glutathione-dependent selenoperoxidases, they may undergo iron-catalyzed one-electron reduction to free radical species, thus triggering peroxidative chain reactions which exacerbate oxidative membrane damage. LOOHs are more polar than parent lipids and much longer-lived than free radical precursors or products. Accordingly, intermembrane transfer of LOOHs (analogous to that of unoxidized precursors) might be possible, and this could jeopardize acceptor membranes. We have investigated this possibility, using photoperoxidized [(14)C]Ch-labeled erythrocyte ghosts as cholesterol hydroperoxide (ChOOH) donors and unilamellar liposomes [e.g., dimyristoyl-phosphatidylcholine/Ch, 9:1 mol/mol] as acceptors. ChOOH material consisted mainly of 5alpha-hydroperoxide, a singlet oxygen adduct. Time-dependent transfer of ChOOH versus Ch at 37 degrees C was determined, using high-performance liquid and thin-layer chromatographic methods to analyze liposomal extracts for these species. A typical experiment in which the starting ChOOH/Ch mol ratio in ghosts was approximately 0.05 showed that the initial transfer rate of ChOOH was approximately 16 times greater than that of parent Ch. Using [(14)C]Ch as a reporter in liposome acceptors, we found that transfer-acquired ChOOHs, when exposed to a lipophilic iron chelate and ascorbate, could trigger strong peroxidative chain reactions, as detected by accumulation of [(14)C]Ch oxidation products. These findings support the hypothesis that intermembrane transfer of ChOOHs can contribute to their prooxidant membrane damaging and cytotoxic potential.  相似文献   

2.
The oxidation of low density lipoproteins (LDL) has been implicated in the development of atherosclerosis. Recently, we found that polar lipids isolated from minimally oxidized LDL produced a dramatic inhibition of lecithin: cholesterol acyltransferase (LCAT) activity, suggesting that HDL-cholesterol transport may be impaired during early atherogenesis. In this study, we have identified molecular species of oxidized lipids that are potent inhibitors of LCAT activity. Treatment of LDL with soybean lipoxygenase generated small quantities of lipid hydroperoxides (20 +/- 4 nmol/mg LDL protein, n = 3); but when lipoxygenase-treated LDL (1 mg protein/ml) was recombined with the d > 1.063 g/ml fraction of human plasma, LCAT activity was rapidly inhibited (25 +/- 4 and 65 +/- 16% reductions by 1 and 3 h, respectively). As phospholipid hydroperoxides (PL-OOH) are the principal oxidation products associated with lipoxygenase-treated LDL, we directly tested whether PL-OOH inhibited plasma LCAT activity. Detailed dose-response curves revealed that as little as 0.2 and 1.0 mole % enrichment of plasma with PL-OOH produced 20 and 50% reductions in LCAT activity by 2 h, respectively. To gain insight into the mechanism of LCAT impairment, the enzyme's free cysteines (Cys31 and Cys184) and active site residues were "capped" with the reversible sulfhydryl compound, DTNB, during exposure to either minimally oxidized LDL or PL-OOH. Reversal of the DTNB "cap" after such exposures revealed that the enzyme was completely protected from both sources of peroxidized phospholipids. We, therefore, conclude that PL-OOH inhibited plasma LCAT activity by modifying the enzyme's free cysteine and/or catalytic residues. These studies are the first to suggest that PL-OOH may accelerate the atherogenic process by impairing LCAT activity.  相似文献   

3.
A series of cholesterol hydroperoxides has been prepared and tested as inactivators of calmodulin. Two previously undescribed compounds, tentatively identified as 20-(R)-25-dihydroperoxy-5-cholesten-3 beta-ol and its 20-(S) isomer inactivate calmodulin with 50% loss of activity at 5-10 microM. Cholesterol derivatives with a single hydroperoxy group at C-20 or C-25 are less effective, while 7 alpha-hydroperoxy-cholesterol and 25-hydroxy-cholesterol are inactive. The side-chain hydroperoxide compounds were isolated from a mixture shown earlier to suppress formation of fatty streaks in aortas of rabbits fed a diet supplemented with cholesterol.  相似文献   

4.
The effects of clofibrate, cholestyramine, and neomycin on hepatobiliary lipid metabolism were studied in adult rhesus monkeys in metabolic steady state with intact but exteriorized enterohepatic circulations. Clofibrate (30 mg/kg, id) had no effect on lipid secretion while cholestyramine (150 mg/kg, id) decreased biliary cholesterol secretion rate from 0.19 +/- 0.03 to 0.13 +/- 0.02 mmol/24 h, p less than 0.05. Neomycin (30 mg/kg, id) decreased bile flow from 216 +/- 10 to 191 +/- 7mL/24 h, p less than 0.05, and tended only to decrease bile salt and phospholipid secretion rates. Cholestyramine decreased cholesterol composition from 1.81 +/- 0.22 to 1.30 +/- 0.22 mol %, p less than 0.05, while clofibrate and neomycin had insignificant effects. Cholestyramine and neomycin decreased bile salt pool size from 1 +/- 0.1 to 0.77 +/- 0.15 and from 1.45 +/- 0.16 to 1.13 +/- 0.21 mmol, p less than 0.05, respectively, while clofibrate had no effect. Bile salt synthetic rate was increased only by cholestyramine, i.e., from 0.63 +/- 0.04 to 1.48 +/- 0.26 mmol/24 h, p less than 0.01. Concomitant cholesterol turnover studies revealed that cholestyramine increased the production rate and excretion of cholesterol in the rapidly miscible cholesterol pool and increased the transfer of cholesterol from slow to rapidly miscible pools. Neomycin, on the other hand, decreased the size of the rapidly miscible pool by decreasing production rate without affecting the size of the slowly miscible pool, while clofibrate had insignificant effects.  相似文献   

5.
Selective microdetermination of lipid hydroperoxides   总被引:1,自引:0,他引:1  
A sensitive and selective assay for lipid hydroperoxides was developed based upon the activation by hydroperoxides of the cyclooxygenase activity of prostaglandin H synthase. The assay measures hydroperoxides directly by their stimulatory action on the cyclooxygenase and thus differs from the methods used currently which rely on the measurement of secondary products to estimate the amount of hydroperoxide. The present assay of enzymatic response was approximately linear in the range 10 to 150 pmol of added lipid hydroperoxide. This sensitivity for lipid peroxides is about 50-fold greater than that of the thiobarbiturate assay with fluorescence detection. When applied to samples of human plasma, the enzymatic assay indicated that the concentration of lipid hydroperoxides in normal subjects is 0.5 microM, more than 50-fold lower than estimated by the thiobarbiturate assay (30-50 microM). Nevertheless, the circulating concentration of 0.5 microM lipid hydroperoxide approaches that reported to have deleterious effects upon vascular prostacyclin synthase.  相似文献   

6.
The addition of luminol plus a catalyst such as peroxidase or a heme prosthetic group to a solution containing a small quantity of lipid hydroperoxides results in a flash of chemiluminescence, the intensity of which is a function of the hydroperoxide concentrations. Various protocols for lipid hydroperoxide assays have been described and we have studied conditions to increase their sensitivity and specificity. Plasma lipid hydroperoxide determinations require an extraction, since compounds present in plasma interfere with light emission. Moreover, the sensitivity of the assay is by the presence of hydrogen peroxide in the medium, which causes high background values. Catalase does not act on lipid hydroperoxides and can be used to eliminate hydrogen peroxide from the reaction medium. The determination requires a blank tube in which hydroperoxides are destroyed by incubating the sample with haematin plus ascorbate. The increase in the chemiluminescence of the assay tube caused by the presence of lipid hydroperoxides is then compared to the value obtained for an internal standard.  相似文献   

7.
Increasing evidence of lipid peroxidation in food deterioration and pathophysiology of diseases have revealed the need for a pure lipid hydroperoxide (LOOH) reference as an authentic standard for quantification and as a compound for biological studies in this field. Generally, LOOH is prepared from photo- or enzymatically oxidized lipids; however, separating LOOH from other oxidation products and preparing pure LOOH is difficult. Early studies showed the usability of reaction between hydroperoxide and vinyl ether for preparation of pure LOOH. Because the reactivity of vinyl ether with LOOHs other than fatty acid hydroperoxides has never been reported, here, we employed the reaction for preparation of a wide variety of pure LOOHs. Phospholipid, cholesteryl ester, triacylglycerol, or fatty acid was photo- or enzymatically oxidized; the resultant crude sample containing hydroperoxide was allowed to react with a vinyl ether [2-methoxypropene (MxP)]. Liquid chromatography (LC) and mass spectrometry confirmed that MxP selectively reacts with LOOH, yielding a stable MxP adduct (perketal). The lipophilic perketal was eluted at a position away from that of intact LOOH and identified and isolated by LC. Upon treatment with acid, perketal released the original LOOH, which was finally purified by LC. Using our optimized purification procedures, for instance, we produced 75 mg of pure phosphatidylcholine hydroperoxide (>99%) from 100 mg of phosphatidylcholine. Our developed method expands the concept of the perketal method, which provides pure LOOH references. The LOOHs prepared by the perketal method would be used as "gold standards" in LOOH methodology.  相似文献   

8.
9.
The reaction of native myeloperoxidase (MPO) and its redox intermediate compound I with hydrogen peroxide, ethyl hydroperoxide, peroxyacetic acid, t-butyl hydroperoxide, 3-chloroperoxybenzoic acid and cumene hydroperoxide was studied by multi-mixing stopped-flow techniques. Hydroperoxides are decomposed by MPO by two mechanisms. Firstly, the hydroperoxide undergoes a two-electron reduction to its corresponding alcohol and heme iron is oxidized to compound I. At pH 7 and 15 degrees C, the rate constant of the reaction between 3-chloroperoxybenzoic acid and ferric MPO was similar to that with hydrogen peroxide (1.8x10(7) M(-1) s(-1) and 1.4x10(7) M(-1) s(-1), respectively). With the exception of t-butyl hydroperoxide, the rates of compound I formation varied between 5.2x10(5) M(-1) s(-1) and 2.7x10(6) M(-1) s(-1). Secondly, compound I can abstract hydrogen from these peroxides, producing peroxyl radicals and compound II. Compound I reduction is shown to be more than two orders of magnitude slower than compound I formation. Again, with 3-chloroperoxybenzoic acid this reaction is most effective (6. 6x10(4) M(-1) s(-1) at pH 7 and 15 degrees C). Both reactions are controlled by the same ionizable group (average pK(a) of about 4.0) which has to be in its conjugated base form for reaction.  相似文献   

10.
In our on-going studies of experimental uveitis, we previously obtained a preliminary indication of phagocyte-mediated retinal lipid peroxidation by measuring conjugated dienes (CD), thiobarbituric acid reactive substances (TBARS) and fluorescent chromolipids. Using gas chromatography/mass spectrometry (GC/MS), the current study detected hydroperoxide-derived 10-, 11-, 13-, 14-, and 17-hydroxydocosahexaenoic acid (HDHE) in retinal membranes. Docosahexaenoic acid (22:6) is the major polyunsaturated fatty acid (PUFA) in photoreceptor membranes. Hydroperoxides from other retinal PUFA were found also. Arachidonic acid (20:4) yielded 8-, 9-, 11-, 12-hydroxyeicosatetraenoic acid (HETE) as major products. Since 12-HETE could also arise from lipoxygenase catalyzed oxygenation of free 20:4, the source of 12-HETE could be both peroxidative and lipoxygenase pathways. Concomitantly, peroxidative loss of 22:6 and accumulation of 20:4 were also noted. At the peak of inflammation, loss of 22:6 was close to 50% of the original amount in the control retinas. In the same time period, 20:4 increased more than two-fold. The present data suggest that the oxygen radicals derived from phagocytes initiate the retinal lipid peroxidation, and the resultant formation of hydroperoxides, oxidative loss of 22:6 and accumulation of 20:4 appear to serve as amplification factors in subsequent biochemical events, such as chemotaxis of PMNs and activation of cyclooxygenase.  相似文献   

11.
We have previously isolated two proteins which can reduce phosphatidylcholine hydroperoxide (PC-OOH) from human blood plasma and identified one of the proteins as apolipoprotein A-I (Mashima, R. , et al. (1998) J. Lipid Res. 39, 1133-1140). In the present study we have identified the other protein as apolipoprotein B-100 (apo B-100) by amino acid sequence analysis of its tryptic peptides. The reactivity of lipid hydroperoxides with apo B-100 decreased in the order of PC-OOH > linoleic acid hydroperoxide > cholesteryl ester hydroperoxide under our experimental conditions. Pretreatment of apo B-100 with chloramine T, an oxidant of methionine, diminished the PC-OOH-reducing activity, indicating that some of 78 methionines are responsible for the reduction of PC-OOH. Despite the presence of 6 methionines in albumin, albumin was inactive to reduce PC-OOH. Free methionine was also inactive. These data suggest that the accessibility and binding of lipid hydroperoxides to the protein methionine residues are crucial for reduction of lipid hydroperoxides.  相似文献   

12.
Freezing/thawing procedures induce enhanced reactive oxygen species (ROS) formation in mammalian sperm and these ROS may be a cause for the decrease in sperm function following cryopreservation. In the present study, we used a chemiluminescence method to detect ROS-induced damage in goat spermatozoa. Iron-induced luminescence of fresh and frozen/thawed sperm cells was assessed using a luminometer. It was shown that the freezing/thawing procedure had a significant effect on some luminescence parameters. Semen freezing significantly increased the values of integral, peak max, T.half (rise) and T.max (peak) parameters. A significant correlation was observed between the percentage of motile spermatozoa and integral, peak max and T.half (rise) parameters. In conclusion, the results of the present study indicate that measurement of induced luminescence can be an alternative, sensitive and relatively simple method for assessing the effect of cryopreservation on oxidative damage to spermatozoa.  相似文献   

13.
A simple and sensitive spectrophotometric method for measuring lipid peroxides and peroxides in general is described. The method was developed by modifying an existing method based on the peroxidase activity of hemoglobin with tetramethylbenzidine as the electron donor. The modifications resulted in much improved sensitivity and reproducibility. With the modified method lipid peroxides as low as 2 nmol can be measured, a high sensitivity compared with other spectrophotometric methods. The absorbance is linear over a wide range of concentrations. It is suggested that this modified method in combination with the commonly used thiobarbituric acid method will give a better quantitation of lipid peroxidation.  相似文献   

14.
The general reactivity of membrane lipid hydroperoxides (LOOHs) with the selenoenzyme phospholipid hydroperoxide glutathione peroxidase (PHGPX) has been investigated. When human erythrocyte ghosts (lipid content: 60 wt % phospholipid; 25 wt % cholesterol) were treated with GSH/PHGPX subsequent to rose bengal-sensitized photoperoxidation, iodometrically measured LOOHs were totally reduced to alcohols. Similar treatment with the classic glutathione peroxidase (GPX) produced no effect unless the peroxidized membranes were preincubated with phospholipase A2 (PLA2). However, under these conditions, no more than approximately 60% of the LOOH was reduced; introduction of PHGPX brought the reaction to completion. Thin layer chromatographic analyses revealed that the GPX-resistant (but PHGPX-reactive) LOOH was cholesterol hydroperoxide (ChOOH) consisting mainly of the 5 alpha (singlet oxygen-derived) product. Membrane ChOOHs were reduced by GSH/PHGPX to species that comigrated with borohydride reduction products (diols). Sensitive quantitation of PHGPX-catalyzed ChOOH reduction was accomplished by using [14C]cholesterol-labeled ghosts. Kinetic analyses indicated that the rate of ChOOH decay was approximately 1/6 that of phospholipid hydroperoxide decay. Photooxidized ghosts underwent a large burst of free radical-mediated lipid peroxidation when incubation with ascorbate/iron or xanthine/xanthine oxidase/iron. These reactions were only partially inhibited by PLA2/GSH/GPX treatment, but totally inhibited by GSH/PHGPX treatment, consistent with complete elimination of LOOHs in the latter case. These findings provide important clues as to how ChOOHs are detoxified in cells and add new insights into PHGPX's protective role.  相似文献   

15.
The method using peroxidase activity of hemoglobin (Hb) for the determination of lipid peroxides, trilinoleoylglycerol hydroperoxides and phosphatidylcholine hydroperoxides as substrates and tetramethyl benzidine as electron donor for the peroxidase reaction of Hb. The reactivities of these substrates were different. Some electron donors were tested for peroxidase activity of Hb, but none showed a complete reduction of methyl linoleate hydroperoxides. Front these results, the Hb method needs to be carefully applied to biological materials that contain mixtures of different typos of lipid classes.  相似文献   

16.
17.
We report some novel morphological observations on the interaction of the polyene antibiotic filipin (crude complex) with cholesterol, studied in non-cellular systems with replication, freeze-fracture, and negative stain techniques. Cholesterol crystals, lecithin liposomes containing 0 to 20 mole% of cholesterol, and liposomes containing 10 mole% of cholesterol and 5 to 40 mole% of sphingomyelin were incubated for varying lengths of time with filipin at different cholesterol: filipin molar ratios. The resulting filipin-induced lesions (FIL) were pleomorphic in all systems studied. In replicas of crystals, FIL appeared as ridges which were either straight, or curved into C- and S-shaped figures or closed circles. Negatively stained preparations showed FIL as white lines of the same configurations and in addition revealed a delicate veil attached to individual FIL. FIL, fused by their veils into clusters or large sheets ("holey sheets"), were shed from crystals. Incubation of liposomes for 1 h at cholesterol:filipin molar ratios of 4:1, 2:1, 1:1, and 1:5, demonstrated that cholesterol detection (i.e. formation of FIL) depend upon the ratio of cholesterol to filipin. At a 1:1 molar ratio FIL formed on liposomes containing 10 mole% cholesterol or more, but detectability increased to 5 mole% at the 1:5 ratio. Increasing the molar ratio of cholesterol:filipin to 2:1 and 4:1 decreased cholesterol detectability to between 10 and 20 mole%. Increasing concentrations of sphingomyelin decreased cholesterol detectability at the 1:1 cholesterol:filipin ratio; further, FIL in sphingomyelin-containing liposomes tended towards larger diameters. Filipin induced aggregation of liposomes and linked them together by holey sheets, providing evidence for filipin-induced extraction of cholesterol from liposomes. Taken together our morphological observations on filipin-cholesterol interaction in non-cellular systems raise pertinent questions as to the feasibility of filipin as a cholesterol probe in cellular systems.  相似文献   

18.
Cholesteryl ester hydroperoxide (CE-OOH) and phosphatidylcholine hydroperoxide (PC-OOH) are the major primary oxidation products of lipoproteins. CE-OOH is present in human and rat plasmas while PC-OOH is undetectable. This is likely due to the enzymatic (plasma glutathione peroxidase) and the nonenzymatic (apolipoproteins A and B-100) reducing activities of PC-OOH in plasma, and to the enzymatic conversion of PC-OOH to CE-OOH by lecithin:cholesterol acyltransferase in high density lipoproteins. The regioisomeric distribution of CE-O(O)H in human plasma indicates that free radical-mediated chain oxidation is an ongoing process, even in healthy young individuals.  相似文献   

19.
20.
To investigate whether the arylsulfate sulfotransferase (ASST) is suitable as a reporter system for monitoring gene expression, a reporter vector carrying the fragments of the astA coding region without the promoter region was constructed and designated as pSY815. As a test of the ASST reporter system's suitability, the regulatory regions of ermC and lacZ were inserted upstream of the coding region of the reporter gene to generate pSY815-EC and pSY815-LZ, respectively. In the absence of the inserted regulatory regions, the plasmids displayed very low background activities in Bacillus subtilis and Escherichia coli. The ASST activity under the control of the ermC regulatory region was increased 4.4-fold in B. subtilis when induced by 0.1 microgml(-1) of erythromycin. These results were consistent with a lacZ reporter gene assay of the ermC regulatory region. Furthermore, we confirmed that the lacZ promoter in E. coli was strongly induced to a 17.9-fold increase by 0.05 mM of isopropyl-beta-D-thiogalactopyranoside (IPTG) in this reporter system. These results indicate that the ASST is a suitable reporter system. The lack of endogenous activity, the simple detection of enzyme activity in the living cell, the commercially available non-toxic substrates, and the high sensitivity make ASST a useful genetic reporter system for monitoring gene expression and understanding gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号