首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The purpose of this study was to determine the extracellular concentrations of N -acetylaspartate (NAA) in the rat cerebral cortex, striatum, and hippocampus of halo-thane-anaesthetised rats by intracerebral microdialysis, and to examine the effects of high K+-induced local depolarisation, which provokes synchronous neurotransmitter release, cell swelling, and acid-base changes. Basal levels of NAA in the extracellular fluid (EOF) were determined by the zero net flux method. Tissue levels of NAA in the cortex, striatum, and hippocampus were 8.4, 5.7, and 7.2 mmol/kg, respectively. The corresponding extracellular concentrations of NAA were much lower (35.1, 83.7, and 23.0 tiM). High tissue/ECF concentration ratios may suggest little release or leakage of NAA under basal conditions, and potent reuptake mechanisms for NAA in the cellular membrane of CNS cells. There was no change in ECF NAA during K+-induced local depolarising stimuli produced in the striatum, but NAA levels consistently increased after the K+ stimuli, irrespective of whether or not Ca2+ was present in the perfusion medium. These data confirm that NAA is not a neurotransmitter and suggest strongly that NAA is not directly involved in the release and reuptake or metabolism of neuroactive compounds. The increase of NAA in the ECF immediately after K+ stimulation may reflect an involvement in brain osmoregulation and/or acid-base homeostasis.  相似文献   

2.
N-Acetyl-l-aspartate (NAA) is an amino acid that is present in the vertebrate brain. Its concentration is one of the highest of all free amino acids and, although NAA is synthesized and stored primarily in neurons, it cannot be hydrolyzed in these cells. Furthermore, neuronal NAA is dynamic and turns over more than once each day by virtue of its continuous efflux, in a regulated intercompartmental cycling via extracellular fluids, between neurons and a second compartment in oligodendrocytes. The metabolism of NAA, between its anabolic compartment in neurons and its catabolic compartment in oligodendrocytes, and its possible physiological role in the brain has been the subject of much speculation. There are two human inborn errors in metabolism of NAA. One is Canavan disease (CD), in which there is a buildup of NAA (hyperacetylaspartia) and associated spongiform leukodystrophy, caused by a lack of aspartoacylase activity. The other is a singular human case of lack of NAA (hypoacetylaspartia), where the enzyme that synthesizes NAA is apparently absent. There are two animal models currently available for studies of CD. One is a rat with a natural deletion of the catabolic enzyme, and the other a gene knockout mouse. In addition to the presence of NAA in neurons, its prominence in 1H nuclear magnetic resonance spectroscopic studies has led to its wide use in diagnostic human medicine as both an indicator of brain pathology and of disease progression in a variety of CNS diseases. In this review, various hypotheses regarding the metabolism of NAA and its possible role in the CNS are evaluated. Based on this analysis, it is concluded that although NAA may have several functions in the CNS, an important role of the NAA intercompartmental system is osmoregulatory, and in this role it may be the primary mechanism for the removal of intracellular water, against a water gradient, from myelinated neurons.  相似文献   

3.
Four Na+ -dependent transporters of neutral amino acids (NAA) are known to exist in the abluminal membranes (brain side) of the blood-brain barrier (BBB). This article describes the kinetic characteristics of systems A, ASC, and N that, together with the recently described Na+ -dependent system for large NAA (Na+ -LNAA), provide a basis for understanding the functional organization of the BBB. The data demonstrate that system A is voltage dependent (3 positive charges accompany each molecule of substrate). Systems ASC and N are not voltage dependent. Each NAA is a putative substrate for at least one system, and several NAA are transported by as many as three. System A transports Pro, Ala, His, Asn, Ser, and Gln; system ASC transports Ser, Gly, Met, Val, Leu, Ile, Cys, and Thr; system N transports Gln, His, Ser, and Asn; Na+ -LNAA transports Leu, Ile, Val, Trp, Tyr, Phe, Met, Ala, His, Thr, and Gly. Together, these four systems have the capability to actively transfer every naturally occurring NAA from the extracellular fluid (ECF) to endothelial cells and thence to the circulation. The existence of facilitative transport for NAA (L1) on both membranes provides the brain access to essential NAA. The presence of Na+ -dependent carriers on the abluminal membrane provides a mechanism by which NAA concentrations in the ECF of brain are maintained at approximately 10% of those of the plasma.  相似文献   

4.
Investigation into the Role of N-Acetylaspartate in Cerebral Osmoregulation   总被引:4,自引:3,他引:1  
Abstract: Marked abnormalities of the magnetic resonance intensity of N -acetylaspartate (NAA) have been reported in patients with various neurological disorders, but the neurochemical consequences of these alterations are difficult to assess because the function of NAA remains speculative. The purpose of this study was to examine whether NAA plays a role in protecting neurons against osmotic stress. Intracerebral microdialysis was used to expose a small region of the rat dorsolateral striatum to an increasingly hyposmotic environment and to measure resulting changes in NAA extracellular concentrations. NAA changes in the extracellular fluid (ECF) were compared with those of the amino acids, in particular, taurine, known to be involved in brain osmoregulation. Stepped increases in cellular hydration produced by hyposmotic perfusion media induced a marked increase in ECF NAA, reflecting a redistribution of NAA from intra-to extracellular space. Parallel experiments showed that, of all the extracellular amino acids measured, only taurine markedly increased with hyposmolar perfusion medium, indicating that the ECF NAA increase associated with hyposmotic stress was a specific response and not passive leakage out of the cells. As NAA is predominantly neuronal, it may contribute to the protection of neurons against swelling (i.e., regulatory volume decrease). In conditions with impaired blood-brain barrier and cytotoxic oedema, efflux of intracellular NAA subsequent to sustained cellular swelling might lead to a reduction in total brain NAA detectable by magnetic resonance spectroscopy. Alternatively, redistribution of NAA from intra-to extracellular space implies changes in its chemical environment that may alter its magnetic resonance visibility.  相似文献   

5.
During neurosurgery the freshly secreted extracellular fluid (ECF) from the choroid plexus was sampled with small pieces of application paper in three patients with intractable epilepsy. The samples were analyzed for free amino acids and for soluble proteins. The results were compared with corresponding data on extracellular fluid from the brain surface obtained with dialysis-perfusion as well as with the cerebrospinal fluid (CSF) acquired by lumbar punction. The dialysis data were calibrated against the paper results. The choroid plexus secretion had a high concentration of transthyretin as well as of an unidentified protein with an isoelectric point of 7.4. The cortical ECF exhibited high concentrations of tau-globulin and gamma-trace protein. Among the amino acids, glutamine had lower concentration in the choroid plexus secretion and higher concentrations in the ECF of the brain compared to the CSF. The amino acid derivative ethanolamine exhibited a similar pattern. This was interpreted to demonstrate that these compounds enter the CSF from the brain tissue. In contrast, alanine, serine, and taurine had a lower concentration in the CSF than in the plexus secretion which suggests that they are removed from the CSF by brain tissue.  相似文献   

6.
The abundance and developmental regulation of N-acetylaspartate (NAA) in brain suggest that it plays an important role in brain metabolism. Previous studies demonstrated that NAA transports acetate from the mitochondrion to the cytoplasm where it is utilized for lipid synthesis, however, the metabolic fate of NAA-derived aspartate is not established. To investigate NAA metabolism, rats were injected intracranially with N-([2H3]acetyl)-l-[15N]aspartate ([2H3,15N]NAA) and whole brain metabolites were analyzed using gas chromatography and mass spectrometry techniques (GC/MS). The rapid decline of [2H3,15H]NAA was associated with a rapid appearance of [15N]glutamate, indicating rapid transamination of the [15N]aspartate that was derived from the enzymatic hydrolysis of [2H3,15N]NAA. Inability to detect [15N]NAA in brain extracts in several experiments indicates that the15N moiety is not reutilized for NAA synthesis and suggests one metabolic role of NAA may be the transport of amino nitrogen from the mitochondrion to the cytoplasm.  相似文献   

7.
8.

Background

-Acetylhistidine (NAH) is present in very high concentrations exclusively in the brain and lens of ectothermic vertebrates, including ray-finned fishes, amphibians and reptiles, and not in those of endothermic birds and mammals. Although NAH is known to be synthesized from l-His and acetyl-CoA by histidine N-acetyltransferase (HISAT; EC 2.3.1.33), the gene encoding HISAT has remained unknown for any organism.

Methods

HISAT was purified from the blue mackerel brain, and its partial amino acid sequences were analyzed using mass spectrometry and Edman degradation. Using the sequence information, the corresponding gene was cloned and sequenced. Recombinant proteins encoded by the fish gene and its human homologue were expressed in a cell-free translation system.

Results

HISAT was identified to be a protein encoded by a fish homologue of the human predicted gene NAT16 (N-acetyltransferase 16). HISAT is an unstable enzyme that is rapidly and irreversibly inactivated during preincubation at 37 °C in the absence of acetyl-CoA. In fish brain, the HISAT gene is expressed as two splice variants containing an identical ORF but differing lengths of 5′-UTR. Both variants are expressed exclusively in the fish brain and lens. Interestingly, the recombinant human NAT16 protein, unlike the recombinant fish HISAT, has only trace enzyme activity for NAH synthesis.

Conclusions

These results propose that the function of mammalian NAT16 has been altered from l-His acetylation (NAH synthesis) to another different biological role.

General significance

The molecular identification of HISAT will allow progress in the understanding of the physiological function of NAH in ectothermic vertebrates.  相似文献   

9.
In the central nervous system (CNS), extracellular concentrations of amino acids (e.g., aspartate, glutamate) and divalent metals (e.g., zinc, copper, manganese) are primarily regulated by astrocytes. Adequate glutamate homeostasis and control over extracellular concentrations of these excitotoxic amino acids are essential for the normal functioning of the brain. Not only is glutamate of central importance for nitrogen metabolism but, along with aspartate, it is the primary mediator of excitatory pathways in the brain. Similarly, the maintenance of proper Mn levels is important for normal brain function. Brain glutamate is removed from the extracellular fluid mainly by astrocytes via high affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1). The effects of Mn on specific glutamate transporters have yet to be determined. As a first step in this process, we examined the effects of Mn on the transport of [D-2, 3-3H]D-aspartate, a non-metabolizable glutamate analog, in Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) or GLT-1 (EAAT2). Mn-mediated inhibition of glutamate transport in the CHO-K1 cell line DdB7 was pronounced in both the GLT-1 and GLAST transfected cells. This resulted in a statistically significant inhibition (p<0.05) of glutamate uptake compared with transfected control in the absence of Mn treatment. These studies suggest that Mn accumulation in the CNS might contribute to dysregulation of glutamate homeostasis.  相似文献   

10.
The acidic amino acids, glutamate and aspartate, are the predominant excitatory neurotransmitters in the mammalian CNS. Under many pathologic conditions, these excitatory amino acids (EAAs) accumulate in the extracellular fluid in CNS and the resultant excessive activation of EAA receptors contributes to brain injury through a process known as 'excitotoxicity'. Unlike many other neurotransmitters, there is no evidence for extracellular metabolism of EAAs, rather, they are cleared by Na+-dependent transport mechanisms. Therefore, this transport process is important for ensuring crisp synaptic signaling as well as limiting the excitotoxic potential of EAAs. With the cloning of five distinct EAA transporters, a variety of tools were developed to characterize individual transporter subtypes, including specific antibodies, expression systems, and probes to delete/knock-down expression of each subtype. These tools are beginning to provide fundamental information that has the potential to impact our understanding of EAA physiology and pathophysiology. For example, biophysical studies of the cloned transporters have led to the observation that some subtypes function as ligand-gated ion channels as well as transporters. With these reagents, it has also been possible to explore the relative contributions of each transporter to the clearance of extracellular EAAs and to begin to examine the regulation of specific transporter subtypes. In this review, an overview of the properties of the transporter subtypes will be presented. The evidence which suggests that the transporter, GLT1/EAAT2, may be sufficient to explain a large percentage of forebrain transport will be critically reviewed. Finally, the studies of regulation of GLT-1 in vitro and in vivo will be described.  相似文献   

11.
The acidic amino acids, glutamate and aspartate, are the predominant excitatory neurotransmitters in the mammalian CNS. Under many pathologic conditions, these excitatory amino acids (EAAs) accumulate in the extracellular fluid in CNS and the resultant excessive activation of EAA receptors contributes to brain injury through a process known as excitotoxicity. Unlike many other neurotransmitters, there is no evidence for extracellular metabolism of EAAs, rather, they are cleared by Na+-dependent transport mechanisms. Therefore, this transport process is important for ensuring crisp synaptic signaling as well as limiting the excitotoxic potential of EAAs. With the cloning of five distinct EAA transporters, a variety of tools were developed to characterize individual transporter subtypes, including specific antibodies, expression systems, and probes to delete/knock-down expression of each subtype. These tools are beginning to provide fundamental information that has the potential to impact our understanding of EAA physiology and pathophysiology. For example, biophysical studies of the cloned transporters have led to the observation that some subtypes function as ligand-gated ion channels as well as transporters. With these reagents, it has also been possible to explore the relative contributions of each transporter to the clearance of extracellular EAAs and to begin to examine the regulation of specific transporter subtypes. In this review, an overview of the properties of the transporter subtypes will be presented. The evidence which suggests that the transporter, GLT1/EAAT2, may be sufficient to explain a large percentage of forebrain transport will be critically reviewed. Finally, the studies of regulation of GLT-1 in vitro and in vivo will be described.  相似文献   

12.
Recent studies associated excess body weight with brain structural alterations, poorer cognitive function, and lower prefrontal glucose metabolism. We found that higher BMI was related to lower concentrations of N‐acetyl‐aspartate (NAA, a marker of neuronal integrity) in a healthy middle‐aged cohort, especially in frontal lobe. Here, we evaluated whether NAA was also associated with BMI in a healthy elderly cohort. We used 4 Tesla proton magnetic resonance spectroscopy (1H MRS) data from 23 healthy, cognitively normal elderly participants (69.4 ± 6.9 years; 12 females) and measured concentrations of NAA, glutamate (Glu, involved in cellular metabolism), choline‐containing compounds (Cho, involved in membrane metabolism), and creatine (Cr, involved in high‐energy metabolism) in anterior (ACC) and posterior cingulate cortices (PCC). After adjustment for age, greater BMI was related to lower NAA/Cr and NAA/Cho ratios (β < ?0.56, P < 0.008) and lower Glu/Cr and Glu/Cho ratios (β < ?0.46, P < 0.02) in ACC. These associations were not significant in PCC (β > ?0.36, P > 0.09). The existence of an association between NAA and BMI in ACC but not in PCC is consistent with our previous study in healthy middle‐aged individuals and with reports of lower frontal glucose metabolism in young healthy individuals with elevated BMI. Taken together, these results provide evidence that elevated BMI is associated with neuronal abnormalities mostly in frontal brain regions that subserve higher cognitive functions and impulse control. Future studies need to evaluate whether these metabolite abnormalities are involved in the development and maintenance of weight problems.  相似文献   

13.
14.
The concentrations of free amino acids in plasma, CSF and in vivo dialysates of peripheral blood (neck sac fluid) and central nervous tissue (brain sac fluid) from each of five dogs (neck sac fluid from four of five dogs) were determined by ion-exchange chromatography. Dialysates were obtained by implanting small dialysis sacs filled with a dextran-saline solution into the subcutaneous tissue of the neck or the parenchyma of the brain at least 10 weeks before sample collection. The mean plasma concentration of most amino acids was within the range of values reported in the literature for human or dog plasma. The concentrations of most amino acids were higher in the neck sac fluid than in plasma; this discrepancy, however, was, for the most part, small and could most likely be accounted for by falling plasma free amino acid levels prior to sample taking. Previous conclusions that the CSF concentrations of most amino acids are lower than plasma concentrations are confirmed, although the present work indicates that there may be considerable individual variation in the CSF/plasma distribution ratio with respect to most amino acids. In the brain sac fluid the concentration of nearly every amino acid was consistently higher than that in CSF and lower than that in the neck sac fluid. The potassium concentration in the brain sac fluid was significantly higher than, and the total osmolality significantly lower than, those in the neck sac fluid. On the assumption that the brain sac fluid represents a dialysate of the brain extracellular fluid, these results contradict recent findings (Bito and Davson , 1965; 1966) indicating that the potassium concentration of the cortex extracellular fluid is lower than that of ventricular or cisterna magna CSF and certainly lower than that of plasma. Because of this and on the basis of consideration of the reaction of the brain to a foreign body, the possibility that the implanted brain sac lay on the‘blood side’of the bloodbrain barrier was suggested. Some implications of this possibility are discussed.  相似文献   

15.
Recent work suggests that oxygen radicals may be important mediators of damage in a wide variety of pathologic conditions. In this review we consider the evidence supporting the participation of oxygen radicals in the adult respiratory distress syndrome, in ischemia reperfusion injury in the myocardium, and in cerebral vascular injury in acute hypertension and traumatic brain injury. In the adult respiratory distress syndrome there is active sequestration of polymorphonuclear neutrophils in the pulmonary vascular system. There is evidence that activation of these neutrophils results in the production of oxygen radicals which injure the capillary membrane and increase permeability, leading to progressive hypoxia and decreased lung compliance which are hallmarks of the syndrome. In acute arterial hypertension or experimental brain injury oxygen radicals are important mediators of vascular damage. The metabolism of arachidonic acid is the source of oxygen free radical production in these conditions. In myocardial ischemia and reperfusion injury, the ischemic myocyte is "primed" for free radical production. With reperfusion and reintroduction of molecular oxygen there is a burst of oxygen radical production resulting in extensive tissue destruction. Myocardial ischemia--reperfusion injury shares in common with the other two syndromes activation of the arachidonic acid cascade and acute inflammation. Thus it would appear that the generation of toxic oxygen species may represent a final common pathway of tissue destruction in several pathophysiologic states.  相似文献   

16.
Abstract: The report concerns mechanisms for the increase of extracellular levels of ethanolamine and phosphoethanolamine in CNS regions, such as the hippocampus, in transient brain ischemia, hypoglycemia, seizures, etc. l -Serine (2.5–10 m M ), d -serine (10 m M ), or ethanolamine (10 m M ) was administered for 20 min via a microdialysis tubing to the hippocampus of unanesthetized rabbits. The concentrations of primary amines were determined in the dialysates. When levels were elevated 10–100 times in the extracellular fluid, l -serine caused a dose-dependent increase of the concentration of extracellular ethanolamine. Ethanolamine caused a corresponding, although somewhat smaller, increase in serine levels. Furthermore, l -serine also induced an increased concentration of phosphoethanolamine that was delayed in time relative to the peak of ethanolamine. d -Serine was as effective as l -serine in raising ethanolamine levels but had no effect on phosphoethanolamine. Ethanolamine, but not l -serine, also increased extracellular glutamate/aspartate levels in an MK-801-dependent fashion. A similar effect, but delayed in time, was observed with d -serine. These effects were inhibited by MK-801. The concentrations of other amino acids were not significantly affected. The characteristics of the effects are suggestive of base exchange reactions between serine and ethanolamine and between ethanolamine and serine glycerophospholipids, respectively, in neuronal plasma membranes.  相似文献   

17.
Morris H. Baslow 《Amino acids》2010,39(5):1139-1145
N-acetylaspartate (NAA), an acetylated derivative of l-aspartate (Asp), and N-acetylaspartylglutamate (NAAG), a derivative of NAA and l-glutamate (Glu), are synthesized by neurons in brain. However, neurons cannot catabolize either of these substances, and so their metabolism requires the participation of two other cell types. Neurons release both NAA and NAAG to extra-cellular fluid (ECF) upon stimulation, where astrocytes, the target cells for NAAG, hydrolyze it releasing NAA back into ECF, and oligodendrocytes, the target cells for NAA, hydrolyze it releasing Asp to ECF for recycling to neurons. This sequence is unique as it is the only known amino acid metabolic cycle in brain that requires three cell types for its completion. The results of this cycling are two-fold. First, neuronal metabolic water is transported to ECF for its removal from brain. Second, the rate of neuronal activity is coupled with focal hyperemia, providing stimulated neurons with the energy required for transmission of meaningful frequency-encoded messages. In this paper, it is proposed that the tri-cellular metabolism of NAA functions as the “operating system” of the brain, and is essential for normal cognitive and motor activities. Evidence in support of this hypothesis is provided by the outcomes of two human inborn errors in NAA metabolism.  相似文献   

18.
Brain capillary endothelial cells form the blood-brain barrier. They are connected by extensive tight junctions, and are polarized into luminal (blood-facing) and abluminal (brain-facing) plasma membrane domains. The polar distribution of transport proteins allows for active regulation of brain extracellular fluid. Experiments on isolated membrane vesicles from capillary endothelial cells of bovine brain demonstrated the polar arrangement of amino acid and glucose transporters, and the utility of such arrangements have been proposed. For instance, passive carriers for glutamine and glutamate have been found only in the luminal membrane of blood-brain barrier cells, while Na-dependent secondary active transporters are at the abluminal membrane. This organization could promote the net removal of nitrogen-rich amino acids from brain, and account for the low level of glutamate penetration into the central nervous system. Furthermore, the presence of a gamma-glutamyl cycle at the luminal membrane and Na-dependent amino acid transporters at the abluminal membrane may serve to modulate movement of amino acids from blood-to-brain. Passive carriers facilitate amino acid transport into brain. However, activation of the gamma-glutamyl cycle by increased plasma amino acids is expected to generate oxoproline within the blood-brain barrier. Oxoproline stimulates secondary active amino acid transporters (Systems A and B(o)+) at the abluminal membrane, thereby reducing net influx of amino acids to brain. Finally, passive glucose transporters are present in both the luminal and abluminal membranes of the blood-brain barrier. Interestingly, a high affinity Na-dependent glucose carrier has been described only in the abluminal membrane. This raises the question whether glucose entry may be regulated to some extent. Immunoblotting studies suggest more than one type of passive glucose transporter exist in the blood-brain barrier, each with an asymmetrical distribution. In conclusion, it is now clear that the blood-brain barrier participates in the active regulation of brain extracellular fluid, and that the diverse functions of each plasma membrane domain contributes to these regulatory functions.  相似文献   

19.
Reproduction in all vertebrates requires the brain hormone gonadotropin-releasing hormone (GnRH) to activate a cascade of events leading to gametogenesis. All vertebrates studied to date have one to three forms of GnRH in specific but different neurons in the brain. In addition, at least one type of GnRH receptor is present in each vertebrate for activation of specific physiological events within a target cell. Humans possess two types of GnRH (GnRH1 and GnRH2) but only one functional GnRH receptor. Zebrafish, Danio rerio, also have two types of GnRH (GnRH2 and GnRH3), although in contrast to humans, zebrafish appear to have four different GnRH receptors in their genome. To characterize the biological significance of multiple GnRH receptors within a single species, we cloned four GnRH receptor cDNAs from zebrafish and compared their structures, expression, and cell physiology. The zebrafish receptors are 7-transmembrane G-protein coupled receptors with amino-acid sequence identities ranging from 45 to 71% among the four receptors. High sequence similarity was observed among the seven helices of zebrafish GnRHRs compared with the human GnRHR, the green monkey type II GnRHR, and the two goldfish GnRHRs. Also, key amino acids for putative ligand binding, disulfide bond formation, N-glycosylation, and G-protein coupling were present in the extracellular and intracellular domains. The four zebrafish receptors were expressed in a variety of tissues including the brain, eye, and gonads. In an inositol phosphate assay, each receptor was functional as shown by its response to physiological doses of native GnRH peptides; two receptors showed selectivity between GnRH2 and GnRH3. Each of the four receptor genes was mapped to distinct chromosomes. Our phylogenetic and syntenic analysis segregated the four zebrafish GnRH receptors into two distinct phylogenetic groups that are separate gene lineages conserved throughout vertebrate evolution. We suggest the maintenance of four functional GnRH receptors in zebrafish compared with only one in humans may depend either on subfunctionalization or neofunctionalization in fish compared with mammalian GnRH receptors. The differences in structure, location, and response to GnRH forms strongly suggests that the four zebrafish GnRH receptors have novel functions in addition to the conventional activation of the pituitary gland in the reproductive axis.  相似文献   

20.
SYNOPSIS. The mammalian hypothalamic releasing factors regulatingthyroid, gonadal and adrenal function as well as growth hormonesecretion have been isolated, characterized and their nucleotidesequences determined. In general, their hypophysiotropic effectsare replicated in lower vertebrates though thyrotropin releasinghormone (TRH) does not appear to stimulate thyroid functionin amphibia and fish. The releasing factors, or peptides structurallyrelated to these substances, are found throughout the CNS ofall vertebrates where they likely function as neurotransmittersor neuromodulators. High concentrations of TRH and other neuralpeptides includingsauvagine, which is related to corticotropinreleasing factor (CRF) and has CRF-like activity, are foundin amphibian skin, a neural crest derived tissue. mRNA extractedfrom the skin of Xenopus laevis was cloned and led to the identityof the DNA sequence of pre-pro TRH. Molecular variants of somatostatinhave been recognized from studies on the pancreatic islets ofthe anglerfish and catfish. Within mammalian species there isheterogeneity of growth hormone releasing factor (GRF), the44 (and 40) amino acid peptides isolated from a human(h) pancreatictumor. In the teleost brain-pituitary, 2 distinct hGRF-likeneuronal systems are present. Additionally, various molecularforms of hGRF exist in the fish brain showing structural changesfrom the human variety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号